Delft Center for Systems and Control

TUDelft

Control-theoretic tools for the structural analysis of biological systems

Giulia Giordano

Università degli Studi di Padova, Control Days 2019

May 10, 2019

Dynamical networks

Giulia Giordano

Dynamical networks: graph representation

Giulia Giordano

Structure

Graph:

Structure

Graph:

Hypergraph:

Giulia Giordano

Graph representation: nodes

Nodes: Agents

Graph representation: arcs

Arcs: Interactions

Dynamical networks: structural analysis and control

Structural analysis

• Looking for structural, parameter-free properties.

Definition

 \mathscr{F} : family of systems, \mathscr{P} : relevant property \mathscr{P} is **robust** if any element $f \in \mathscr{F}$ has the property \mathscr{P} Moreover, \mathscr{P} is **structural** if \mathscr{F} is specified by a structure without numerical bounds

Example

Let a, b, c, d > 0.

$$A_1 = \begin{bmatrix} -a & b \\ c & -d \end{bmatrix} \qquad A_2 = \begin{bmatrix} -a & -b \\ c & -d \end{bmatrix}$$

- A_1 is robustly stable if $0 \le b, c \le 1$, $2 \le a, d \le 3$;
- Conversely A₂ is structurally stable.

Structural properties

• Parameter-free approach: system structure

Structural analysis

Explain behaviours based on the system inherent structure (graph)

Structural properties

• Parameter-free approach: system structure

Structural analysis

Explain behaviours based on the system inherent structure (graph)

• Structurally assess fundamental properties

Structural properties

Satisfied by all the systems of a family specified by a structure, without numerical bounds.

Structural properties

• Parameter-free approach: system structure

Structural analysis

Explain behaviours based on the system inherent structure (graph)

• Structurally assess fundamental properties

Structural properties

Satisfied by all the systems of a family specified by a structure, without numerical bounds.

• Applications to biochemical systems

Structural properties in nature

Biological systems \rightarrow extremely robust: fundamental properties preserved despite huge uncertainties and parameter variations.

Giulia Giordano

Species: A, B, C

Concentrations: *a*, *b*, *c*

ODE system:

Species: A, B, C

Reactions: $\emptyset \xrightarrow{a_0} A$

Concentrations: a, b, c

ODE system:

 $\dot{a} = a_0$

 $\dot{b} =$

 $\dot{c} =$

Species: A, B, C

Reactions: $\emptyset \xrightarrow{a_0} A$, $A \xrightarrow{g_a} B + C$

Concentrations: *a*, *b*, *c*

ODE system:

 $\dot{a} = a_0 - g_a(a)$ $\dot{b} = g_a(a)$ $\dot{c} = g_a(a)$

Species: A, B, C

Reactions: $\emptyset \xrightarrow{a_0} A$, $A \xrightarrow{g_a} B + C$, $A + C \xrightarrow{g_{a_c}} \emptyset$

Concentrations: a, b, c

ODE system:

 $\dot{a} = a_0 - g_a(a) - g_{ac}(a, c)$ $\dot{b} = g_a(a)$ $\dot{c} = g_a(a) - g_{ac}(a, c)$

Species: A, B, C Reactions: $\emptyset \xrightarrow{a_0} A$, $A \xrightarrow{g_a} B + C$, $A + C \xrightarrow{g_{ac}} \emptyset$, $B \xrightarrow{g_b} \emptyset$ Concentrations: a, b, c

ODE system:

 $\dot{a} = a_0 - g_a(a) - g_{ac}(a, c)$ $\dot{b} = g_a(a) - g_b(b)$ $\dot{c} = g_a(a) - g_{ac}(a, c)$

Species: A, B, C Reactions: $\emptyset \xrightarrow{a_0} A$, $A \xrightarrow{g_a} B + C$, $A + C \xrightarrow{g_{ac}} \emptyset$, $B \xrightarrow{g_b} \emptyset$ Concentrations: a, b, c

ODE system:

 $\dot{a} = a_0 - g_a(a) - g_{ac}(a, c)$ $\dot{b} = g_a(a) - g_b(b)$ $\dot{c} = g_a(a) - g_{ac}(a, c)$

Species: A, B, C Reactions: $\emptyset \xrightarrow{a_0} A$, $A \xrightarrow{g_a} B + C$, $A + C \xrightarrow{g_{ac}} \emptyset$, $B \xrightarrow{g_b} \emptyset$ Concentrations: a, b, c

