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An evolutionary approach to coordination of
self—interested agents

Advances in
e mobile sensor platforms
e intelligent autonomous robots

“selfishness”: individuals maximize
their own payoffs, might leading to
a great cost to the group

Challenges
e local information vs. global team goal

ROBOTICS) .
bae e unknown, changing environment

Rokts 4

Special issues on robotics
Science Magazine
October 2014 and November 2007
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An evolutionary approach to coordination of
self-interested agents

Key difference from the existing control of complex systems
e distributed controller

e adaptive control evolves with changing environment

Sociology: social dilemma in modern society  Biology: understanding cooperating
behavior in social animalg
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An evolutionary approach to coordination of
self-interested agents

Carry out the task repeatedly; adjust strategies each time
e each time the task is taken as a group game
e new insight into how cooperation emerge as an evolutionary outcome
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The paradox of cooperation

Natural selection is based on competition. How can it lead
to cooperation?

Cooperation is often costly for the individual, while benefits
are distributed over a collective

Charles Darwin
(1809-1882)
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Cooperation (altruism) is an evolutionary puzzle!



Mechanism for evolution of cooperation is a central topic

THE QUESTIONS

The Top 25

Essays by our news staff on 25 big
questions facing science over the next
gquarter-century.

=VWhat Is the Universe Made Of?

= 'What is the Biological Basis of
Consciousness?

= Why Do Humans Have So Few
Genes?

= To What Extent Are Genetic Variation
and Personal Health Linked?

= Can the Laws of Physics Be Unified?

> How Much Can Hurnan Life Span Be
Extended?

= What Controls Organ Regeneration?

> How Can a Skin Cell Become a Nerve
Cell?

> How Does a Single Somatic Cell
Become a'Whole Plant?

= How Does Earth's Interior Work?
= Are We Alone in the Universe?

= How and Where Did Life on Earth
Arise?

= What Determines Species Diversity?

=Vhat Genetic Changes Made Us
Unigquely Human?

> How Are Memories Stored and
Retrieved?

> How Did Cooperative Behavior Evolve?
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Ina special collection of articles
published beginning 1 July 2005,
Science Magazine and its online
companion sites celebrate the
journal's 125th anniversary with a look
forward -- at the most compelling
puzzles and questions facing
scientists today. A special, free news
feature in Science explores 125 big questions that face scientific
inguiry over the next quarter-century; accompanying the feature
are several online extras including a reader's forum on the big
questions. The Signal Transduction Knowledge Environment
highlights some classic Science papers that have influenced the
study of cell signaling. The Science of Aging Knowledge Environment looks at several important questions
confronting researchers on aging. And Science's Next Wave introduces us to four young scientists building
their careers grappling with some of the very questions that Science has identified.
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This Special Collection:

In Science Magazine

In Science's STKE

In Science's SAGE KE
In Sclience's Next Wave
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Cooperative
Behavior Evolve
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Five Rules for the Evolution
of Cooperation M. A. Nowak,

Martin A. Nowak Scien ce,

V314,
Cooperation is needed for evolution to construct new levels of organization. Genomes, cells, 1 1
multicellular organisms, social insects, and human society are all based on cooperation. Cooperation 560- 5631
means that selfish replicators forgo some of their reproductive potential to help one another. But 2006

natural selection implies competition and therefore opposes cooperation unless a specific mechanism
is at work. Here | discuss five mechanisms for the evolution of cooperation: kin selection, direct
reciprocity, indirect reciprocity, network reciprocity, and group selection. For each mechanism, a simple
rule is derived that specifies whether natural selection can lead to cooperation.

