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WARNING: Modeling is by
far the most expensive step
in a control project! (∼ 75%
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Introduction
Modeling for Control

Identification for Control (I4C)
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Model-Reference Control Objective
Choose C to minimize

V (C) =
∥∥∥∥∥M − GoC

1 + GoC

∥∥∥∥∥
2

,

Go = “true” unknown systems
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Introduction
Modeling for Control

Identification for Control (I4C)

• Control-oriented modeling step: find Ĝ

J(G) =
∥∥∥∥∥ GoC∗

1 + GoC∗ −
GC∗

1 + GC∗

∥∥∥∥∥
2

• (Nominal) control design step: find the new C∗

V (C) =
∥∥∥∥∥M − ĜC

1 + ĜC

∥∥∥∥∥
2

Key trick: iterative procedure with closed-loop experiments using C∗

JN(G) = 1
N

N∑
t=1

(y∗(t)− Gu∗(t))2
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Introduction
Modeling for Control

Identification for Control (I4C)
• Pro: bias error distribution tuned for control design

• Cons:
1 not clear how to account for priors;
2 unbiased models might be a bad choice from a statistical perspective;
3 no convergence to a local minimum of the control cost when the

system is not in the model set.

• (Very) related area: reinforcement learning.

• I4C can be reformulated as a regularized identification problem!
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Control-oriented Regularization
Rationale

Decompose the model mismatch in V (C) =
∥∥∥∥∥M − GoC

1 + GoC

∥∥∥∥∥
2

as:

M −
GoC

1 + GoC = M −
GC

1 + GC︸ ︷︷ ︸
Ec

+
GC

1 + GC −
GoC

1 + GoC︸ ︷︷ ︸
Em

• Em is the modelling error (how close is G to Go in closed loop)
• Ec is the control error using the model G

Consider the upper bound

V (C) ≤ UV (G ,C) = α
[
‖Em(G ,C)‖2 + ‖Ec(G ,C)‖2

]
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Control Oriented Regularization
Modeling Error

Recalling that [Gianluigi’s talk!] identification in a
regularization/Bayesian framework:

J(G) =
1
N

N∑
t=1

(yt − Gut)2 + ‖G‖2K

• UV (G ,C) suggests to modify the fitting term

1
N

N∑
t=1

(yt − Gut)2

to keep Em =
GC

1 + GC −
GoC

1 + GoC small

and the regularization term ‖G‖2K to keep Ec = M −
GC

1 + GC small

A. Chiuso (UniPD) Control-Oriented Learning May 10, 2019 7 / 28



Control Oriented Regularization
Modeling Error

Recalling that [Gianluigi’s talk!] identification in a
regularization/Bayesian framework:

J(G) =
1
N

N∑
t=1

(yt − Gut)2 + ‖G‖2K

• UV (G ,C) suggests to modify the fitting term

1
N

N∑
t=1

(yt − Gut)2

to keep Em =
GC

1 + GC −
GoC

1 + GoC small

and the regularization term ‖G‖2K to keep Ec = M −
GC

1 + GC small

A. Chiuso (UniPD) Control-Oriented Learning May 10, 2019 7 / 28



Control Oriented Regularization
Modeling Error

Recalling that [Gianluigi’s talk!] identification in a
regularization/Bayesian framework:

J(G) =
1
N

N∑
t=1

(yt − Gut)2 + ‖G‖2K

• UV (G ,C) suggests to modify the fitting term

1
N

N∑
t=1

(yt − Gut)2

to keep Em =
GC

1 + GC −
GoC

1 + GoC small

and the regularization term ‖G‖2K to keep Ec = M −
GC

1 + GC small

A. Chiuso (UniPD) Control-Oriented Learning May 10, 2019 7 / 28



Control Oriented Regularization
Modeling Error

Em =
GC

1 + GC −
GoC

1 + GoC ' (G − Go) C
1 + GC = (G − Go)WC

where the last equation defines the weighting WC

Prediction error:

lim
N→∞

1
N

N∑
t=1

(yt − Gut)2 = ‖G − Go‖2Φu + σ2

Therefore, with a suitable weighting filter (W = WC Φ−1/2
u ),

1
N

N∑
t=1
‖W (yt − Gut)‖2 ' ‖G − Go‖2WC W ∗

C
+ σ2

WC
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Control-oriented Regularization
Control Error

