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An evolutionary approach to coordination of
self-interested agents

Special issues on robotics 
Science Magazine
October 2014 and November 2007

Advances in 
 mobile sensor platforms
 intelligent autonomous robots

“selfishness”: individuals maximize 
their own payoffs, might leading to 
a great cost to the group

Challenges   
 local information vs. global team goal
 unknown, changing environment
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self-interested agents
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An evolutionary approach to coordination of 
self-interested agents

Key difference from the existing control of complex systems
 distributed controller
 adaptive control evolves with changing environment

Biology: understanding cooperating 
behavior in social animals

Sociology: social dilemma in modern society
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An evolutionary approach to coordination of 
self-interested agents
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Carry out the task repeatedly; adjust strategies each time
 each time the task is taken as a group game
 new insight into how cooperation emerge as an evolutionary outcome

An evolutionary approach to coordination of
self-interested agents



Outline

• Paradox of cooperation

• Evolutionary matrix games

• Continuous-time replicator dynamics

• Discrete-time dynamics driven by switching probabilities   

• Controlling evolutionary games on networks
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The paradox of cooperation

Natural selection is based on competition. How can it lead 
to cooperation?

Charles Darwin 
(1809-1882)

Cooperation (altruism) is an evolutionary puzzle!
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Cooperation is often costly for the individual, while benefits 
are distributed over a collective



Mechanism for evolution of cooperation is a central topic
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M. A. Nowak, 
Science, 
V314, 
1560-1563, 
2006
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• Kin selection
• Direct reciprocity (“tit-for-tat”)
• Indirect reciprocity
• Network reciprocity
• Group selection

rich theory – limited predictive power…



Free-rider problem: the Prisoner’s dilemma

cooperate defect

cooperate b-c -c

defect b 0

  0b c

Mutual cooperation more profitable than mutual defection

But: under all circumstances to defect is the dominating strategy
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M. A. Nowak, 
and R. M. May, 
Nature, 
V359, 
826-829, 1992
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Evolutionary game theory: History and motivation

John Maynard Smith was interested 
in why so many animals engage in 
ritualized fighting (“The logic of 
animal conflict”, Nature, 1973)

Evolutionary game theory (EGT) refers to the study of large 
populations of interacting agents, and how various behaviors and traits 
might evolve.

Differences from classical game theory
• Players     =  sub-populations, employing a common strategy
• Strategies =  behaviors that update or traits encoded in genes
• Payoffs     =  fitness, which determines update or reproductive rates

Key concept:  The fitness of an individual must be evaluated in the 
context of the population in which it lives and interacts
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Dynamical system description for evolutionary games

Matrix game (symmetric two-player normal form with finitely many strategies)

• Payoff: Individuals interact in a two-player game

• Let                 be the payoff of      against     ,   
then the m-by-m payoff matrix A has entries 

• The payoff of p against q is 

Pure strategies: 
Mixed strategies: 

where

unit vectors in 
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Dynamical system description for evolutionary games

Matrix game (symmetric two-player normal form with finitely many strategies)

• The payoff of p against q is 

Assumptions:

• Well-mixed population (no network structure)
• Random pairwise interaction per unit time
• Payoff translate directly into

– (biological view) fitness that determines reproductive rate
– (rational decision-making view) proportional imitation rate

• Individuals use pure strategies

Let ni denote the number of individuals using strategy ei at time t, then        

where N=n1 + n2 + … + nm and xi = ni / N

Replicator dynamics:

Key concept:  The fitness of an individual must be evaluated in the 
context of the population in which it lives and interacts
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Tempting claims for evolutionary game dynamics

Replicator dynamics:
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Tempting claims for evolutionary game dynamics

Replicator dynamics:

Tempting claim: For the replicator dynamics of a matrix game, it holds that
(a) A converging trajectory in the interior of        evolves to a Nash equilibrium

x* is a Nash equilibrium if for all x,  

Appealing:  Nash equilibria are for individuals as rational decision makers, 
but replicator dynamics do not assume rationality of the individuals
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“Folk theorem” of evolutionary game theory

Replicator dynamics:

Tempting claim: For the replicator dynamics of a matrix game, it holds that
(a) A converging trajectory in the interior of        evolves to a Nash equilibrium

Evolutionarily stable strategy (ESS): x* is ESS if for all other x, we have
(i)    The Nash equilibrium condition:                                  
(ii)    The stability condition: 

Further tempting statement:
(b) A converging trajectory in the interior evolves to an ESS equilibrium
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x* is a Nash equilibrium if for all x,  



Generalized Rock-scissors-paper game

Consider the three-strategy matrix game with the payoff matrix

Cyclic dominance: R beats S, S beats P and P beats R.

A unique Nash equilibrium: x*= (10/29, 8/29, 11/29)

Almost globally asymptotically stable

But not ESS since

The game with the payoff matrix –A reverses the trajectories. The interior 
trajectories do not converge to a Nash equilibrium, but a heteroclinic cycle
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Theorem on ESS for replicator dynamics of a matrix game 
(a) x* is an ESS iff for all x near x* 

(b) An ESS x* is a locally asymptotically stable equilibrium 

(c) An interior ESS x* is a almost globally asymptotically stable equilibrium

(a) Check (Weibull 1995, Apaloo 2006, Cressman 2010)

(b)(c) (Hofbauer et al, 1979)

is a strict local Lyapunov function. 