* Kin selection
« Direct reciprocity (“tit-for-tat”)
* Indirect reciprocity
« Network reciprocity rich theory — limited predictive power...
» Group selection
10



Free-rider problem: the Prisoner’s dilemma

cooperate defect
cooperate b-c -C
I
v ¥
defect b 0
b>c>0

Mutual cooperation more profitable than mutual defection

But: under all circumstances to defect is the dominating strategy
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LETTERS TO NATURE

Evolutionary games and
spatial chaos

Martin A. Nowak & Robert M. May

Department of Zoology, University of Oxford, South Parks Road,
Oxford OX1 3PS, UK

MUCH attention has been given to the Prisoners’ Dilemma as a
metaphor for the problems surrounding the evolution of coopera-
tive behaviour'™S. This work has dealt with the relative merits of
various strategies (such as tit-for-tat) when players who recognize
each other meet repeatedly, and more recently with ensembles of
strategies and with the effects of occasional errors. Here we neglect

Highest
pay-off

M. A. Nowak,
and R. M. May,
Nature,

V359,
826-829, 1992




Outline

Paradox of cooperation
Evolutionary matrix games

Continuous-time replicator dynamics

Discrete-time dynamics driven by switching probabilities

Controlling evolutionary games on networks




Evolutionary game theory: History and motivation

John Maynard Smith was interested
iIn why so many animals engage in
ritualized fighting (“The logic of
animal conflict”, Nature, 1973)

Evolutionary game theory (EGT) refers to the study of large
populations of interacting agents, and how various behaviors and traits
might evolve.

Differences from classical game theory

 Players = sub-populations, employing a common strategy
« Strategies = behaviors that update or traits encoded in genes
« Payoffs = fithess, which determines update or reproductive rates

Key concept: The fithess of an individual must be evaluated in the
context of the population in which it lives and interacts

14



Dynamical system description for evolutionary games

Matrix game (symmetric two-player normal form with finitely many strategies)

N

Pure strategies: €1,€2,...,e, unit vectorsin IR™
Mixed strategies: p = (p1,...,pm) € A™

where  A™ ={>"" p;}
p; =20

v

« Payoff: Individuals interact in a two-player game

« Let m(ei,e;) be the payoff of e; against ¢;,
then the m-by-m payoff matrix A has entries A;; = 7(e;, €;)

T

+ The payoff of p against qis  7(p,q) = 3 pi(es,e;)q; = p" Aq

ij=1

15



Dynamical system description for evolutionary games

Matrix game (symmetric two-player normal form with finitely many strategies)

Assumptions:

Well-mixed population (no network structure)
Random pairwise interaction per unit time
Payoff translate directly into
— (biological view) fitness that determines reproductive rate
— (rational decision-making view) proportional imitation rate
Individuals use pure strategies

Let n; denote the number of individuals using strategy e; at time {, then
n; = n;m(e;,x) where N=n,+n,+ ...+n_and x,;=n./ N

T

+ The payoff of p against qis  7(p,q) = 3 pi(es,e;)q; = p" Aq

ij=1

Replicator dynamics: #; = z;(w(e;,z) — 7(z, x))

Key concept: The fitness of an individual must be evaluated in the
context of the population in which it lives and interacts



Tempting claims for evolutionary game dynamics

Replicator dynamics: #; = z;(w(e;,z) — 7(z, x))

17



Tempting claims for evolutionary game dynamics

Replicator dynamics: ; = z;(7(e;, x) — m(z, x))

Temptitag claim: For the replicator dynamics of a matrix game, it holds that
(@) A converging trajectory in the interior of A™ evolves to a Nash equilibrium

x* is a Nash equilibrium if for all x,  «w(z,z*) < w(z*,z")

Appealing: Nash equilibria are for individuals as rational decision makers,
but replicator dynamics do not assume rationality of the individuals

18



“Folk theorem” of evolutionary game theory

Replicator dynamics: ; = z;(7(e;, x) — m(z, x))

Temptitag claim: For the replicator dynamics of a matrix game, it holds that
(@) A converging trajectory in the interior of A™ evolves to a Nash equilibrium

x* is a Nash equilibrium if for all x,  nw(z,2z*) < w(z*, z*)

Evolutionarily stable strategy (ESS): x* is ESS if for all other x, we have
(i) The Nash equilibrium condition: 7(z,2*) < w(a*,z*)
(i) The stability condition: 73+ 2) > n(z,2) if n(z,2*) = 7(z*, 2*)

Fu empting statement:
(b) A converging trajectory in the interior evolves to an ESS equilibrium

19



Generalized Rock-scissors-paper game

Consider the three-strategy matrix game with the payoff matrix
R S P

R [0 6 —4
A=8§1-4 0 4
P\ 2 -2 0

Cyclic dominance: R beats S, S beats P and P beats R.