ODE system:

 $\dot{a} = a_0 - g_a(a) - g_{ac}(a, c)$ $\dot{b} = g_a(a) - g_b(b)$ $\dot{c} = g_a(a) - g_{ac}(a, c)$

$$\begin{bmatrix} \dot{a} \\ \dot{b} \\ \dot{c} \end{bmatrix} = \underbrace{\begin{bmatrix} -1 & -1 & 0 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}}_{S = \text{stoichiometric matrix}} \underbrace{\begin{bmatrix} g_a(a) \\ g_{ac}(a,c) \\ g_b(b) \end{bmatrix}}_{g = \text{rate}} + \underbrace{\begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}}_{g_0 = \text{ influx}}$$

Species: A, B, C Reactions: $\emptyset \xrightarrow{a_0} A$, $A \xrightarrow{g_a} B + C$, $A + C \xrightarrow{g_{ac}} \emptyset$, $B \xrightarrow{g_b} \emptyset$ Concentrations: a, b, c ODE system: $\dot{a} = a_0 - g_a(a) - g_{ac}(a, c)$ $\dot{b} = g_a(a) - g_b(b)$

 $\dot{c} = g_a(a) - g_{ac}(a,c)$

The BDC-decomposition

$$\dot{x}(t) = Sg(x(t)) + g_0, \qquad g \text{ monotonic functions}$$

The BDC-decomposition

$$\dot{x}(t) = Sg(x(t)) + g_0, \qquad g \text{ monotonic functions}$$

Local BDC-decomposition

The Jacobian can be decomposed as:

$$J(x) = \frac{\partial Sg(x)}{\partial x} = B\Delta(x)C, \qquad \Delta(x) = \operatorname{diag}\left\{ \left| \frac{\partial g_k}{\partial x_h} \right| \right\} \succ 0.$$

The decomposition is unique (up to permutations).

The BDC-decomposition

$$\dot{x}(t) = Sg(x(t)) + g_0, \qquad g \text{ monotonic functions}$$

Local BDC-decomposition

The Jacobian can be decomposed as:

$$J(x) = \frac{\partial Sg(x)}{\partial x} = B\Delta(x)C, \qquad \Delta(x) = \operatorname{diag}\left\{ \left| \frac{\partial g_k}{\partial x_h} \right| \right\} \succ 0.$$

The decomposition is unique (up to permutations).

Global BDC-decomposition

Given the equilibrium \bar{x} ($0 = Sg(\bar{x}) + g_0$), $z \doteq x - \bar{x}$. The system can be rewritten as:

$$\dot{z}(t) = Sg(z(t) + \bar{x}) - Sg(\bar{x}) = [BD(z)C] \ z(t), \qquad D(z) \succ 0.$$

Giulia Giordano

For any vector \bar{x}

$$Sg(x) - Sg(\bar{x}) = \left[\int_0^1 J(\bar{x} + \sigma(x - \bar{x}))d\sigma\right](x - \bar{x})$$
$$= B\left[\int_0^1 D(\bar{x} + \sigma(x - \bar{x})) d\sigma\right]C(x - \bar{x})$$

BDC-decomposition: example

BDC-decomposition: example

Structure: parameter free, no numerical bounds.

Giulia Giordano

Structural stability of chemical reaction networks

Assumption

$$\dot{x}(t) = Sg(x(t)) + g_0$$

Monotonic functions g and dissipative reactions $\frac{\partial \dot{x}_i}{\partial x_i} < 0$

Assumption

$$\dot{x}(t) = Sg(x(t)) + g_0$$

Monotonic functions g and dissipative reactions $\frac{\partial \dot{x}_i}{\partial x_i} < 0$

Matrix S and qualitative information on $g(\cdot) \Leftrightarrow$ structure \Leftrightarrow graph. A structural result depends on the associated graph and stability must hold for all networks with the same graph.

F. Blanchini and G. Giordano, "Piecewise-linear Lyapunov Functions for Structural Stability of Biochemical Networks", *Automatica*, 2014

Giulia Giordano

We exploit the *BDC*-decomposition! Structurally \Leftrightarrow for **any** $D_i > 0$

F. Blanchini and G. Giordano, "Piecewise-linear Lyapunov Functions for Structural Stability of Biochemical Networks", *Automatica*, 2014

Giulia Giordano

We exploit the *BDC*-decomposition! Structurally \Leftrightarrow for **any** $D_i > 0$

Idea: $D(z(t)) \rightarrow D(t)$

Absorb the nonlinear system in a Linear Differential Inclusion

$$\dot{z}(t) = [BD(t)C] \ z(t), \quad D(t) \succ 0. \quad (LDI)$$

Any trajectory of the original system is also a trajectory of (LDI).

