Stabilizability in Optimal Control

Monica Motta*, Anna Chiara Lai

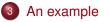
* Dipartimento di Matematica "Tullio Levi-Civita" Università di Padova

Control Days 2019, Padua, May 9/10 2019

A.C. Lai, M. Motta (Padua Un.)

Stabilizability in Optimal Control

Control Days 19 1/28



э

The problem

We consider a nonlinear control system:

$$\begin{cases} \dot{x} = f(x, u), & u \in U \\ x(0) = z \in \mathbb{R}^n \end{cases}$$
(1)

and a target $\mathcal{C} \subset \mathbb{R}^n$.

3 > < 3

900

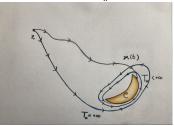
The problem

We consider a nonlinear control system:

$$\begin{cases} \dot{x} = f(x, u), \quad u \in U \\ x(0) = z \in \mathbb{R}^n \end{cases}$$
(1)

and a target $C \subset \mathbb{R}^n$.

We say that (x, u) is **admissible** if there exists a time $T_x \le +\infty$ such that $\mathbf{d}(x(t)) > 0$ for all $t \in [0, T_x)$ and $\lim_{t \to T_x^-} \mathbf{d}(x(t)) = 0$.



For any admissible (x, u), we define **the cost**:

$$x^0(t) := \int_0^t l(x(\tau), u(\tau)) d au \quad \forall t \in [0, T_x),$$

where

 $l(x, u) \geq 0 \quad \forall (x, u).$

⇒ → - For any admissible (x, u), we define the cost:

$$x^0(t) := \int_0^t l(x(\tau), u(\tau)) d au \quad \forall t \in [0, T_x),$$

where

 $l(x, u) \ge 0 \quad \forall (x, u).$

If $T_x < +\infty$, we extend continuously (x^0, x) to $[0, +\infty)$, by setting

$$(x^0,x)(t) = \lim_{t\to T_x^-} (x^0,x)(t) \quad \forall t \ge T_x.$$

From now on, we will always consider admissible trajectories and associated costs defined on $[0, +\infty)$.

To extend the concepts of sampling and Euler solutions for control systems associated to discontinuous feedbacks [Clarke, Ledyaev, Sontag, Subbotin, '97], [Clarke, Ledyaev, Rifford, Stern, '00] by considering also the corresponding costs.

In particular, we introduce the notions of **Sample and Euler** stabilizability to a closed target set C with *W*-regulated cost.

 To extend the concepts of sampling and Euler solutions for control systems associated to discontinuous feedbacks
 [Clarke, Ledyaev, Sontag, Subbotin, '97], [Clarke, Ledyaev, Rifford, Stern, '00]
 by considering also the corresponding costs.

In particular, we introduce the notions of **Sample and Euler** stabilizability to a closed target set C with *W*-regulated cost.

 To provide a closed-loop control strategy to achieve Sample and Euler stabilizability to a closed target set C with W-regulated cost. We prove that the existence of a special semiconcave Control Lyapunov Function *W*, called here p₀-Minimum Restraint function, p₀-MRF, implies Sample and Euler stabilizability to C with *W*-regulated cost.

- We prove that the existence of a special semiconcave Control Lyapunov Function W, called here p_0 -Minimum Restraint function, p_0 -MRF, implies Sample and Euler stabilizability to C with W-regulated cost.
- We show that, when dynamics and cost are Lipschitz continuous in the state variable, the semiconcavity of the *p*₀-MRF can be replaced by Lipschitz continuity.

Motivations

Let us introduce the value function

$$V(x) := \inf_{(x,u)} \int_0^{T_x} I(x(\tau), u(\tau)) d\tau.$$

Our results provide an upper bound for V, which in particular implies the continuity of V on the target's boundary.

 This continuity property is crucial to establish comparison, uniqueness, and robustness properties for the associated Hamilton–Jacobi–Bellman equation [Soravia '99, Cannarsa and Sinestrari, '04 Mellaeff, '04 M, and Serteri, '151 M, and Serteri, '151

'04, Malisoff, '04, M.' 04, M. and Sartori, '15] [M. and Sartori, '15]

Motivations

Let us introduce the value function

$$V(x) := \inf_{(x,u)} \int_0^{T_x} I(x(\tau), u(\tau)) d\tau.$$

Our results provide an upper bound for V, which in particular implies the continuity of V on the target's boundary.

