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The problem

We consider a nonlinear control system:{
ẋ = f (x , u), u ∈ U

x(0) = z ∈ Rn
(1)

and a target C ⊂ Rn.

We say that (x , u) is admissible if there exists a time Tx ≤ +∞ such that
d(x(t)) > 0 for all t ∈ [0,Tx ) and limt→T−x

d(x(t)) = 0.
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For any admissible (x , u), we define the cost:

x0(t) :=

∫ t

0
l(x(τ), u(τ)) dτ ∀t ∈ [0,Tx ),

where
l(x , u) ≥ 0 ∀(x , u).

If Tx < +∞, we extend continuously (x0, x) to [0,+∞), by setting

(x0, x)(t) = lim
t→T−x

(x0, x)(t) ∀t ≥ Tx .

From now on, we will always consider admissible trajectories and
associated costs defined on [0,+∞).
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Goals

1) To extend the concepts of sampling and Euler solutions for
control systems associated to discontinuous feedbacks
[Clarke, Ledyaev, Sontag, Subbotin, ’97], [Clarke, Ledyaev, Rifford, Stern, ’00]

by considering also the corresponding costs.

In particular, we introduce the notions of Sample and Euler
stabilizability to a closed target set C with W -regulated cost.

2) To provide a closed-loop control strategy to achieve Sample and
Euler stabilizability to a closed target set C with W -regulated
cost.
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Results

We prove that the existence of a special semiconcave Control
Lyapunov Function W , called here p0-Minimum Restraint
function, p0-MRF, implies Sample and Euler stabilizability to C
with W -regulated cost.

We show that, when dynamics and cost are Lipschitz continuous
in the state variable, the semiconcavity of the p0-MRF can be
replaced by Lipschitz continuity.
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Motivations

Let us introduce the value function

V (x) := inf
(x ,u)

∫ Tx

0
l(x(τ), u(τ)) dτ.

Our results provide an upper bound for V , which in particular implies the
continuity of V on the target’s boundary.

This continuity property is crucial to establish comparison,
uniqueness, and robustness properties for the associated
Hamilton–Jacobi–Bellman equation [Soravia ’99, Cannarsa and Sinestrari,

’04, Malisoff, ’04, M.’ 04, M. and Sartori, ’15] [M. and Sartori, ’15]

Our approach could be useful to design approximated optimal
closed-loop strategies, or at least to obtain “safe” performances,
keeping the cost under the value W . [Motta and Sartori, ’15]
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Assumption (H0)

The sets U ⊆ Rm, C ⊆ Rn are closed and the boundary ∂C is compact.

f : (Rn \ C)× U → Rn, l : (Rn \ C)× U → [0,+∞) are continuous functions which are:

- bounded on any compact subset K ⊂ Rn \ C, uniformly w.r.t. U,

- uniformly continuous on K× U for every compact subset K ⊂ Rn \ C

When U is bounded, f , l continuous on Rn × U satisfy (H0).

For U unbounded, (H0) includes, e.g., the class of control problems
with saturation:

f (x , u) = f0(x) +
∑m

i=1 fi(x)σi(u), l(x , u) = l0(x) + l1(x)|σ0(u)|,

where l0, l1, f0, . . . , fm ∈ C(Rn) and σ0, . . . , σm are bounded,
uniformly continuous maps on U [Bao, Lin, ’00], [Chitour, ’01], [Chitour, Liu, Sontag,

’96], [Sussmann, Sontag, Yang, ’94].
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Sampling trajectory and sampling cost

Given a partition π = (t j) of [0,+∞), we call
diam(π) := supj≥1(t j − t j−1) the diameter or the sampling time of π.

A descent rate β(d , t) is a continuous, nonnegative function s.t.:

(1) β(0, t) = 0 and β(·, t) is strictly increasing and unbounded for each t ≥ 0;

(2) β(d , ·) is decreasing for each d ≥ 0; (3) lim
t→+∞

β(d , t) = 0 ∀d ≥ 0.

A feedback for (1) is any locally bounded function K : Rn \ C → U.

We allow discontinuous feedbacks which may be unbounded approaching
the target.
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Sampling trajectory and sampling cost

Definition 1.

Given a feedback K , a partition π, and a point z ∈ Rn \ C, a π-sampling
trajectory for (1) is a continuous function x defined by recursively solving

ẋ(t) = f (x(t),K (x(tk−1)) t ∈ [tk−1, tk ], (x(t) ∈ Rn \ C)

where x(0) = z. Let [0, t−) denote it maximal interval of definition.
Accordingly, set

u(t) := K (x(tk−1)) ∀t ∈ [tk−1, tk ) ∩ [0, t−), k ≥ 1.

The sampling cost associated to (x , u) is given by

x0(t) :=

∫ t

0
l(x(τ), u(τ)) dτ t ∈ [0, t−).
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Sample stabilizability with W -regulated cost
System (1) is sample stabilizable
to C for some feedback K , if there is
a descent rate β such that for each
pair 0 < r < R, ∃δ > 0 such that
any π-sampling trajectory x starting
from z with d(z) ≤ R and
diam(π) ≤ δ verifies for all t ,

d(x(t)) ≤ max{β(d(z), t), r}.