Ec(G ,C) = M − GC
1 + GC

is not linear (nor convex) in G , so we take its first-order Taylor expansion
around the optimal solution

E c
c (G ,C) = M − (1−M)GC

The model should be regularized such that Ec(G ,C) is made small
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Control-oriented Regularization
Combining the two costs

‖Em(G ,C)‖2 + ‖Ec(G ,C)‖2 ' 1
N

N∑
t=1
‖W (yt − Gut)‖2 + ‖E c

c (G ,C)‖2

Need to ensure stability
If we now include a penalty term (as usual) to guarantee stability of G ,
one should solve

Ĝ := min
G
‖Em(G ,C)‖2 + ‖Ec(G ,C)‖2 + ‖G‖2H

' min
G

1
N

N∑
t=1
‖W (yt − Gut)‖2 + ‖E c

c (G ,C)‖2︸ ︷︷ ︸
Quadratic in G

+‖G‖2H
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Control-oriented Regularization
Summary

“Ideally” would like to optimize

Ĉ = arg min
C∈C

∥∥∥∥∥M − GoC
1 + GoC

∥∥∥∥∥
2

︸ ︷︷ ︸
V (C)

,

Optimize least upper bound

Ĉ = arg min
C∈C

min
G


∥∥∥∥∥ GC
1 + GC −

GoC
1 + GoC

∥∥∥∥∥
2

︸ ︷︷ ︸
Em

+
∥∥∥∥∥M − GC

1 + GC

∥∥∥∥∥
2

︸ ︷︷ ︸
Ec



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Control-oriented Regularization
Summary II

Optimize least upper bound

Ĉ = arg min
C∈C

min
G


∥∥∥∥∥ GC
1 + GC −

GoC
1 + GoC

∥∥∥∥∥
2

︸ ︷︷ ︸
Em

+
∥∥∥∥∥M − GC

1 + GC

∥∥∥∥∥
2

︸ ︷︷ ︸
Ec




Optimize an approximation of the upper bound based on data

Ĉ = arg min
C∈C

min
G


N∑

t=1
‖W (yt − Gut)‖2︸ ︷︷ ︸

'Em

+ ‖E c
c (G)‖2︸ ︷︷ ︸
'Ec



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Control-oriented Regularization
Summary III

Optimize an approximation of the upper bound based on data

Ĉ = arg min
C∈C

min
G


N∑

t=1
‖W (yt − Gut)‖2︸ ︷︷ ︸

'Em

+ ‖E c
c (G)‖2︸ ︷︷ ︸
'Ec




Add regularization

Ĉ = arg min
C∈C

min
G


N∑

t=1
‖W (yt − Gut)‖2

︸ ︷︷ ︸
'Em

+ ‖E c
c (G)‖2︸ ︷︷ ︸
'Ec

+ ‖G‖2
H︸ ︷︷ ︸

“ModelClass”




A. Chiuso (UniPD) Control-Oriented Learning May 10, 2019 13 / 28



Control-oriented Regularization
Summary III

Optimize an approximation of the upper bound based on data
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Control-oriented Regularization
Bayesian interpretation

Ĉ := arg min
C

min
G

1
N

N∑
t=1
‖W (yt − Gut)‖2 + λ‖E c

c (G ,C)‖2 + ‖G‖2H︸ ︷︷ ︸
Quadratic in G



with a Gaussian Prior for G

G ∼ N (mC ,KC ){
KC = (K−1 + λT>w Tw )−1

mC = λKCT>w m
(KC is the control-oriented kernel), translates into

Ĉ := arg min
C

[
min

G

1
N

N∑
t=1
‖W (yt − Gut)‖2 + ‖G −mC‖2K−1

C

]

Hyperparameters found via marginal likelihood maximization
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Control-oriented Regularization
Marginal Likelihood

pλ,C (Y ) =
∫
H

pλ,C (Y ,G) dG ∝
∫
H

pλ,C (Y |G)pλ,C (G) dG

Log - Likelihood

log pλ,C (Y ) ∝ log
∫
H e
−
1
N

N∑
t=1
‖W (yt − Gut)‖2 + ‖G −mC‖2K−1

C dG
+ log det KC + const

Can be used to

• Optimize hyperparameters (e.g. λ)
• Understanding whether a certain C (e.g. at the k − th iteration of the

algorithm, see next slide) is good enough (stopping criteria)
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Control-oriented Regularization
The algorithm

CoRe identification procedure
Iterate (until convergence):