- This continuity property is crucial to establish comparison, uniqueness, and robustness properties for the associated Hamilton–Jacobi–Bellman equation [Soravia '99, Cannarsa and Sinestrari, '04, Malisoff, '04, M.' 04, M. and Sartori, '15] [M. and Sartori, '15]
- Our approach could be useful to **design approximated optimal** closed-loop strategies, or at least to obtain "safe" performances, keeping the cost under the value *W*. [Motta and Sartori, '15]

Assumption (H0)

- The sets $U \subseteq \mathbb{R}^m$, $\mathcal{C} \subseteq \mathbb{R}^n$ are closed and the boundary $\partial \mathcal{C}$ is compact.
- $f: (\mathbb{R}^n \setminus \mathcal{C}) \times U \to \mathbb{R}^n, I: (\mathbb{R}^n \setminus \mathcal{C}) \times U \to [0, +\infty)$ are continuous functions which are:

- bounded on any compact subset $\mathcal{K} \subset \overline{\mathbb{R}^n \setminus C}$, uniformly w.r.t. U,

- uniformly continuous on $\mathcal{K} \times U$ for every compact subset $\mathcal{K} \subset \mathbb{R}^n \setminus \mathcal{C}$

イロト (得) (ヨ) (ヨ) - ヨ

Assumption (H0)

- The sets $U \subseteq \mathbb{R}^m$, $\mathcal{C} \subseteq \mathbb{R}^n$ are closed and the boundary $\partial \mathcal{C}$ is compact.
- $f: (\mathbb{R}^n \setminus \mathcal{C}) \times U \to \mathbb{R}^n, I: (\mathbb{R}^n \setminus \mathcal{C}) \times U \to [0, +\infty)$ are continuous functions which are:

- bounded on any compact subset $\mathcal{K} \subset \overline{\mathbb{R}^n \setminus C}$, uniformly w.r.t. U,

- uniformly continuous on $\mathcal{K} \times U$ for every compact subset $\mathcal{K} \subset \mathbb{R}^n \setminus \mathcal{C}$

- When U is bounded, f, I continuous on $\mathbb{R}^n \times U$ satisfy (H0).
- For *U* unbounded, (H0) includes, e.g., the class of *control problems* with saturation:

 $f(x, u) = f_0(x) + \sum_{i=1}^m f_i(x)\sigma_i(u), \qquad l(x, u) = l_0(x) + l_1(x)|\sigma_0(u)|,$

where I_0 , I_1 , f_0 , ..., $f_m \in C(\mathbb{R}^n)$ and σ_0 , ..., σ_m are bounded, uniformly continuous maps on U [Bao, Lin, '00], [Chitour, '01], [Chitour, Liu, Sontag, '96], [Sussmann, Sontag, Yang, '94].

イロト (得) (ヨト (ヨト) ヨ

Sampling trajectory and sampling cost

 Given a partition π = (t^j) of [0, +∞), we call diam(π) := sup_{j≥1}(t^j − t^{j−1}) the diameter or the sampling time of π.

Sampling trajectory and sampling cost

- Given a partition π = (t^j) of [0, +∞), we call diam(π) := sup_{j≥1}(t^j − t^{j−1}) the diameter or the sampling time of π.
- A descent rate $\beta(d, t)$ is a continuous, nonnegative function s.t.:
 - (1) $\beta(0, t) = 0$ and $\beta(\cdot, t)$ is strictly increasing and unbounded for each $t \ge 0$;
 - (2) $\beta(d, \cdot)$ is decreasing for each $d \ge 0$; (3) $\lim_{t \to +\infty} \beta(d, t) = 0 \ \forall d \ge 0$.

