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CIRCUMNUTATION

Circumnutation is an elliptical,
circular or pendulum like movement
performed by plant organs during
growth

Why plants perform circumnutation
is biologically not well understood
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ROOTS

Plant roots have been recently used
as a paradigm to design and build
robotic technologies

Plant roots perform circumnutation
too while they grow

It has been conjectured that
circumnutation plays an important
role in facilitating soil penetration
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ROOT-LIKE MECHANISM IN REAL SOIL

[1] compares efficiency of
circumnutation with respect
to straight penetration when
a robotic root tip with a
parabolic shape is pushed
into soil at different densities

E. Del Dottore, A. Mondini, A. Sadeghi, V. Mattoli, and B. Mazzolai.
An efficient soil penetration strategy for explorative robots inspired by
plant root circumnutation movements.
Bioinspiration & biomimetics, 13(1):015003, 2017.
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DECISION-MAKING FRAMEWORK

In this study, we want to build up a control-based framework aiming at
modeling the robotic root.

Why are we interested in this?

The study [1] shows that circumnutation perfoms better than straight-line
penetration (in some specific cases)

Here, we want to compare circumnutation with any possible behavior

Is circumnutation still more efficient compare to any possible behavior?
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MODEL VARIABLES

x is the position of the center of the
robotic device

v is the velocity with direction nv
coinciding with the parabolic axis

k(x) is the strength of the soil

inv is the axial contribution of the
friction along the direction nv

in1 , in2 represent the lateral
contribution of the friction along the
directions n1, n2
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ENGINEERING FRAMEWORK

We develope a model able to reproduce the settings of the experiment in
[1] and that allows to extend results to a more general framework

ẋ = v

v̇ = u − k(x)

(∣∣ 〈u, inv 〉 ∣∣nv +
∣∣ 〈u, in1〉

∣∣n1 +
∣∣ 〈u, in2〉

∣∣n2

)
(x(T ), v(T )) ∈ T
(x(0), v(0)) = (x0, v0) ∈ R3+3,

u ∈ [−1, 1]2 × [−1,−umin], t ∈ [0,T ]
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ENGINEERING FRAMEWORK

The cost function

W (T , v , u) =

(∫ T

0

{
〈u, inv 〉

2 + 〈u, in1〉
2 + 〈u, in2〉

2

}
ds

)1/2

measures the energy dissipation due to either the penetration friction
(along the direction nv ) or due to the lateral friction (along the directions
n1, n2).

k(x), inv , in1 , in2 are our modeling variables
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MODEL CALIBRATION

Experimental data are taken in the following settings:

1) Constant speed, straight descent path;

2) Constant speed, helical descent path.

We then calibrate the model parameters using a control u which minimizes
the cost functional W and satisfies one of the following conditions:

1) v(t) = (0, 0, c), v̇(t) = (0, 0, 0) in the case in which straight
penetration is considered

2) |v(t)| = c , v̇(t) = cω√
2

(− cos(ωt),− sin(ωt), 0), in the case in which

helical circumnutation is considered
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PENETRATION EFFICIENCY

A computation of the instantaneous cost function W with special choices
of u shows an higher efficiency when v̇ is forced to be periodic

Michele Palladino (GSSI) Modeling the Root Growth May 10, 2019 10 / 29



EXPERIMENTAL DATA

The model has to fit the following experimental data:

a) The amplitude of the helical α

b) The lead angle of the helical ε

c) The period of circumnutation T0

d) The energy efficiency between
straight and helical paths

The relation between all a), b), c)
and d) has to be carefully addressed
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SENSITYVITY

An example of instantaneous
energy dissipation when

soil density k(x)
increases linearly with
respect to depth

one considers examples
of dynamics generating
two different helical
paths
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MATHEMATICAL FRAMEWORK

A vector field V (x) is applied to a rigid body B at x . Suppose that an
“averaged” dynamic friction I (x) affects the vector field V (x) at x , whose
total effect depends on the surface of friction of the rigid body B.