/7N A unique Nash equilibrium: x*= (10/29, 8/29, 11/29)

Almost globally asymptotically stable
_ But not ESS since
-) | m(er,z*) = w(z*, z*) = =

m(x*,e1) = —é—g <0=m(e,e1)

The game with the payoff matrix —A reverses the trajectories. The interior
trajectories do not converge to a Nash equilibrium, but a heteroclinic C%Cle



Theorem on ESS for replicator dynamics of a matrix game

(a) x*is an ESS iff 7(z*,z) > 7(z,x) for all x near x*
(b) An ESS x* is a locally asymptotically stable equilibrium

(c) Aninterior ESS x* is a almost globally asymptotically stable equilibrium

(a) Check (Weibull 1995, Apaloo 2006, Cressman 2010)
(b)(c) (Hofbauer et al, 1979) V(z) =Yz

is a strict local Lyapunov function.

The game with the payoff matrix —
A reverses the trajectories. The
interior trajectories do not
converge to a Nash equilibrium,
but a heteroclinic cycle

21




Remark on convergence for 4t"- or higher-order replicator dynamics

Global analysis in general replies on the construction of Lyapunov
function, which is in general difficult

Chaotic behavior can appear.

22



Two-population replicator dynamics

 Replicator dynamics for the matrix game with strategies {ei, ...

t; = xi(m(e;,x) — w(x,x)),

« Two-population replicator dynamics
p; =plUS(p) = U (p)], k=12
where pff is the proportion of individuals in population £ using si.

« We use x and Y to denote the states of the two populations.



Payoff matrices with environmental feedback

Individuals from population 1 interact with individuals from population 2,
and vise versa.

Dynamic payoff matrices (a1 +b11 ... aim” 4+ bim
A(F)1g = : :
| @m1T +b0m1 ... Gmm? + bpm |
[ ciir+dii ... CcimT + dim |
A(r)e =
(Cm1T +dm1 ... C;mT + A |

Dynamics of the environment
i =r(1—r)h(z,y)

where h(z,y) denotes the impact of population states on the environment,
which may enhance or reduce resources.

24



Co-evolutionary game dynamics model

Consider
h(z,y) = Z/Jixi - Zx—z’ + ijyj - Zy—j
i€S JjES
with 1; > 0, p; > 0 representing the ratios of enhancement to degradation.

Replicator dynamics with environmental feedback:

(

&; = x;i[(A(r)12y)i — xT A(1)12Y]
59 9 =y[(A(r)aix); — yTA(r)21x]
i r=r(l- T)[Zi,jes(uiﬂfz’ + Pjyj) - 2(37—@ <Ir y—j)]a

where :
(zi,y5,7) € Qs AL x A™=1x g g

25



Specific payoff matrices

Consider the following asymmetric payoff matrices

A(r) = (1 —r) L:’__;ll gjﬂlil gﬂ

s =u-n e G el 3

with P, >31,T1 > Rq; P2>82,T2 > R .

Each matrix has an embedded symmetry to ensure that mutual cooperation
is a Nash equilibrium when r = 0 and mutual defection is a Nash equilibrium
when r=1.

Then the dynamics become
t=z(1—x)[dps, + (0rr, —ps,)y](1 — 2r)
2 1 = y(l — y)[5p32 =} (5TR2 — 51352):6](1 — 27‘)
r=r(1—7)[(1+01)z+ (1+062)y — 2]
with 5p5i =P, -5;,>0, 6TR@ =T, —R; >0 and Qk IS the
enhancement to degradation ratio in population k.