Sampling trajectory and sampling cost

- Given a partition π = (t^j) of [0, +∞), we call diam(π) := sup_{j≥1}(t^j − t^{j−1}) the diameter or the sampling time of π.
- A descent rate β(d, t) is a continuous, nonnegative function s.t.:

(1) $\beta(0, t) = 0$ and $\beta(\cdot, t)$ is strictly increasing and unbounded for each $t \ge 0$;

- (2) $\beta(d, \cdot)$ is decreasing for each $d \ge 0$; (3) $\lim_{t \to +\infty} \beta(d, t) = 0 \ \forall d \ge 0$.
- A feedback for (1) is any locally bounded function $K : \mathbb{R}^n \setminus C \to U$.

We allow discontinuous feedbacks which may be <u>unbounded</u> approaching the target.

Definition 1.

Given a feedback *K*, a partition π , and a point $z \in \mathbb{R}^n \setminus C$, a π -sampling trajectory for (1) is a continuous function *x* defined by recursively solving

$$\dot{x}(t) = f(x(t), \mathcal{K}(x(t_{k-1})))$$
 $t \in [t_{k-1}, t_k], (x(t) \in \mathbb{R}^n \setminus C)$

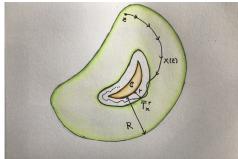
where x(0) = z. Let $[0, t^-)$ denote it maximal interval of definition. Accordingly, set

$$u(t) := K(x(t_{k-1})) \quad \forall t \in [t_{k-1}, t_k) \cap [0, t^-), \quad k \ge 1.$$

The **sampling cost** associated to (x, u) is given by

$$x^0(t):=\int_0^t l(x(\tau),u(\tau))\,d au\quad t\in[0,t^-).$$

Sample stabilizability with W-regulated cost



System (1) is **sample stabilizable** to C for some feedback K, if there is a descent rate β such that for each pair 0 < r < R, $\exists \delta > 0$ such that **any** π -sampling trajectory x starting from z with $\mathbf{d}(z) \leq R$ and diam $(\pi) \leq \delta$ verifies for all t, $\mathbf{d}(x(t)) \leq \max\{\beta(\mathbf{d}(z), t), r\}.$

The cost is *W*-regulated if any associated sampling cost verifies:

$$x^0(\overline{T}_x^r) = \int_0^{\overline{T}_x^r} l(x(\tau), u(\tau)) \, d au \leq rac{W(z)}{p_0},$$

where

$$\overline{T}_x^r := \inf\{t > 0 : \mathbf{d}(x(\tau)) \le r \ \forall \tau \ge t\}.$$

This W has to be continuous, zero on the target, proper and positive definite outside the target.

A.C. Lai, M. Motta (Padua Un.)

Stabilizability in Optimal Control

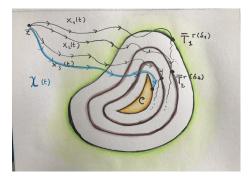
Definition 2.

Let (π_i) be a sequence of partitions of $[0, +\infty)$ such that $\delta_i := diam(\pi_i) \to 0$ as $i \to \infty$. For every *i*, let (x_i, u_i) be an admissible π_i -sampling trajectory-control pair of (1) and let x_i^0 be the corresponding cost. If there exists a pair $(\mathfrak{X}^0, \mathfrak{X}) : [0, +\infty) \to \mathbb{R}^n$, verifying

 $(x_i^0, x_i) o (\mathfrak{X}^0, \mathfrak{X})$ locally uniformly in $[0, +\infty)$

we call \mathfrak{X} an Euler trajectory of (1) with Euler cost \mathfrak{X}^{0} .

Euler stabilizability with W-regulated cost



The system (1) is **Euler stabilizable** to C if there exists a descent rate β such that for any z, **every** Euler solution \mathcal{X} verifies for all t,

 $\mathbf{d}(\mathfrak{X}(t)) \leq \beta(\mathbf{d}(z), t).$

(1) is **Euler stabilizable with** *W* regulated cost if any Euler cost \mathcal{X}^0 verifies:

$$\lim_{t\to T_{\mathcal{X}}^-} \mathfrak{X}^0(t) \leq \frac{W(z)}{\rho_0}.$$

CONTROL LYAPUNOV-TYPE FUNCTIONS and

SAMPLE AND EULER STABILIZABILITY with REGULATED COST

A.C. Lai, M. Motta (Padua Un.)

