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Dynamical networks: graph representation

telecommunication / data 
communication networks

production and 
distribution systems

(bio)chemical processes

A B C

water distribution 
networks

synchronization
traffic management

social networks

biological systems
and ecosystems

1 2

34

5

Giulia Giordano Control-theoretic tools for the structural analysis of biological systems



Structure

Graph:

Hypergraph:
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Graph representation: nodes

Nodes: Agents
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Graph representation: arcs

Arcs: Interactions
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Local interactions ⇒ Global behaviour

Local Interactions

Global Behaviour
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Dynamical networks: structural analysis and control

A twofold goal

Structural Analysis 
of Dynamical 

Networks

...especially meant for...

Network-
Decentralised 

Control Synthesis

Natural Systems Man-made Systems
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Structural analysis of dynamical networks

Structural analysis

Looking for structural, parameter-free properties.
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Structural: more than robust

Definition
F : family of systems, P: relevant property
P is robust if any element f ∈F has the property P
Moreover, P is structural if F is specified by a structure without
numerical bounds

Example
Let a,b,c ,d > 0.

A1 =

[
−a b
c −d

]
A2 =

[
−a −b
c −d

]

A1 is robustly stable if 0≤ b,c ≤ 1, 2≤ a,d ≤ 3;
Conversely A2 is structurally stable.
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Structural properties

Parameter-free approach: system structure

Structural analysis

Explain behaviours based on the system inherent structure (graph)

Structurally assess fundamental properties

Structural properties
Satisfied by all the systems of a family specified by a structure,
without numerical bounds.

Applications to biochemical systems

Structural properties in nature
Biological systems → extremely robust: fundamental properties
preserved despite huge uncertainties and parameter variations.
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(Bio)chemical reaction networks

Species: A, B , C

Reactions: /0 a0−⇀ A

, A
ga−⇀ B +C , A+C

gac−−⇀ /0, B
gb−⇀ /0

Concentrations: a, b, c

ODE system:

ȧ = a0−ga(a)−gac(a,c)

ḃ = ga(a)−gb(b)

ċ = ga(a)−gac(a,c)

B

C

A
a0

 ȧ

ḃ
ċ

=

 −1 −1 0
1 0 −1
1 −1 0


︸ ︷︷ ︸

S = stoichiometric matrix

 ga(a)
gac(a,c)
gb(b)


︸ ︷︷ ︸

g = rate

+

 a0
0
0


︸ ︷︷ ︸

g0 = influx
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ḃ = ga(a)

−gb(b)
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The BDC-decomposition

ẋ(t) = Sg(x(t)) +g0, g monotonic functions

Local BDC-decomposition
The Jacobian can be decomposed as:

J(x) =
∂Sg(x)

∂x
= B∆(x)C , ∆(x) = diag

{∣∣∣∣∂gk∂xh

∣∣∣∣}� 0.

The decomposition is unique (up to permutations).

Global BDC-decomposition

Given the equilibrium x̄ (0 = Sg(x̄) +g0), z
.

= x− x̄ .
The system can be rewritten as:

ż(t) = Sg(z(t) + x̄)−Sg(x̄) = [BD(z)C ] z(t), D(z)� 0.
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BDC-decomposition: from local to global

For any vector x̄

Sg(x)−Sg(x̄) =

[∫ 1

0
J(x̄ + σ(x− x̄))dσ

]
(x− x̄)

= B

[∫ 1

0
D(x̄ + σ(x− x̄)) dσ

]
C (x− x̄)
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BDC-decomposition: example ȧ

ḃ
ċ

=

 −1 −1 0
1 0 −1
1 −1 0

 ga(a)
gac(a,c)
gb(b)

+

 a0
0
0


B

C

A
a0 ż = BDCz

D = diag
{

∂ga
∂a

,
∂gac
∂a

,
∂gac
∂c

,
∂gb
∂b

}
� 0

B =

 −1 −1 −1 0
1 0 0 −1
1 −1 −1 0

 and C =


1 0 0
1 0 0
0 0 1
0 1 0



Structure: parameter free, no numerical bounds.
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Structural stability of chemical reaction networks

Assumption

ẋ(t) = Sg(x(t)) +g0

Monotonic functions g and dissipative reactions ∂ ẋi
∂xi

< 0

Matrix S and qualitative information on g(·) ⇔ structure ⇔ graph.
A structural result depends on the associated graph and stability
must hold for all networks with the same graph.
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Structurally assess stability

How can we structurally assess stability?

We exploit the BDC -decomposition! Structurally ⇔ for any Di > 0

Idea: D(z(t))→ D(t)

Absorb the nonlinear system in a Linear Differential Inclusion

ż(t) = [BD(t)C ] z(t), D(t)� 0. (LDI )

Any trajectory of the original system is also a trajectory of (LDI).

To analyse stability we can assume 0≤ Di ≤ 1.

F. Blanchini and G. Giordano, “Piecewise-linear Lyapunov Functions for Structural
Stability of Biochemical Networks”, Automatica, 2014
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Structurally assess stability: polyhedral Lyapunov functions

VX (x) = inf{‖w‖1 : Xw = x}
X full row rank
Based on a discrete difference inclusion, a numerical algorithm
computes the unit ball of the polyhedral Lyapunov function
(if any) via set iteration.

x1

x2

x3

x4

X = [ x1  x2  x3  x4 ]

F. Blanchini and G. Giordano, “Piecewise-linear Lyapunov Functions for Structural
Stability of Biochemical Networks”, Automatica, 2014
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Structurally assess stability: example

B

C

A
a0

The procedure converges =⇒ structurally stable

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

Giulia Giordano Control-theoretic tools for the structural analysis of biological systems



Local and global asymptotic stability

Problem: For ẋ = 0 the procedure stops successfully!