Observation from simple computations

« Invariant cubic domain i, = [0, 1]°
eight isolated fixed points and one interior fixed point

{(:C’y’r) (1 4+0)r+ (1 +02)y=2,r= %}

« The eight corner fixed points are unstable;

* The eigenvalues at the interior equilibrium are
A1 =0, )\2,3 = :E\/F’L,K > 0

1 = T T T
| = 7 1
| =
0.5] f=—r:|'} \
] )
‘ / / )
0 = 3 —= ‘ ! \'\‘
0 5 10 15 20 25 30 =0 /
.,"‘. |

1 ' ‘ - / "
2 | ‘:xr 0 Lb\. ‘
HAMWG T
0[|J ] 10 15 2'0 2-5 3J0

Time

 simulations

State

y

(a) Time Evolution (b) Periodic Orbits
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Main result to prove

Theorem

The two-population co-evolutionary game dynamics
have infinitely many periodic orbits in the interior of
I[%,l] = [0, 1]3 :

28



Reversible system

* Reversible system

A dynamical system is said to be reversible if there is an involution G
in its phase space which reverses the direction of time, i.e. the
dynamics are invariant under a change in the sign of time.

 Periodic Orbits

An orbit (not a fixed point) is periodic and symmetric with respect to
G if and only if the orbit intersects Fix(G) at precisely two points.

For system >4, one can find
G:z—=z,y—y,r—1—r

Fix(G): {r=1/2}

such that

25, 2y,

29



Viewpoint 1: Reversible system

Divide I, ,, =(0,1)*into four
regions by the two planes

{r=1/2}
{(1+6)x+ (14 62)y =2}

1
Ql:{5<T’<1,(1+91)$+(1+92)y>2}
1
Qg:{§<r<1,(1—|—91)33—|-(1—|-t92)y<2}
1
Qg:{0<’r<5,(1+91)1’+(1—|—92)y<2}

1|
Q4:{0<7’<5,(1+91):§+(1—|—92)y>2}

s o
0, 94
= 05- ;

A typical trajectory

Consider an arbitrary trajectory starting from
point q;

it goes across the plane {7 = 1/2} and into 23;
crosses plane {(1+61)x+ (14 62)y = 2}

and enters 14;

then crosses plane {r = 1/2}again;

returns to the starting point and forms a periodic
orbit.

05
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A discrete-time stochastic model
1

U,,p= - e_ﬂ(,,B_,,A)

Switching probability

* Individuals’ bounded rationality
implies their limited cognition and
decision-making capabilities

« Computations might be cognitively
expensive and thus unfavorable

 False information, error, noise ...

p(t+1)=p, () 1=U', () +[1- p, (1)U, , ()

p(h is agent /‘s probability to employ strategy A at time ¢

32



A discrete-time stochastic model

Switching probability

@ B———®
-~ (17 m
* . ‘% UA—)BZI_[l_uAaB(l_pQ,-)]
(b) *‘ ‘\*A % \U119—>A =1- (1 —Up ,4Po )

At equilibrium,

33



Results
Coexistence of strategies for regular graphs:

1_(1_MA—>B)m 1—(1—MB_)A)m

A persists if Upa > , B persists if u, ;>
m m

@ 1.0 1.0 ()
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More sophisticated model

Strategy revisions:

A— B|B A— B|4
4 Un-s/ Us-n/
& ———©0
Ua-B/A Ua-B/A
e
GMB-A/BF - Us-A/B @

P(t+1)=P (1) 1-Ul, (1) |[+(1-B(1))Uj, . (2)

35
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Agents’ updating rule

Best-response: agents maximize payoff against current neighbor actions.

Imitation: agents copy the action of the highest earning neighbor.

SM(t) = set of strategies earning the maximum payoff in the
neighborhood of agent i:

50 = {50y = max w0}
(A SM(n) = (A}
xi(t+1)=<{B SM(t) = {B}
x(t) SM(t) = {A B}

\

37



Incentive-based control of A-coordinating networks

Suppose we can offer an incentive r for taking a particular action.

A B
R atr bar : a,b.c,d.relR
B c d

How much would it cost to have all agents converge to A?