Stabilizability in Optimal Control

Control Days 19 14/28

(Semiconcave) p₀-Minimum Restraint Function

Definition 3.

We say that a continuous function $W : \mathbb{R}^n \setminus \mathcal{C} \to [0, +\infty)$ is a p_0 -Minimum Restraint Function –in short, p_0 -MRF– for some $p_0 \ge 0$ if W is

- locally semiconcave,
- positive definite, and
- proper

on $\mathbb{R}^n \setminus C$, and verifies the following **decrease condition**:

 $\inf_{u \in U} \left\{ \langle D^* W(x), f(x, u) \rangle + \rho_0 I(x, u) \right\} \le -\gamma(W(x)) \quad \forall x \in \mathbb{R}^n \setminus C$

for some continuous, strictly increasing function $\gamma : (0, +\infty) \rightarrow (0, +\infty)$.

 $D^*W(x) \text{ denotes the } \underbrace{\text{set of reachable gradients of } W \text{ at } x:}_{D^*W(x) \doteq \left\{p: p = \lim_k \nabla W(x_k), x_k \in DIFF(W) \setminus \{x\}, \lim_k x_k = x\right\}}_{\substack{\substack{k \in \mathcal{D} \ k \in \mathcal{D} \ k$

• A p₀-MRF W is a Control Lyapunov Function. Indeed, from

 $\inf_{u \in U} \left\{ \langle D^* W(x), f(x, u) \rangle + p_0 I(x, u) \right\} \le -\gamma(W(x)) \text{ and } I(x, u) \ge 0$

we get

$$\inf_{u\in U} \langle D^*W(x), f(x,u)\rangle \leq -\gamma(W(x) < 0.$$

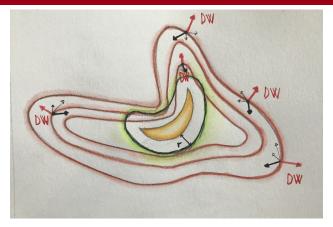
A 🕨 🔸

• A p₀-MRF W is a Control Lyapunov Function. Indeed, from

 $\inf_{u \in U} \{ \langle D^*W(x), f(x, u) \rangle + p_0 \, l(x, u) \} \le -\gamma(W(x)) \text{ and } l(x, u) \ge 0$ we get $\inf_{u \in U} \langle D^*W(x), f(x, u) \rangle \le -\gamma(W(x) < 0.$

 It is well-known that the existence of a CLF characterizes asymptotic controllability and stabilizability [Sontag, '83], [Sontag and o., '97, '04].

Level sets of a (smooth) p_0 -MRF



 $\inf_{u \in U} \langle DW(x), f(x, u) \rangle < 0 \implies \exists u(x) \in U; \ \langle DW(x), f(x, u(x)) \rangle < 0$ $\left(\Longrightarrow \exists x(t) \text{ such that } \lim_{t \to +\infty} \mathbf{d}(x(t)) = 0 \right)$

Remark 2

 When *l*(*x*, *a*) ≥ µ > 0 the decrease condition includes classical Petrov-type controllability conditions.

Remark 2

- When *l*(*x*, *a*) ≥ µ > 0 the decrease condition includes classical Petrov-type controllability conditions.
- For instance, for the minimum time problem where $I \equiv 1$, the Petrov condition

$$\inf_{u\in U}\left\{\left\langle D^*\mathbf{d}(x), f(x,u)\right\rangle\right\} \leq -\mu,$$

setting $W := \mathbf{d}$ can be stated as

$$\inf_{\boldsymbol{U}\in\boldsymbol{U}}\left\{\langle D^*\boldsymbol{W}(\boldsymbol{x}),f(\boldsymbol{x},\boldsymbol{u})\rangle+p_0\,\mathbf{1}\right\}\leq-(\mu-p_0)<0$$

for any $p_0 \in (0, \mu)$.

In this case it well-known that the minimum time function T verifies $T(z) \leq C \mathbf{d}(z)$

[Cannarsa, Sinestrari '04].

