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Differential equations and state constraints

It is well known that the Cauchy problem

⎧⎪⎪⎨⎪⎪⎩

ẋ = f (x)
x(0) = x0

has one and only one (local in time) solution, provided f is smooth in a
neighborhood of the initial point x0.

What happens if one imposes a constraint that the state x(t) must satisfy
for all t?
In other words, let K be given and consider the problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ = f (x)
x(0) = x0

x(t) ∈ K ∀t
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It is clear that in order to let solutions exist there must be a compatibility
condition between f and K :

when the state hits the boundary of K , that is
denoted by ∂K , then the prescribed velocity must not “point outside K”.
Formally: if K = {x ∶ g(x) ≤ 0} and ∇g(x) ≠ 0 whenever g(x) = 0, then
the compatibility condition reads as

f (x) ⋅ ∇g(x) ≤ 0 ∀x such that g(x) = 0.

There is a lot of literature that studies optimal control problems with
state constraints, that is
maximize some objective depending on (x ,u), subject to

⎧⎪⎪⎨⎪⎪⎩

ẋ = f (x ,u), x(0) = x0, u ∈ U
x(t) ∈ K ∀t

Necessary conditions of PMP type, even of higher order (Rampazzo,
Vinter, Frankowska, . . . )
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Constraints that are active in the dynamics: Moreau’s
sweeping process

In this kind of problems, the state constraint is juxtaposed to the
dynamics.

There is another way to deal with state constraints, that essentially goes
back to J.J. Moreau, in the Seventies.

Some notations: given a (reasonable) set K , denote by NK(x) the external
normal cone to K at x . Let K = {x ∶ g(x) ≤ 0}:

if g(x) < 0, NK(x) = {0}
if g(x) = 0, NK(x) = {λ∇g(x) ∶ λ ≥ 0}
if g(x) > 0, NK(x) = ∅.
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Consider the dynamics

⎧⎪⎪⎨⎪⎪⎩

ẋ ∈ −NK(x) + f (x)
x(0) = x0 ∈ K

(SP)

This is no longer a differential equation, but a differential inclusion.
The meaning is the following: as long as the state x(t) remains in the
interior of K , the dynamics is that of ẋ = f (x). Instead, when x(t)
touches ∂K , there is a reaction of the constraint. This reaction points
towards the interior of K and keeps the trajectory inside K .

It can be proved: (SP) is well posed (forward in time) provided K is
reasonable. The solution remains in K all the time long by the very
definition.

Observe however that the dynamics is discontinuous w.r.t. the state. In
some sense it is a hybrid dynamics, but the state may leave the interior of
the constraint, or change face of the boundary if ∂K is not smooth (e.g., a
square), on any type of time sets, not only on intervals.
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There is a growing interest on the optimal control of this type of dynamics.
There are models ranging from population dynamics in a crowded
environment to electric circuits with diodes, and to mechanics. However,
this topic needs new methods, as it does not fall into any classical setting,
due to the discontinuity w.r.t. x of the right hand side of the equation.

Let us consider first the simplest optimal control problem, together with a
toy example.
maximize ϕ(x(T )), over state control pairs (x ,u) such that

⎧⎪⎪⎨⎪⎪⎩

ẋ ∈ −NK(x) + f (x ,u), a.e. on [0,T ], u ∈ U
x(0) = x0 ∈ K .

(CSP)

Example. Let K = {(x1, x2) ∶ x2 ≤ min{0,−x1}}. Minimize x2(1) over
(x ,u) such that u ∈ [−1,1] and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
ẋ1

ẋ2) ∈ −NK (x1
x2) + (

u
0)

x1(0) = −1
2 , x2(0) = 0.

disegna
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ẋ2) ∈ −NK (x1
x2) + (

u
0)

x1(0) = −1
2 , x2(0) = 0.

disegna

Giovanni Colombo (Università di Padova) Optimal control and state constraints May 10, 2019 8 / 17



There is a growing interest on the optimal control of this type of dynamics.
There are models ranging from population dynamics in a crowded
environment to electric circuits with diodes, and to mechanics. However,
this topic needs new methods, as it does not fall into any classical setting,
due to the discontinuity w.r.t. x of the right hand side of the equation.