Cases:

« Uniform incentives

« Targeted incentives

« Targeted incentives subject to a budget constraint

38



Uniform incentive-based control
All agents receive the same incentive

A B
Af Bt Bt g . dep
B Ci dj

Find the minimum value of the uniform incentive such that the entire
network converges to A?

« A-coordinating: any agent who updates to Strategy A would also do so
if some agents currently playing B were instead playing A

« A-monotone: Offering incentives to play A will never lead to an agent to
switch away from A

* Uniquely-convergent: Offering incentives leads to a unique equilibrium

Theorem: Every network of A-coordinating agents is A-monotone and
uniquely convergent.

39




Uniform incentive-based control

Proposition:
One can construct a finite set R that contains r*

Because of the A-monotone property, one can carry out the binary search:

3 . 4
R: n m o n rnr o ronn

Theorem:
Within finite steps, binary search solves the uniform reward problem

40



Targeted incentive-based control

Suppose it's possible to offer different rewards to individual agents:

A B
Af et Bt . aj.bi.ci,di eR, ri € R>g
B Ci d,' B
Problem 1: Find r=(r..... rp) that minimizes > .r such that

the entire network converges to A.

Problem 2 (budget constraint): Find r that maximizes the
number of agents who converge to A subject to > .r < p.

41



Targeted incentive-based control

Computationally complex to solve exactly (conjectured to be NP)

We can compute the incentive Fj needed such that at least one
A-neighbor will switch to B

Fi = max max Yk — Vi,
JENP keNP

where N8B := {j e ;U {i} : x; = B}.

Algorithm: Iteratively choose agents to switch until the desired equilibrium is
reached or the budget limit is exceeded.

42



Targeted incentive-based control

How should we choose these agents?

Several possibilities: max degree, min required incentives, etc.

Approach: lteratively maximize a benefit-to-cost ratio
Benefit = # of agents who switch to A, cost = incentive

, Where A®(x) = d(x(t2)) — P(x(t1)).

max

A :
(x), o and 3 are design parameters.

|

d(x) = Z

=1

43



Simulation results: Uniform vs. Targeted incentives

Best Response
I ————3

+.uniform |
—o—|PRO

.....................................................

mean reward (r)
o
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O

s SO S S .
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o
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=
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—+—|PRO

—h
T

O PR .. "SR SO .
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4
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network size
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Outlook

Extensions to different types of games and more than 2 strategies
Convergence to equilibria with mixed strategies
State feedback to render a closed loop system

46



Outlook

« Extensions to different types of games and more than 2 strategies
« Convergence to equilibria with mixed strategies
« State feedback to render a closed loop system

Applications:

=~ Autonomous robots
Traffic flow
Communication networks
Energy grids

Social networks
Pandemic analysis

- Marketing

Controlling evolutionary processes is an emerging new topic!
47



Some selected recent publications from my group on related topics
“Incentive-based control of asynchronous best-response dynamics on binary decision
networks,” J. R. Riehl, P. Ramazi, and M. Cao. I[EEE Trans. on Control of Network
Systems, 2019

“Evolutionary dynamics of two communities under environmental feedback,” Y.

Kawano, L. Gong, B. D. O. Anderson, and M. Cao. /[EEE Control Systems Letters,
special issue on Control and Network Theory for Biological Systems, 2019

“A survey on the analysis and control of evolutionary matrix games,” J. R. Riehl, P.
Ramazi and M. Cao. Annual Reviews in Control, 45(6), 87-106, 2018

“Asynchronous decision-making dynamics under best-response update rule in finite
heterogeneous populations,” P. Ramazi and M. Cao. IEEE Transactions on Automatic

Control, 63(3), 742-751, 2018.

“Networks of conforming or nonconforming individuals tend to reach satisfactory
decisions,” P. Ramazi, J. R. Riehl, and M. Cao. Proceedings of the National Academy

of Science of USA (PNAS), 113(46), pp12985-12990, 2016

“Crucial role of strategy updating for coexistence of strategies in interaction networks,”
J. Zhang, C. Zhang, M. Cao and F. J. Weissing. Phsical Review E, 042101, 2015

--- The end ---