The cost is W -regulated if any associated sampling cost verifies:

x0(T̄ r
x ) =

∫ T̄ r
x

0
l(x(τ), u(τ)) dτ ≤ W (z)

p0
,

where
T̄ r

x := inf{t > 0 : d(x(τ)) ≤ r ∀τ ≥ t}.

This W has to be continuous, zero on the target, proper and positive definite
outside the target.
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Euler trajectory and Euler cost

Definition 2.

Let (πi) be a sequence of partitions of [0,+∞) such that
δi := diam(πi)→ 0 as i →∞. For every i , let (xi , ui) be an admissible
πi -sampling trajectory-control pair of (1) and let x0

i be the corresponding
cost. If there exists a pair (X0,X) : [0,+∞)→ Rn, verifying

(x0
i , xi)→ (X0,X) locally uniformly in [0,+∞)

we call X an Euler trajectory of (1) with Euler cost X0.
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Euler stabilizability with W -regulated cost

The system (1) is Euler
stabilizable to C if there exists
a descent rate β such that for
any z, every Euler solution X

verifies for all t ,

d(X(t)) ≤ β(d(z), t).

(1) is Euler stabilizable with W regulated cost if any Euler cost X0

verifies:

lim
t→T−

X

X0(t) ≤ W (z)

p0
.
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CONTROL LYAPUNOV-TYPE FUNCTIONS

and

SAMPLE AND EULER STABILIZABILITY with
REGULATED COST
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(Semiconcave) p0-Minimum Restraint Function

Definition 3.

We say that a continuous function W : Rn \ C → [0,+∞) is a p0-Minimum
Restraint Function –in short, p0-MRF– for some p0 ≥ 0 if W is

locally semiconcave,

positive definite, and

proper

on Rn \ C, and verifies the following decrease condition:

inf
u∈U
{〈D∗W (x) , f (x , u)〉+p0 l(x , u)} ≤ −γ(W (x)) ∀x ∈ Rn \ C

for some continuous, strictly increasing function γ : (0,+∞)→ (0,+∞).

D∗W (x) denotes the set of reachable gradients of W at x :

D∗W (x) .
=

{
p : p = limk ∇W (xk), xk ∈ DIFF(W ) \ {x}, limk xk = x

}
.
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Remark 1

A p0-MRF W is a Control Lyapunov Function. Indeed, from

inf
u∈U
{〈D∗W (x) , f (x , u)〉+ p0 l(x , u)} ≤ −γ(W (x)) and l(x , u) ≥ 0

we get
inf
u∈U
〈D∗W (x) , f (x , u)〉 ≤ −γ(W (x) < 0.

It is well-known that the existence of a CLF characterizes asymptotic
controllability and stabilizability [Sontag, ’83], [Sontag and o., ’97, ’04].
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Level sets of a (smooth) p0-MRF

infu∈U〈DW (x) , f (x , u)〉 < 0 =⇒ ∃u(x) ∈ U; 〈DW (x) , f (x , u(x))〉 < 0(
=⇒ ∃x(t) such that limt→+∞ d(x(t)) = 0

)
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Remark 2

When l(x , a) ≥ µ > 0 the decrease condition includes classical
Petrov-type controllability conditions.

For instance, for the minimum time problem where l ≡ 1, the Petrov
condition

inf
u∈U
{〈D∗d(x), f (x , u)〉} ≤ −µ,

setting W := d can be stated as

inf
u∈U
{〈D∗W (x), f (x , u)〉+ p0 1} ≤ −(µ− p0) < 0

for any p0 ∈ (0, µ).

In this case it well-known that the minimum time function T verifies
T (z) ≤ C d(z)
[Cannarsa, Sinestrari ’04].
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HOWEVER,

Our decrease condition is not a mere application of the usual
Lyapunov-type condition to the extended dynamics obtained by
adding the equation ẋ0 = l(x , u), with the extended target
[0,+∞)× C.

Since l(x , u) ≥ 0 and may be zero on an arbitrary set, an upper
estimate for the cost in terms of W is not an immediate
consequence of the decrease condition, in that the first order PDE

infu∈U {〈Dw(x) , f (x , u)〉+ p0 l(x , u)} = 0

does not verify any comparison principle.
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Main result

Theorem 4.

Assume hypothesis (H0) and let W be a p0-MRF with p0 > 0 for (f , l, C).

