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Preliminaries: Circulant graphs & their applications

Circulant matrix [ wy w1 ... Wp-9 Wpi]
Wnp—-1 WO ... Wp-3 TWn-2
F = circ(w) := : : SHING
wy w3 w0 w1
| w1 wy ... TWnp—1 wo 1
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Preliminaries: Circulant graphs & their applications

Circulant matrix [ wy w1 ... Wp-9 Wpi]
Wnp—-1 WO ... Wp-3 TWn-2
F = circ(w) := : : SHING
wy w3 ... Wy w1
| w1 w2 Wp—1 WO |

Circulant matrix spectrum

n—1 2k
NOEDY [wkeXp<— mj)] forj=0...n—1
k=0 n

Randi¢ matrix relation + d-regularity
F:=D'A=D12AD 2= &
Laplacian matrix relation 4+ d-regularity
L=D-A=d4dC=d(1, - £)
Spectral equivalence between normalize Laplacian and Randi¢ matrices
M) =AZ()=1—-I(j) forj=0...n—1



Preliminaries: Circulant graphs & their applications

Intelligent surveillance of public spaces
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Preliminaries: Circulant graphs & their applications

Distributed Consensus-like algorithms
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Preliminaries: k-ring graphs

k-ring graphs C,,(1, k) are a class of circulant graphs constructed
by multiple circulant edge layers

#Vertices | #Edges | Diameter |Radius Girth Regularity

VI =n> 46| = nk|6 = [n/2]| £ = ¢ gz{

if k=1
n, if K d— 9k

3, otherwise




Main results: Spectral characterization

m General aim: investigate stability,
performances of graph-based
protocols and the communication
exchange over networks.



Main results: Spectral characterization

m General aim: investigate stability,
performances of graph-based
protocols and the communication
exchange over networks.

x(t+1) =Fx(t) + u

m Eigenvalues of F tell us more about
the convergence of linear dynamic
multi-agent systems.



Main results: Spectral characterization

m General aim: investigate stability,
performances of graph-based
protocols and the communication
exchange over networks.

m Eigenvalues of F tell us more about
the convergence of linear dynamic
multi-agent systems.

m We expect the spectrum of F to be a
real subset of the unit circle, since F
is row-stochastic and symmetric.

Spectrum

A1 ATAD
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m General aim: investigate stability,
performances of graph-based
protocols and the communication
exchange over networks.

m Eigenvalues of F tell us more about
the convergence of linear dynamic
multi-agent systems.

m We expect the spectrum of F to be a
real subset of the unit circle, since F
is row-stochastic and symmetric.

m The spectrum of F is linked to the
spectrum of the Laplacian L.

Spectrum

A1 ATAD
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Main results: Spectral characterization

Definition (Dirichlet kernel)
D, : R — R of order x € N such that

{sin((ﬁ t1/2)2) o 4 271, VI € Z;

2sin(=/2)
k+1/2, otherwise.

L graph Laplacian of s-ring graph C,,(1, ), 6 := m/n. Eigenvalues
AL(4) € A(L) can be expressed in function of the Dirichlet kernel as

M () =14 2(k — De(267)), for j=0...|n/2];
M (n —5) = AL()), forj=1...|n/2].

A(5) €10,4k], Vj =0...n — 1, A} := AL(0) = 0 is simple and, if
35* € N s.t. M(j*) = 4k, j* € (0,n), then AL(5*) is simple.

V.
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0, otherwise;
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Main results: Spectral characterization

Proof. Exploiting the spectrum of the circulant matrices and setting
dfl, if e;1 € &;
[]i == .
0, otherwise;
eigenvalues of the Randi¢ matrix &2 can be rewritten as

1 d/2 n—1

1
— Y fexp(—i2k0))] + = > [exp(—i2k6))
d iz S ——y

1 d4/2 1 d/2
= — > [exp(—i2kbj)] + = > [exp(i2k6j)]
4= d

k=1
2 (1 1
=5 X [exp(i2k0j)] — 5
d(2|k|<d/2 2

Dy(205) —1/2)

A7 (5)

protocol performances
improve as k increases!