Proposition
If the procedure produces a PLF, then there exists an equilibrium
that is locally asymptotically stable iff BDC is robustly nonsingular,
namely

det[−BDC ] > 0

for all D > 0. We have a vertex-type algorithm.

Proposition

Let ε > 0 (Infinitesimal dissipativity):

ẋ =−εx +Sg(x) +g0

A PLF implies that there exists an equilibrium that is globally
asymptotically stable. With ε = 0, the equilibrium is globally
asymptotically stable iff BDC is robustly nonsingular.
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ẋ =−εx +Sg(x) +g0

A PLF implies that there exists an equilibrium that is globally
asymptotically stable. With ε = 0, the equilibrium is globally
asymptotically stable iff BDC is robustly nonsingular.

Giulia Giordano Control-theoretic tools for the structural analysis of biological systems



Examples

Networks with positive test outcome

Networks with negative test outcome
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Structurally assess stability: polyhedral... why?

A

B

a0

b0   

Claim
The only structural Lyapunov function is polyhedral!

There are no other rate-independent Lyapunov functions.

F. Blanchini, G. Giordano, “Polyhedral Lyapunov functions structurally ensure global
asymptotic stability of dynamical networks iff the Jacobian is non-singular”,
Automatica, 2017
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Structural steady-state analysis: the influence matrix

G. Giordano, C. Cuba Samaniego, E. Franco, F. Blanchini, “Computing the Structural
Influence Matrix for Biological Systems”, J. Math. Biol., 2015

Giulia Giordano Control-theoretic tools for the structural analysis of biological systems



The structural influence matrix

Structural influence of variable j on variable i

Assuming stability, Σij ∈ {+,−,0,?}: sign of the steady-state
variation of xi (∞) due to a step input acting on xj .

For systems admitting a BDC decomposition

Σij = Hi (−BDC )−1Ej ,

H output matrix, E input matrix → efficient vertex algorithm

G. Giordano, C. Cuba Samaniego, E. Franco, F. Blanchini, “Computing the Structural
Influence Matrix for Biological Systems”, J. Math. Biol., 2015
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The structural influence matrix

Network from Shinar&Feinberg (2010)
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The structural influence matrix

Network from Shinar&Feinberg (2010)

Can be important for model falsification!
Compare structural influence matrix and experimental results!
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Intracellular ceramide transport: a case study

Short distance shuttle model

Neck swinging model
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Short distance shuttle model

Giulia Giordano Control-theoretic tools for the structural analysis of biological systems



Neck swinging model
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Model comparison: influence matrices

NOT CONFLICTING!
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Model comparison: input influence matrices

Inputs:
u1 increases the flow from x1 to x2
u2 increases the flow from x2 to x1
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Model comparison: flow influence matrices

Short distance shuttle model

Neck swinging model
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CERT-mediated ceramide transfer: wrap up

Both models: flow-inducing systems; flows between pairs of
species are tuned by the concentrations of other species, and
suitable external inputs can structurally regulate ceramide transfer

Short distance shuttle: amount of transferred ceramide
structurally tuned by PKD, both directly and indirectly, in a
coherent feed-forward loop motif

Neck-swinging: amount of transferred ceramide structurally
tuned by active PI4KIIIβ .
Active PKD directly inhibits ceramide transfer and indirectly
promotes it: incoherent feed-forward loop. It structurally
favours CERT mobility in the cytosol. Possible explanation: if
CERT bound to ER+TGN in the same location, area soon depleted
of ceramide; increased mobility in the cytosol helps it detach and
bind again where ceramide more abundant.
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CERT-mediated ceramide transfer: wrap up

The influences in the two models are not conflicting.

Often structurally determined steady-state signs, which can help
falsify the models against experimental traces.

G. Giordano, “CERT-mediated ceramide transfer is a structurally tunable flow-inducing
mechanism with structural feed-forward loops”, Royal Society Open Science, 2018
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Oscillatory/multistationary systems: structural classification

+

+

+

_ _

z1 z2

z3z4

Candidate 
oscillator

Candidate 
multistable

F. Blanchini, E. Franco and G. Giordano, “A Structural Classification of Candidate
Oscillators and Multistationary Biochemical Systems”, Bull. Math. Biol., 2014
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Aggregation of monotone/PIR subsystems

We can recognize and aggregate subsystems that are stable
Input-Output Monotone Systems
or Positive Impulse Response Systems
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Aggregation of monotone/PIR subsystems

The same results
(classification, influence)
hold for the aggregate system
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Oscillatory/multistationary aggregate monotone systems

Analogous results for the sign-definite interconnection
of Structurally Stable Monotone Subsystems

F. Blanchini, E. Franco and G. Giordano, “Structural Conditions for Oscillations and
Multistationarity in Aggregate Monotone Systems”, IEEE CDC, 2015
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Biomolecular clocks
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Biomolecular switches
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Learn from nature and engineer nature
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Grazie!

Grazie!

Joint work with Franco Blanchini,
Christian Cuba Samaniego, Elisa Franco
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