HOWEVER,

Our decrease condition is not a mere application of the usual Lyapunov-type condition to the extended dynamics obtained by adding the equation x⁰ = *l*(*x*, *u*), with the extended target [0, +∞) × C.

- Our decrease condition is not a mere application of the usual Lyapunov-type condition to the extended dynamics obtained by adding the equation x⁰ = *l*(*x*, *u*), with the extended target [0, +∞) × C.
- Since *l*(*x*, *u*) ≥ 0 and may be zero on an arbitrary set, an upper estimate for the cost in terms of *W* is not an immediate consequence of the decrease condition, in that the first order PDE

$$\inf_{u \in U} \left\{ \left\langle Dw(x), f(x, u) \right\rangle + p_0 I(x, u) \right\} = 0$$

does not verify any comparison principle.

Theorem 4.

Assume hypothesis (H0) and let W be a p_0 -MRF with $p_0 > 0$ for (f, I, C).

Then there exists a locally bounded feedback $K : \mathbb{R}^n \setminus C \to U$ that sample and Euler stabilizes system (1) to C with *W*-regulated cost.

Hints on the proof

The proof of the sample stabilizability with W-regulated cost relies on

- 1. the construction of a discontinuous feedback control law;
- 2. the use of the semiconcavity property of the p_0 -MRF W in the spirit of feedback stabilization;
- 3. sharp uniform estimates of the cost, until the time when the sampling trajectory definitively enters a *r*-neighborhood of the target;

The proof of the Euler stabilizability with W-regulated cost relies on

- 1. the uniform estimate, given a sampling time $\delta > 0$ small enough, of a radius $r < \mathbf{d}(z)$ such that any π -sampling trajectory with diam $(\pi) = \delta$ definitively enters a *r*-neighborhood of the target;
- 2. a uniform lower bound of the time needed to any π -sampling trajectory with diam(π) = δ to definitively enter the *r*-neighborhood of the target;
 - 3. a limit procedure.

イロト イポト イヨト イヨト

Assumption (H1)

- The sets $U \subset \mathbb{R}^m$, $C \subset \mathbb{R}^n$ are closed and the boundary ∂C is compact.
- *f*: (ℝⁿ \ C) × U → ℝⁿ, *l*: (ℝⁿ \ C) × U → [0, +∞) are continuous functions such that for every compact subset K ⊂ ℝⁿ \ C there exist M_f, M_l, L_f, L_l > 0 such that

$$\begin{aligned} f(x,u) &| \le M_f, \quad l(x,u) \le M_l \quad \forall (x,u) \in \mathcal{K} \times U, \\ &| f(x_1,u) - f(x_2,u) | \le L_f |x_1 - x_2|, \\ &| l(x_1,u) - l(x_2,u) | \le L_l |x_1 - x_2| \quad \forall (x_1,u), (x_2,u) \in \mathcal{K} \times U. \end{aligned}$$

A.C. Lai, M. Motta (Padua Un.)

We say that a map W is a **Lipschitz continuous** p_0 -**MRF** when it verifies all the properties of a p_0 -MRF, except that local <u>semiconcavity</u> is replaced by local Lipschitz continuity (and D^*W is replaced by $\partial_P W$).

Theorem 5.

Assume hypothesis (H1) and let W be a Lipschitz continuous p_0 -MRF with $p_0 > 0$ for (f, I, C).

Then there exists a locally bounded feedback $K : \mathbb{R}^n \setminus C \to U$ that sample and Euler stabilizes system (1) to C with *W*-regulated cost.

We say that a map W is a **Lipschitz continuous** p_0 -**MRF** when it verifies all the properties of a p_0 -MRF, except that local <u>semiconcavity</u> is replaced by local Lipschitz continuity (and D^*W is replaced by $\partial_P W$).

Theorem 5.

Assume hypothesis (H1) and let W be a Lipschitz continuous p_0 -MRF with $p_0 > 0$ for (f, I, C).

Then there exists a locally bounded feedback $K : \mathbb{R}^n \setminus C \to U$ that sample and Euler stabilizes system (1) to C with *W*-regulated cost.