F. Blanchini and G. Giordano, "Piecewise-linear Lyapunov Functions for Structural Stability of Biochemical Networks", *Automatica*, 2014

We exploit the *BDC*-decomposition! Structurally \Leftrightarrow for **any** $D_i > 0$

Idea: $D(z(t)) \rightarrow D(t)$

Absorb the nonlinear system in a Linear Differential Inclusion

$$\dot{z}(t) = [BD(t)C] \ z(t), \quad D(t) \succ 0. \quad (LDI)$$

Any trajectory of the original system is also a trajectory of (LDI).

To analyse stability we can assume $0 \le D_i \le 1$.

F. Blanchini and G. Giordano, "Piecewise-linear Lyapunov Functions for Structural Stability of Biochemical Networks", *Automatica*, 2014

Giulia Giordano

Structurally assess stability: polyhedral Lyapunov functions

$$V_X(x) = \inf\{||w||_1 : Xw = x\}$$

X full row rank

Based on a discrete difference inclusion, a numerical algorithm computes the **unit ball of the polyhedral Lyapunov function** (if any) via set iteration.

F. Blanchini and G. Giordano, "Piecewise-linear Lyapunov Functions for Structural Stability of Biochemical Networks", *Automatica*, 2014

Giulia Giordano

Structurally assess stability: example

The procedure converges \Longrightarrow structurally stable

Giulia Giordano

Local and global asymptotic stability

Problem: For $\dot{x} = 0$ the procedure stops successfully!

Local and global asymptotic stability

Problem: For $\dot{x} = 0$ the procedure stops successfully!

Proposition

If the procedure produces a PLF, then there exists an equilibrium that is locally asymptotically stable iff BDC is robustly nonsingular, namely

det[-BDC] > 0

for all D > 0. We have a vertex-type algorithm.

Local and global asymptotic stability

Problem: For $\dot{x} = 0$ the procedure stops successfully!

Proposition

If the procedure produces a PLF, then there exists an equilibrium that is locally asymptotically stable iff BDC is robustly nonsingular, namely

det[-BDC] > 0

for all D > 0. We have a vertex-type algorithm.

Proposition

Let $\varepsilon > 0$ (Infinitesimal dissipativity):

$$\dot{x} = -\varepsilon x + Sg(x) + g_0$$

A PLF implies that there exists an equilibrium that is globally asymptotically stable. With $\varepsilon = 0$, the equilibrium is globally asymptotically stable iff BDC is robustly nonsingular.

Giulia Giordano

Networks with positive test outcome

Networks with negative test outcome

Structurally assess stability: polyhedral... why?

Claim

The only structural Lyapunov function is polyhedral!

There are no other rate-independent Lyapunov functions.

F. Blanchini, G. Giordano, "Polyhedral Lyapunov functions structurally ensure global asymptotic stability of dynamical networks iff the Jacobian is non-singular", *Automatica*, 2017

Giulia Giordano

Structural steady-state analysis: the influence matrix

G. Giordano, C. Cuba Samaniego, E. Franco, F. Blanchini, "Computing the Structural Influence Matrix for Biological Systems", *J. Math. Biol.*, 2015

Giulia Giordano

Structural influence of variable j on variable i

Assuming stability, $\Sigma_{ij} \in \{+, -, 0, ?\}$: sign of the steady-state variation of $x_i(\infty)$ due to a step input acting on x_j .

G. Giordano, C. Cuba Samaniego, E. Franco, F. Blanchini, "Computing the Structural Influence Matrix for Biological Systems", *J. Math. Biol.*, 2015

Giulia Giordano

Structural influence of variable j on variable i

Assuming stability, $\Sigma_{ij} \in \{+, -, 0, ?\}$: sign of the steady-state variation of $x_i(\infty)$ due to a step input acting on x_j .