Leveraging the d-regularity, the rest of the statement can be proven
resorting to Landau H., Odlyzko A., 1981 “Bounds for Eigenvalues
of Certain Stochastic Matrices”. [J



Main results: Fiedler value

The previous theorem offers a deep insight on the connection between the
Dirichlet kernel and the eigenvalues of L.

The analysis continues focusing on the extremal eigenvalues of the
restricted spectrum Ag(L) := A(L) \ {\}'} C (0,4k], denoting the
eigenvalues of A(L) with 0 = \F < Ab <. . <AL .



Main results: Fiedler value

The previous theorem offers a deep insight on the connection between the
Dirichlet kernel and the eigenvalues of L.

The analysis continues focusing on the extremal eigenvalues of the
restricted spectrum Ag(L) := A(L) \ {\}'} C (0,4k], denoting the
eigenvalues of A(L) with 0 = \F < Ab <. . <AL .

Corollary (Fiedler value of k-ring graphs)

The smallest positive eigenvalue )\% of the graph Laplacian L
associated to the x-ring graph C,,(1, k) is given by

W= Ilnin 1)\1‘(]') =\ (1) = \E(n — 1) € (0,2r).
j=l.n—

Eigenvalue A} gives us information on the right limit AT of the unit circle
allowing to determine protocol performances.



Main results: Spectral radius of the Laplacian

Corollary (Spectral radius of x-ring graphs: properties)

For the largest eigenvalue )\711‘71 of the graph Laplacian L
associated to the k-ring graph C,(1, k) one has

B )\, € [n — 2k, 4k], with the equality for the upper bound
holding iff n is even and k = 1,

i )‘n 1= AL (5%) = AE(n — j*), where j* € N belongs to
[,7] € N with

j=1+n/(26+1)], j=[0Bn/(26+1)—-1)/2];

B A = A([n/2]) = A¥([n/2]) iff k= 1;
B AL, = 2E(2) = A\E(n—2) if k > K, with &y, := 3n/10—1/2.

Eigenvalue AL | gives us information on the left limit AF_; of the unit
circle allowing to determine, again, protocol performances.



Main results: Spectral radius of the Laplacian

m Recall that AL | =d(1 -\

m \F | = )\Z can be computed
through a binary search;

m D/ is crucial for the
index selection;

m Complexity: O(log(n/k))
as n/k — +00.

ngiﬂ?

st (1,7
- if D(207) < 0 then (*, A7) « (G.A%(H)):
2 elselfD’(Q.‘)J)>0then (J A7)« (4. 27 (Q)):

else

found «+ false;

while j — j > 1 and not found do
7= LG+ )2+ 1/2]);
if D (205*) < 0 then j <—/
else if D} (205*) > 0 then j <« j*;
else found < true; A7 | < A% (5*);
end if

end while

if not found then (j",A,?;l) < min {/\"’(_7)};

end if Je{di}

: end if

100



Main results: Stochastic spectral radius

Definition (Stochastic spectral radius)

The stochastic spectral radius (SSR) is defined as

A=  ma A = max { A7 INZ |+ =: [\E
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Main results: Stochastic spectral radius

Definition (Stochastic spectral radius)

The stochastic spectral radius (SSR) is defined as

Moo= max |\ = max{\)\@] NZ \}—\Ay
AEAF\(AF)

Theorem (SSR of the k-ring graphs: properties)

For the SSR A# of the Randi¢ matrix 22 associated to the s-ring
graph C,(1, k) one has

B \Z >max{(nk)1\/n+ 2kn(n — 2k) — (26 + 1)2 = AF A\¥}

B )% <1 with the equality holding iff n is even and x = 1;

w7 = ‘)\@ ‘ = ‘)\gf (n—j" ‘ where ;' € N belongs to
{1}ulg il cN;

AZ = A% (|n/2]) = - A% ([n/2]) iff & = 1;

A2 = A% (2) = —AZ(n — 2) if k > max {ky, kg }.




Conjecture on the SSR characterization

Conjecture (SSR index characterization)

The SSR AF for a k-ring graph is equal to ‘)\F | where 0 :=

and
In/2], ifk=1,
e __ 6y Sparsity
1= 3, ifn=9and Kk = 2; of F
1, if Kk € [2,kgl;
2, if K> Kg.