Let us consider first the simplest optimal control problem, together with a
toy example.
maximize ϕ(x(T )), over state control pairs (x ,u) such that

⎧⎪⎪⎨⎪⎪⎩
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A motivating model

A (minimal) model for a crawler, in collaboration with Paolo Gidoni.

from a paper by Noselli and De Simone

(x1, x2) describes the position of each contact point; z = x2−x1
2 describes

the length of the device and y = x1+x2
2 its barycenter, i.e., the displacement

we are interested in. The actuator modifies the length of the spring by
changing L(t), that is our control. It is a one dimensional model.
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The energy of the spring is

E (t, x) = k

2
(x2 − x2 − L(t))2

The friction is

c1∣ẋ1∣ + c2∣ẋ2∣ =∶ Ψ(ẋ), where x = (x1, x2) and (c1 ≠ c2).

The (quasi-static) force balance law is

0 ∈ ∂Ψ(ẋ) +DxE (t, x), (BL)

where ∂ stands for the “generalized derivative” of y ↦ ∣y ∣, that can be
defined – as a set – also at y = 0.

We want L and x2 − x1 to be T -periodic, in order to be able to repeat the
movement.
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Via some magics of Convex Analysis, one can rewrite (BL) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż ∈ −NK(z) + u, K = [−µn, µ+], u(= L̇) ∈ [−1,1]
ẏ = ∣u − ż ∣

z(0) = z(T )
y(0) = 0

∫ T
0 u(t)dt = 0.

We wish to maximize y(T ).

The optimal control problem that we wish to study is non-classic for two
reasons:
1) the dynamics is discontinuous w.r.t. the state
2) the control must have zero mean.

Observe that ẏ represents the size of the reaction of the constraint.
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ż ∈ −NK(z) + u, K = [−µn, µ+], u(= L̇) ∈ [−1,1]
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z(0) = z(T )
y(0) = 0

∫ T
0 u(t)dt = 0.

We wish to maximize y(T ).

The optimal control problem that we wish to study is non-classic for two
reasons:
1) the dynamics is discontinuous w.r.t. the state
2) the control must have zero mean.
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One can apply common sense in order to design optimal strategies: since
we want to maximize the reaction of the constraint, we want to maximize
the time that z spends on the boundary of the constraint: optimal
strategies are expected to be bang-bang (with a balance between the time
when it is 1 and −1, in order to satisfy the zero mean requirement).

However our job is also trying to develop a theory that covers this case.

We will see that the theory is still behind the model: there is still work to
do, that I believe is worth to.
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Methods

Why do classical methods fail?

The classical method relies on 1) constructing tangent vectors to the
reachable sets, that are obtained via variations (=small perturbations) of
the optimal control, 2) transporting them along the flow, and 3) using the
optimality.
What is missing - up to now - is the transportation of tangent vectors
along the flow. We will see that there is and adjoint equation, but its
interpretation as the transporter of tangent vectors is missing.

To solve the problem, there are up to now two main approaches.
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a) Discretization

Approximating an optimal pair (trajectory/control) with piecewise
linear/constant maps

; consider (finite dimensional) discrete optimization
problems and write necessary conditions for them; passing to the limit.

b) Penalization

Consider the family of smooth problems

⎧⎪⎪⎨⎪⎪⎩

ẋ = −1
ε∇d

2
K(x) + f (x ,u), ε > 0

x(0) = x0

(the solution may leave the constraint, but it can be proved that it
converges to the solution of (CSP) as ε→ 0) ; write necessary conditions
(adjoint equation + PMP); pass to the limit along them.
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Results

Theorem. Let (x̄ , ū) be an optimal pair for (CSP). Then there exist a BV
function p and a measure µ (that is supported on {t ∶ x̄(t) ∈ ∂K}) such
that

dp = −p⊺Dx f (x̄ , ū) + dµ

p(T ) = ∇ϕ(x̄(T ))
p(t) ⋅ f (x̄(t), ū(t)) = max

u∈U
p(t) ⋅ f (x̄(t),u)

(via penalization; assumption: K smooth).
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For the problem connected with the crawler (in collaboration with Paolo
Gidoni):
Let (z̄ , ū) be an optimal pair. Then there exist λ ≥ 0, ω ∈ R,
η+, η− ∈ ∂∣ū(t)∣, and a BV function p such that

p(0) = p(T )
ω + p(t) − λ(η+ − η−) ∈ NU(ū(t))
λ + ∥p∥∞ ≠ 0.

(via discretization)

ω is concerned with the zero mean control; there is still a lot to be
understood: degeneration of information.
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Let (z̄ , ū) be an optimal pair. Then there exist λ ≥ 0, ω ∈ R,
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THANK YOU FOR YOUR ATTENTION.
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