For systems admitting a *BDC* decomposition

$$\Sigma_{ij}=H_i(-BDC)^{-1}E_j,$$

H output matrix, *E* input matrix \rightarrow efficient vertex algorithm

G. Giordano, C. Cuba Samaniego, E. Franco, F. Blanchini, "Computing the Structural Influence Matrix for Biological Systems", *J. Math. Biol.*, 2015

Network from Shinar&Feinberg (2010)

Γ	+	+	+	+	+	+	+	+ .
	+	+	+	+	+	+	+	+
	+	+	+	0	+	0	+	+
	0	0	0	+	+	+	+	0
	+	+	+	+	+	+	+	+
	?	?	?	?	?	?	?	?
	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+

Network from Shinar&Feinberg (2010)

Γ	+	+	+	+	$^+$	+	+	+ -
	+	+	+	+	+	+	+	+
	+	+	+	0	+	0	+	+
	0	0	0	+	+	+	+	0
	+	+	+	+	+	+	+	+
	?	?	?	?	?	?	?	?
	+	+	+	+	+	+	+	+
	$^+$	+	$^+$	+	+	+	+	+

Can be important for model falsification! Compare structural influence matrix and experimental results!

Short distance shuttle model

Neck swinging model

Giulia Giordano

Short distance shuttle model

Neck swinging model

Model comparison: influence matrices

NOT CONFLICTING!

Giulia Giordano

Inputs:

 u_1 increases the flow from x_1 to x_2 u_2 increases the flow from x_2 to x_1

Model comparison: flow influence matrices

Short distance shuttle model

Neck swinging model

$$\Phi_{\rm NS} = x_6 g_4(x_4) + x_7 g_2(x_2)$$

$$\Phi_{\rm NS} \left\{ \begin{bmatrix} u_1 & u_2 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ + & - & + & + & + & + & + \\ ? & ? & ? & ? & + & + & + & + & + \\ \end{bmatrix}$$

CERT-mediated ceramide transfer: wrap up

Both models: flow-inducing systems; flows between pairs of species are tuned by the concentrations of other species, and suitable external inputs can **structurally** regulate ceramide transfer

Short distance shuttle: amount of transferred ceramide structurally tuned by PKD, both directly and indirectly, in a coherent feed-forward loop motif

Neck-swinging: amount of transferred ceramide structurally tuned by active PI4KIII β .

Active PKD directly inhibits ceramide transfer and indirectly promotes it: incoherent feed-forward loop. It structurally favours CERT mobility in the cytosol. Possible explanation: if CERT bound to ER+TGN in the same location, area soon depleted of ceramide; increased mobility in the cytosol helps it detach and bind again where ceramide more abundant. The influences in the two models are not conflicting.

Often structurally determined steady-state signs, which can help falsify the models against experimental traces.

G. Giordano, "CERT-mediated ceramide transfer is a structurally tunable flow-inducing mechanism with structural feed-forward loops", *Royal Society Open Science*, 2018

Oscillatory/multistationary systems: structural classification

	Candidate oscillator	Candidate multistationary
Weak	A negative cycle exists	A positive cycle exists
Strong	All cycles are negative	All cycles are positive

F. Blanchini, E. Franco and G. Giordano, "A Structural Classification of Candidate Oscillators and Multistationary Biochemical Systems", *Bull. Math. Biol.*, 2014

Aggregation of monotone/PIR subsystems

We can recognize and aggregate subsystems that are stable Input-Output Monotone Systems or Positive Impulse Response Systems

Aggregation of monotone/PIR subsystems

We can recognize and aggregate subsystems that are stable Input-Output Monotone Systems or Positive Impulse Response Systems

Aggregation of monotone/PIR subsystems

The same results (classification, influence) hold for the aggregate system

Oscillatory/multistationary aggregate monotone systems

Analogous results for the sign-definite interconnection of Structurally Stable Monotone Subsystems

F. Blanchini, E. Franco and G. Giordano, "Structural Conditions for Oscillations and Multistationarity in Aggregate Monotone Systems", *IEEE CDC*, 2015

Giulia Giordano

Biomolecular clocks

Giulia Giordano

Biomolecular switches

C. Cuba Samaniego, G. Giordano, J. Kim, F. Blanchini, E. Franco, ACS Synth Biol 2016

Giulia Giordano

Learn from nature and engineer nature

Joint work with **Franco Blanchini**, Christian Cuba Samaniego, Elisa Franco

Grazie!

Joint work with **Franco Blanchini**, Christian Cuba Samaniego, Elisa Franco

Giulia Giordano