" kn = 31/10 — 1/2




Discussion: Eigenvalue distribution for n = 4,5

e 1lr

el

o2

.
Ko
° )\gl

®)

.
Kg
° )\711‘1

11®J g2

AF(5)

-1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1

—

-1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1

AF(7)

C4(17 /i)
Kn = 0.7
kg ~ 0.2596

05(17 ’{)
Kp =1
kg ~ 0.6274
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Discussion: Eigenvalue distribution for n = 6,7

21 e
L]
g = — l 1 J\
1l e T T
-1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1
AR (5)
.
Ko 2 3 1 0
21e ) ° I
o]
<3 2 1 0
1 e

-1 -0.75-0.5-025 0 0.25 0.5 0.75
AT (5)

1

07(17’{)
Kn = 1.6
kg ~ 1.3773
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Discussion: Eigenvalue distribution for n = 8,9

—HKn
2.4 1,3 0
37.';?; o ’ Cs(1, k)
Y 2 3 1 K = 1.9
&) kg ~ 1.7589
|8 1

-1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1

A ()
.
| 2 4 31 0 Co(1, k)
o ! ) fin = 2.2
iy 32 4 1 n :
e 22 Ky ~ 2.1442
4 i 2 1
1F e
-1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1
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Discussion: Eigenvalue distribution for n = 10, 11

4fzz 24 1,35 0
5 o)\ 25| 1 Co(l, %)
. :.] ° Rnp = 25
2 s | [#* $ 9 Ko ~ 2.5330
113 4 3 2 1 0
_L L AR =A@ =aT() = V5!
-1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1 if (n,x) = (10,2
AF(4)
-
all - 24 5 31 0 Cia(1, k)
37.551 % 53 | 4 1 4) Kp = 2.8
e 2i'¢ 3 4| || 25 1 0 Ky =~ 2.9249
5 4 3 2 10
1- e

-1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1
AE () 17 of 20



Discussion: Eigenvalue distribution for n = 10, 11

*Z; 24 1,35 0 o
I 1
o AP 25| | 1 (1, )
Iy ] Kn = 2.5
324 1 0 Ko ~ 2.5330
5 4 3 2 1 0
* Kg > Ky, Vn > 10

[\V] w =~
T

-1 -0.75-0.5-0.25 0 0.25 0.5 0.75

! /

F .
A0 Conjecture
f:Z 24 5 31 0 Cia(1, k)
}A'EL 2158 | 4 1 %) Kkn = 2.8
o j
= 34 [l 1 Ko = 2.9249
e S
5 4 3 N
NF = \F(1) if s € (1, kg

-1 -0.75-0.5-025 0 0.25 0.5 0.75
AT (5)

T NAF = 0F(2) if k> kg
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Conclusions and future directions

m A class of circulant topologies defining x-ring graphs has been
examined providing results on consensus-like algorithm
performances

m Both the spectral and structural properties of x-ring graphs
are inherently linked to the Dirichlet kernel

m The algebraic connectivity has been fully characterized

m The stochastic spectral radius and the Laplacian spectral
radius have been partially characterized

m Additional investigations on this topology are envisaged

m Further studies of new spectral properties related to the
Dirichlet kernel might be considered



Thanks for the attention
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Computation of threshold kg relative to the SSR

Lemma
Let & be the Randi¢ matrix of a k-ring graph C,,(1, k) and
0 :=m/n € (0,7/4]. There exists a real number g € (0,n/2)
such that if & > kg then A# (1) + A% (2) < 0, with the equality
holding iff kK = kg. Moreover, letting cop := cos(26), the value of
Kg is yielded by

kg = 0L arcsin (\/z9)

where g is the unique solution belonging to (0,1) of the
polynomial equation

pg(x) o= x?’ aF a972x2 +ag1 2+ ago = 0,

with ago = —(cog + 5)/2, ag1 = (4¢3, + Tcop + 13)/8,
apo = —(3cog + 1)%/16.
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