Theorems 4 and 5 extend the results of [M., Rampazzo, '13], concerning <u>asymptotic controllability</u> in optimal control.

<ロト < 部 > < 注 > < 注 > < 注

Example

Stabilization of the non-holonomic integrator control system with regulated cost

Set $U := \{u = (u_1, u_2) \in \mathbb{R}^2 : u_1^2 + u_2^2 \le 1\}, C := \{0\} \subset \mathbb{R}^3$ and consider the non-holonomic integrator control system:

$$\begin{cases} \dot{x}_1 = u_1 \\ \dot{x}_2 = u_2 \\ \dot{x}_3 = x_1 u_2 - x_2 u_1, \quad u(t) = (u_1, u_2)(t) \in U, \\ x(0) = (x_1, x_2, x_3)(0) = z \in \mathbb{R}^3 \setminus \{0\}. \end{cases}$$

$$(2)$$

Given a nonnegative, continuous Lagrangian I(x, u), let us associate to (2) a cost

$$\int_0^{T_x} I(x(t), u(t)) \, dt.$$

The following map, introduced by [Malisoff, Rifford, Sontag, '97],

$$W_1(x) := \left(\sqrt{x_1^2 + x_2^2} - |x_3|\right)^2 + x_3^2 \qquad \forall x \in \mathbb{R}^3,$$

is proper, positive definite, locally semiconcave in $\mathbb{R}^3 \setminus \{0\}$, and verifies

$$\min_{u\in U}\langle p,f(x,u)\rangle = -\sqrt{V(x)} \qquad \forall x\in \mathbb{R}^3\setminus\{0\}, \ \forall p\in D^*W_1(x),$$

where

$$V(x) := \left(\sqrt{x_1^2 + x_2^2} - |x_3|
ight)^2 + \left(\sqrt{x_1^2 + x_2^2} - 2|x_3|
ight)^2 (x_1^2 + x_2^2) \quad \forall x \in \mathbb{R}^3.$$

Therefore, as soon as I verifies

 $0 \leq I(x, u) \leq C\sqrt{V(x)}$ $\forall (x, u) \in (\mathbb{R}^3 \setminus \{0\}) \times U,$

 W_1 is a p_0 -MRF for every $p_0 \in (0, 1/C)$.

A.C. Lai, M. Motta (Padua Un.)

However, W_1 cannot be a p_0 -MRF when

$$\lim_{x\to 0}\frac{\inf_{u\in U}I(x,u)}{\sqrt{V(x)}}=+\infty.$$

Since V(x) tends to 0^+ as $x \to 0$, this is the case, for instance, of the minimum time problem, where $l \equiv 1$.

Instead, the following map W_2 , introduced by [Rifford, '00]:

$$W_2(x) := \max\left\{\sqrt{x_1^2 + x_2^2}, |x_3| - \sqrt{x_1^2 + x_2^2}
ight\} \qquad \forall x \in \mathbb{R}^3$$

is a Lipschitz continuous, not semiconcave p_0 -MRF for I = 1.

 The present work is part of an ongoing, wider investigation of global asymptotic controllability and stabilizability in an optimal control perspective.

- The present work is part of an ongoing, wider investigation of global asymptotic controllability and stabilizability in an optimal control perspective.
- In a forthcoming paper we address the question of stabilizability with regulated cost for optimization problems with unbounded data, including control-polynomial systems with unbounded controls [Lai, M. and Rampazzo, '16].

- The present work is part of an ongoing, wider investigation of global asymptotic controllability and stabilizability in an optimal control perspective.
- In a forthcoming paper we address the question of stabilizability with regulated cost for optimization problems with unbounded data, including control-polynomial systems with unbounded controls [Lai, M. and Rampazzo, '16].
- Other interesting research directions include:
 - *the relation between p*₀-*MRFs and input-to-state stability* [Malisoff, Rifford, Sontag, '97];

- *the study of a possible inverse Lyapunov theorem for p*₀-*MRFs*, [Sontag, '83]

Thank you for your attention!

A.C. Lai, M. Motta (Padua Un.)

Stabilizability in Optimal Control

Control Days 19 28/28