ẍ(t) = V (x)− I (x)

I (x) =
∑

i k(V (x), αi )η(x) · Q(αi )

k(V (x), αi ) = λi > 0, i = 1, 2
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GENERAL SETTINGS

µ measure such that supp(µ) ⊆ A

µ chooses relevant points in A responsible for friction

ϕ(x , α) a convex function with respect to x

We are computing an “average friction”

ẋ ∈ g(t, x)−
∫
A
k(g(t, x), α)∂xϕ(x , α)µ(dα)

If both the vector field g and the friction strength k depend on a feedback
control u

ẋ ∈ F (t, x , u) := g(t, x , u)−
∫
A
k(t, x , u, α)∂xϕ(x , α)µ(dα)
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GENERAL SETTINGS

Consider the optimal control problem

(Pt0,x0)



Minimize W (T , x(T ))

overT > t0, (x , u) ∈ AC ([t0,T ];Rn)× U
ẋ(t) ∈ F (t, x(t), u(t)), a.e t ∈ [t0,T ]

u(t) ∈ U ⊆ Rm, a.e t ∈ [t0,T ]

x(t0) = x0 ∈ Rn

(T , x(T )) ∈ T

V (t0, x0) = inf{W (T , x(T ))| (T , x(T )) solution of (Pt0,x0)}
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ASSUMPTIONS ON THE DYNAMICS

Assume

H1: The maps (t, x , u, α) 7→ k(t, x , u, α) ≥ 0, (t, x , u) 7→ g(t, x , u),
(x , α) 7→ ϕ(x , α) and (t, x) 7→W (t, x) are continuous.

H2: There exist constants L,C > 0 such that

|g(t, x , u)− g(s, y , u)| ≤ L (|t − s|+ |x − y |)

|ϕ(x , α)− ϕ(y , α)| ≤ L|x − y |

|k(t, x , u, α)− k(s, y , u, α)| ≤ L (|t − s|+ |x − y |)

|k(t, x , u, α)| , |g(t, x , u)| ≤ C

for every x , y ∈ Rn, t, s ∈ [t0,T ], u ∈ U and α ∈ A.

H3: for each α ∈ A, the mapping x 7→ ϕ(x , α) is convex.

H4: the set-valued map F̄ (t, x) := ∪u∈UF (t, x , u) takes convex values for
each (t, x) ∈ R1+n.
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PROPERTIES OF THE DYNAMICS

Proposition

Assume H1 − H3. Then

F̄ (t, x) =
⋃
u

F (t, x , u)

is non-empty, compact and upper semi-continuous. Furthermore, F̄ is
Lipschitz continuous w.r.t. t and One Sided Lipschitza (OSL) w.r.t. x ,
uniformly w.r.t. t.

a
T. Donchev, V. Rios, P. Wolenski, “Strong invariance and one-sided Lipschitz multifunctions”, Nonlinear Anal.

For any control and initial condition, there exists a unique solution to{
ẋ(t) ∈ F (t, x(t), u(t)), a.e. t ∈ [t0,+∞)

x(t0) = x0
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ASSUMPTIONS ON THE O.C.P.

H5: Given T̃ : R Rn with closed graph, T = Gr T̃
H6: Inward pointing condition:

For any compact G ⊆ R1+n there exists ρ > 0 such that, for all
(t, x) ∈ ∂T ∩ G

min
ξ∈F̄ (t,x)

{
l0 + 〈l , ξ〉

}
≤ −ρ for all (l0, l) ∈ NT (t, x)

H7: the function W : R1+n → R is Lipschitz continuous
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H8: GROWTH CONDITION

Define the reachable set

R(T ; t, x) :=
{
x(T ) : ẋ(s) ∈ F̄ (s, x(s)), s ∈ [t,T ], x(t) = x

}
and the set of admissible trajectories with initial condition x(t) = x :

A(t, x) := {(T , x(T )) ∈ T : x(T ) ∈ R(T ; t, x), T ≥ t} .

Then we impose the following growth condition:

(GC) Fix any (t, x) ∈ R1+n. For every (Tk , xk) ∈ A(t, x) such that
Tk → +∞, one has that W (Tk , xk)→ +∞.
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GROWTH CONDITIONS

If one replaces (GC) with the following condition:

(LGC) For any K ⊂ R1+n compact, there exists γ > 0 such that

W (t ′, x ′) ≥W (t, x) + γ(t ′ − t),

whenever (t, x) ∈ K , (t ′, x ′) ∈ A(t, x).

Then the related optimal solution stops as soon as it reaches the target.