The game with the payoff matrix –
A reverses the trajectories. The 
interior trajectories do not 
converge to a Nash equilibrium, 
but a heteroclinic cycle
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Remark on convergence for 4th- or higher-order replicator dynamics

Global analysis in general replies on the construction of Lyapunov
function, which is in general difficult

Chaotic behavior can appear.
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Two-population replicator dynamics

• Replicator dynamics for the matrix game with strategies 

• Two-population replicator dynamics

where       is the proportion of individuals in population    using    .     

• We use     and     to denote the states of the two populations.     



Individuals from population 1 interact with individuals from population 2, 
and vise versa.

Dynamic payoff matrices

Dynamics of the environment

where           denotes the impact of population states on the environment, 
which may enhance or reduce resources.
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Payoff matrices with environmental feedback



Co-evolutionary game dynamics model

Consider 

with                           representing the ratios of enhancement to degradation.

Replicator dynamics with environmental feedback:

where                                                              .
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Specific payoff matrices

Consider the following asymmetric payoff matrices 

with                                                           . 

Each matrix has an embedded symmetry to ensure that mutual cooperation 
is a Nash equilibrium when r = 0 and mutual defection is a Nash equilibrium 
when r = 1.

Then the dynamics become

with                                                             and      is the  
enhancement to degradation ratio in population k.  



Observation from simple computations 

• Invariant cubic domain

• eight isolated fixed points and one interior fixed point

• The eight corner fixed points are unstable;

• The eigenvalues at the interior equilibrium are

• simulations
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Main result to prove 

Theorem

The two-population co-evolutionary game dynamics 
have infinitely many periodic orbits in the interior of 

.
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Reversible system

• Reversible system

A dynamical system is said to be reversible if there is an involution G
in its phase space which reverses the direction of time, i.e. the 
dynamics are invariant under a change in the sign of time.

• Periodic Orbits

An orbit (not a fixed point) is periodic and symmetric with respect to 
G if and only if the orbit intersects             at precisely two points.

For system     , one can find

such that
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Divide                   into four 
regions by the two planes

A typical trajectory
Consider an arbitrary trajectory starting from 
point q;

it goes across the plane and into      ;

crosses plane 

and enters     ;

then crosses plane               again;

returns to the starting point and forms a periodic 
orbit.
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Viewpoint 1: Reversible system
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A discrete-time stochastic model

Switching probability
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• Individuals’ bounded rationality 
implies their limited cognition and 
decision-making capabilities

• Computations might be cognitively 
expensive and thus unfavorable 

• False information, error, noise …
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A discrete-time stochastic model

Switching probability
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At equilibrium, 
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Results 
Coexistence of strategies for regular graphs: 

A persists if                                      ; B persists if 
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More sophisticated model

Strategy revisions: 
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Agents’ updating rule

Best-response: agents maximize payoff against current neighbor actions.
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Imitation: agents copy the action of the highest earning neighbor.



Incentive-based control of A-coordinating networks

Suppose we can offer an incentive r for taking a particular action.
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How much would it cost to have all agents converge to A?

Cases: 
• Uniform incentives
• Targeted incentives
• Targeted incentives subject to a budget constraint 



Uniform incentive-based control
All agents receive the same incentive
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Find the minimum value of the uniform incentive such that the entire 
network converges to A?

• A-coordinating: any agent who updates to Strategy A would also do so 
if some agents currently playing B were instead playing A

• A-monotone: Offering incentives to play A will never lead to an agent to 
switch away from A

• Uniquely-convergent: Offering incentives leads to a unique equilibrium 

Theorem: Every network of A-coordinating agents is A-monotone and 
uniquely convergent.  



Uniform incentive-based control
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Proposition: 
One can construct a finite set R that contains r*

r1 r2 r3 r4 r5 r6 r7 r8 r9R : 

Because of the A-monotone property, one can carry out the binary search:

Theorem: 
Within finite steps, binary search solves the uniform reward problem



Targeted incentive-based control
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Suppose it’s possible to offer different rewards to individual agents:



Targeted incentive-based control
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Computationally complex to solve exactly (conjectured to be NP) 

Algorithm: Iteratively choose agents to switch until the desired equilibrium is 
reached or the budget limit is exceeded. 



Targeted incentive-based control
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How should we choose these agents?

Several possibilities: max degree, min required incentives, etc. 

Approach: Iteratively maximize a benefit-to-cost ratio
Benefit = # of agents who switch to A, cost = incentive



Simulation results: Uniform vs. Targeted incentives
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Outlook
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• Extensions to different types of games and more than 2 strategies
• Convergence to equilibria with mixed strategies 
• State feedback to render a closed loop system



Outlook
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• Extensions to different types of games and more than 2 strategies
• Convergence to equilibria with mixed strategies 
• State feedback to render a closed loop system

Applications:
Autonomous robots
Traffic flow 
Communication networks
Energy grids
Social networks
Pandemic analysis
Marketing

Controlling evolutionary processes is an emerging new topic!



--- The end ---
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