1 Ĝ(k) = arg min
G

[
1
N

N∑
t=1
‖W (k−1)(yt − Gut)‖2 + ‖G −mĈ (k−1)‖2K−1

Ĉ(k−1)

]

2 Ĉ (k) = arg min
C

∥∥∥∥∥M − Ĝ(k)C
1 + Ĝ(k)C

∥∥∥∥∥
2

Proposition: The algorithm converges to a local optimum of the upper
bound of V (C).
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1 + Ĝ(k)C
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Control-oriented Regularization
Alternative to step 2 [with G. Pillonetto and A. Scampicchio]

“Cautious” CoRe identification procedure
Iterate (until convergence):

1 Ĝ(k) = arg min
G

[
1
N

N∑
t=1
‖W (k−1)(yt − Gut)‖2 + ‖G −mĈ (k−1)‖2K−1

Ĉ(k−1)

]

2 Ĉ (k) = arg min
C

Ep(k)(G|Y )

 ‖E c
c (G)‖2︸ ︷︷ ︸

Quadratic in G

|Y


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Ĉ(k−1)

]
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Example

Consider a linear model

Go(z) = 0.28261z + 0.50666
z4 − 1.41833z3 + 1.58939z2 − 1.31608z + 0.88642 ,

the class of controllers:

C(z , ρ) = ρ0 + ρ1z−1 + ρ2z−2 + ρ3z−3 + ρ4z−4 + ρ5z−5

1− z−1 ,

the achievable and unachievable objectives

Ma =
CoGo

1 + CoGo
, Mu(z) =

(1− θ)2 z−3

1− 2θz−1 + θ2z−2, θ = e−10Ts
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Example

Identified system (achievable case)

Figure: Magnitude of the frequency responses of the plant Go (black line) and the
identified model Ĝ for different realizations of the output noise (red lines).
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Example
Closed-loop system (achievable case)

Figure: Magnitude of the frequency responses of the reference model (black line)
and the closed-loop system F obtained using the model identified with different
realizations of the output noise (blue lines).
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Example

Closed-loop performance (achievable case)

Figure: Boxplot of the closed-loop matching errors between Ma and F in the 4
considered scenarios.
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Example

Closed-loop performance (unachievable case)

Figure: Boxplot of the closed-loop matching errors between Mu and F in the 4
considered scenarios.
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Example
Classical PEM-based I4C

Figure: Magnitude of the frequency responses of the ideal open and closed-loop
models (black line) as compared to the closed-loop system (blue line) obtained
using the identified model (red line). Model order assumed to be known!
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Example

Number of iterations

Figure: Sensitivity to the number of iterations of the closed-loop matching errors
between Ma and F using the CoRe approach.
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Example

A tentative stopping criterion: look at the marginal likelihood!

1 2 3 4 5 6 7 8 9 10
550

600

650

700

1 2 3 4 5 6 7 8 9 10
0.08

0.1

0.12

0.14

Figure: Marginal likelihood along iterations as compared to the closed-loop model
matching cost.
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Stability (with high probability)

Stability
Let εs ∈ (0, 1), δs ∈ (0, 1) be assigned probability levels. Draw Ns =
dln(2/δs)/2ε2

s e models Ĝk , k = 1, . . . ,Ns , from the p(G |Y ) . If the con-
troller stabilizes all the Ĝk ’s, then

P (p ≥ 1− εs) ≥ 1− δs . p = P[C stabilizes G ]
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Performance (with high probability)

Performance

Let εp ∈ (0, 1), δp ∈ (0, 1) be assigned probability levels. Draw
Np = dln(1/δp)/ ln(1/(1− εp))e models Ĝk , k = 1, . . . ,Np, from p(G |Y )
and compute the sample worst case performance

V̂wc = max
k=1,...,Np

∥∥∥∥∥M − ĜkC
1 + ĜkC

∥∥∥∥∥
2

(1)

Then, with confidence 1− δs , it holds that

P
(
Vwc ≥ V̂wc

)
≤ εp.
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Conclusions

• Control-oriented modeling from data should be seen as a regularized
identification problem.

• Regularization should not only take into account priors on system
dynamics, but also priors on model application (i.e., desired control
performance).

• CoRe turns out to be an iterative procedure based on one set of I/O
data only.
• Marginal likelihood provides an indication on the termination criterion.
• In the tested example, the obtained performance with a few iterations
is close to the oracle.
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