However, (GC) does not imply that the optimal trajectory stops
when it reaches the target...
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PROPERTIES OF THE VALUE FUNCTION

D = {(t, x) ∈ R1+n : V (t, x) < +∞}

Theorem

Assume H1 − H8. Then:

D is open (Inward Pointing Condition)

For any (t0, x0) ∈ D, there exists a minimizer for the optimal control
problem (Pt0,x0) (Growth Condition)

V is locally Lipschitz in D; (Inward Pointing Condition)

V (sk , xk)→ +∞ for all (sk , xk)→ (s0, x0) such that (sk , xk) ∈ D and
(s0, x0) ∈ ∂D (Inward Pointing Condition)

V (sk , xk)→ +∞ for all (sk , xk) ∈ D such that sk →∞ (Growth
Condition)
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INVARIANCE PRINCIPLES

Consider the augmented differential inclusion dynamics:
(τ(t), x(t), a(t)) ∈ Γ(τ, x) = {1} × F̄ (τ, x)× {0}
(τ(0), x(0), a(0)) = (t0, x0, a0) ∈ R1+n+1

t ∈ [0,+∞)

it is possible to link

the dynamic programming principle for the value function V

and the invariance properties of the dynamics Γ:

(Γ, epi(V )) is weakly invariant in a given open set A
(Γ,hypo(V )) is strongly invariant
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HAMILTON-JACOBI-BELLMAN INEQUALITIES

Ω = {(t, x) ∈ T : V (t, x) = W (t, x)}
(No Characteristics start from Ω)

h(t, x , η) = ηt + inf
v∈F̄ (t,x)

〈v , ηx〉 H(τ, x , η) = ηt + sup
v∈F̄ (t,x)

〈v , ηx〉

Are equivalent:

(epi(V ), Γ) is weakly invariant in Ωc

For all (t, x , a) ∈ epi(V ) ∩ Ωc ,
h(t, x , η) ≤ 0 for all η = (ηt , ηx) ∈ NP

epi(V )(t, x , a)

Are equivalent:

(hypo(V ), Γ) is strongly invariant

For all (t, x , a) ∈ hypo(V ),
lim sup(τ,y)→η(t,x) H(τ, y , η) ≤ 0 for all

η = (ηt , ηx) ∈ NP
hypo(V )(τ, x , a)
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HAMILTON-JACOBI-BELLMAN INEQUALITIES

Theorem

Assume H1-H8. Then V is the unique, loc. Lipschitz viscosity solution:

i) V (t, x) ≤W (t, x) for each (t, x) ∈ T ;

ii) V (t, x) = +∞ for all (t, x) 6∈ D;

iii) V (tk , xk)→ +∞ for all (tk , xk) ∈ D s.t. (tk , xk)→ (t, x) ∈ ∂D;

iv) For every (tk , xk) ∈ D such that tk →∞, then V (tk , xk)→∞;

v) for every (t, x) ∈ D ∩ Ωc one has, for all p = (pt , px) ∈ ∂PV (t, x)

pt + min
v∈F̄ (t,x)

v · px ≤ 0 (0.1)

vi) for every (t, x) ∈ D, one has, for all q = (qt , qx) ∈ ∂PV (t, x)

qt + lim inf
(t′,x ′)→q(t,x)

{
min

v∈F̄ (t′,x ′)
v · qx

}
≥ 0 (0.2)

Michele Palladino (GSSI) Modeling the Root Growth May 10, 2019 25 / 29



HAMILTON-JACOBI-BELLMAN EQUATIONS

Theorem

Assume H1-H8. Then V is the unique, loc. Lipschitz viscosity solution
satisfying, if (t, x) ∈ T c ,

∂tV + lim inf
(t′,x ′)→p(t,x)

[
min

v∈F̄ (t′,x ′)
v · ∇xV

]
= 0, (0.3)

and, if (t, x) ∈ T ,

min

{
W (t, x)− V (t, x), ∂tV + lim inf

(t′,x ′)→p(t,x)

[
min

v∈F̄ (t′,x ′)
v · ∇xV

]}
= 0,

(0.4)

i) V (t, x) = +∞ for all (t, x) 6∈ D;

ii) V (tk , xk)→ +∞ for all (tk , xk) ∈ D s.t. (tk , xk)→ (t, x) ∈ ∂D;

iii) For every (tk , xk) ∈ D such that tk →∞, then V (tk , xk)→∞.
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SIMULATIONS

Solving the related optimal control problem using the direct method, it
seems the optimality is reached through rotations and helical trajectories
instead of going deeper in a straight way
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CONCLUSIONS AND OPEN QUESTIONS

In this talk, we have presented a model for the root growth.

The model fits some experimental data, which have been acquired
measuring the energy dissipated by a mechanical root-like robot.

The model we consider aims at providing some insights in the decision
making process that a root-like robot has to take into account in order to
efficiently work.

This results can be helpful in understanding the decision-making process of
plant (specifically, for what concerns roots).

Proving that the value function synthesis of the related optimal control
problem provides a helical circumnutation is a possible strategy to show
why circumnutation occurs in plants.
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