Then there exists a locally bounded feedback K : Rn \ C → U that sample
and Euler stabilizes system (1) to C with W -regulated cost.
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Hints on the proof

The proof of the sample stabilizability with W -regulated cost relies on
1. the construction of a discontinuous feedback control law;

2. the use of the semiconcavity property of the p0-MRF W in the spirit of feedback stabilization;

3. sharp uniform estimates of the cost, until the time when the sampling trajectory definitively
enters a r -neighborhood of the target;

The proof of the Euler stabilizability with W -regulated cost relies on

1. the uniform estimate, given a sampling time δ > 0 small enough, of a radius r < d(z) such that
any π-sampling trajectory with diam(π) = δ definitively enters a r -neighborhood of the target;

2. a uniform lower bound of the time needed to any π-sampling trajectory with diam(π) = δ to
definitively enter the r -neighborhood of the target;

3. a limit procedure.
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Lipschitz continuous p0-MRF

Assumption (H1)

The sets U ⊂ Rm, C ⊂ Rn are closed and the boundary ∂C is compact.

f : (Rn \ C)× U → Rn, l : (Rn \ C)× U → [0,+∞) are continuous functions such that for
every compact subset K ⊂ Rn \ C there exist Mf , Ml , Lf , Ll > 0 such that


|f (x , u)| ≤ Mf , l(x , u) ≤ Ml ∀(x , u) ∈ K × U,

|f (x1, u)− f (x2, u)| ≤ Lf |x1 − x2|,

|l(x1, u)− l(x2, u)| ≤ Ll |x1 − x2| ∀(x1, u), (x2, u) ∈ K × U.
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Lipschitz continuous p0-MRF

We say that a map W is a Lipschitz continuous p0-MRF when it verifies
all the properties of a p0-MRF, except that local semiconcavity is replaced
by local Lipschitz continuity (and D∗W is replaced by ∂PW ).

Theorem 5.

Assume hypothesis (H1) and let W be a Lipschitz continuous p0-MRF with
p0 > 0 for (f , l, C).

Then there exists a locally bounded feedback K : Rn \ C → U that sample
and Euler stabilizes system (1) to C with W -regulated cost.

Theorems 4 and 5 extend the results of [M., Rampazzo, ’13], concerning asymptotic controllability in

optimal control.
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Example

Stabilization of the non-holonomic integrator control system with
regulated cost

Set U := {u = (u1, u2) ∈ R2 : u2
1 + u2

2 ≤ 1}, C := {0} ⊂ R3 and consider
the non-holonomic integrator control system:

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1, u(t) = (u1, u2)(t) ∈ U,

x(0) = (x1, x2, x3)(0) = z ∈ R3 \ {0}.

(2)

Given a nonnegative, continuous Lagrangian l(x , u), let us associate to (2)
a cost ∫ Tx

0
l(x(t), u(t)) dt .
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The following map, introduced by [Malisoff, Rifford, Sontag, ’97],

W1(x) :=

(√
x2

1 + x2
2 − |x3|

)2

+ x2
3 ∀x ∈ R3,

is proper, positive definite, locally semiconcave in R3 \ {0}, and verifies

min
u∈U
〈p, f (x , u)〉 = −

√
V (x) ∀x ∈ R3 \ {0}, ∀p ∈ D∗W1(x),

where

V (x) :=

(√
x2

1 + x2
2 − |x3|

)2

+

(√
x2

1 + x2
2 − 2|x3|

)2

(x2
1 +x2

2 ) ∀x ∈ R3.

Therefore, as soon as l verifies

0 ≤ l(x , u) ≤ C
√

V (x) ∀(x , u) ∈ (R3 \ {0})× U,

W1 is a p0-MRF for every p0 ∈ (0, 1/C).
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However, W1 cannot be a p0-MRF when

lim
x→0

infu∈U l(x , u)√
V (x)

= +∞.

Since V (x) tends to 0+ as x → 0, this is the case, for instance, of the
minimum time problem, where l ≡ 1.

Instead, the following map W2, introduced by [Rifford, ’00]:

W2(x) := max

{√
x2

1 + x2
2 , |x3| −

√
x2

1 + x2
2

}
∀x ∈ R3

is a Lipschitz continuous, not semiconcave p0-MRF for l = 1.
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Final remarks

The present work is part of an ongoing, wider investigation of global
asymptotic controllability and stabilizability in an optimal control
perspective.

In a forthcoming paper we address the question of stabilizability with
regulated cost for optimization problems with unbounded data,
including control-polynomial systems with unbounded controls
[Lai, M. and Rampazzo, ’16].

Other interesting research directions include:

- the relation between p0-MRFs and input-to-state stability
[Malisoff, Rifford, Sontag, ’97];

- the study of a possible inverse Lyapunov theorem for p0-MRFs,
[Sontag, ’83]
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including control-polynomial systems with unbounded controls
[Lai, M. and Rampazzo, ’16].

Other interesting research directions include:

- the relation between p0-MRFs and input-to-state stability
[Malisoff, Rifford, Sontag, ’97];

- the study of a possible inverse Lyapunov theorem for p0-MRFs,
[Sontag, ’83]
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Thank you for your attention!

A.C. Lai, M. Motta (Padua Un.) Stabilizability in Optimal Control Control Days 19 28 / 28


	Introduction
	Main results
	An example
	Final remarks

