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Information and Quantum Physics today

Quantum cryptography:

Intrinsically “secure”. On the market (e.g. MagiQ).

Full-fledged Quantum Computer (QC):

Theory: QC has advantage over state-of-the-art
classical algorithms for factoring (exp), DFT (exp),

search (quad).

Practice: About 50 qubits (IBM)/
72 qubits Google Bristlecone; scalability issues.

Dedicated quantum processors:

Simulated annealing/adiabatic processors are
on the market (D-Wave); Google-NASA,
Lockheed-Martin bought them (M$)!

Quantum simulation: see QC - but needs

to be competitive.
[original Feynman’s task,1960’s]

Also:
Metrology, Spectroscopy,
Controlled Q. chemistry,

Q. biology.




Ok, If they buy It, | am sold too. But...
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Quantum is Non-commutative (Finite) Probability

v CLASSICAL PROBABILITY (finite Q) v QUANTUM PROBABILITY (finite dim.) HQ
- Events, g-algebra: ——> - Orth. Projections:
wi = (0,...,0,1,0,...0)7 (II|II=I1°=1"}
e — (0,1,1,0,...)"
- Probability Distribution: ,:ll> - Density matrices: _ Z TT.
T (states) P = pill;,
P(w;) = p; = (P1,---,Pn) i
 Random variables: ={> * Hermitian matrices:
r(w;) =2 = (T1,...20)" X = ZiUiHi§
i
- Probability and expectation: .:{> - Probability and expectation:
P(e) = ;pi@ — (P, ) P,(I) — (p,II) = trace(pll)
E(x) = Zpixz' — (P, Z) E,(X) — (p, X) = trace(pX)
i
- Conditioning: e-P - Conditioning: I1pI1

P(-le) — Po) —> PN = elolD




L

Gate design

Dissipation for

QIP
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Pure States

Stabllization for Quantum Systems

Consic
General s
extreme point

er a finite-dimensional quantum system;
ates (density operators) form a convex set,

'S are pure states (rank-one orth. projections):

p € D(H) :={p=p' >0, trace(p) = 1}

Stabilization Task:
Design dynamics that

1) prepare a given state from any initial condition,
(asymptotycally or in finite time) and

2) leave it invariant.




Multipartite Systems and Locality

- Consider n finite-dimensional systems, indexed:

O O O O Ho = R H,
a=1 2 3 a=1

 Locality notion: from the start, we specify subsets of indexes,
or neighborhoods, corresponding to group of subsystems:
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...on which “we can act simultaneously”: how?

—__

Hyper-graphs
include: graph-induced
locality, N-body locality,

etc...
/

» Neighborhood operator: My = My, ® 1y,

» A Hamiltonian respects locality if:

H=% Hy, Hy=Hy ®Ig,
k

Neighborhood operators will model the allowed interactions.




How can | describe a global pure state
using only locality-constrained means”
Which states allow for that”?

How can | create them using control”

we’ll review three (well-known!) classes...
and their relations

Using
Information,
Dynamics &

Energy




. States Uniguely Determined By Their Marginals

- Consider n finite-dimensional systems, and a fixed locality notion.
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Consider a pure state pgq — ‘ZM <¢‘ on the whole systems;

Compute its marginal states pA/, = Trﬁq; ( ,Od) (reduced density operator):
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if pg = |¥) (1| is the unique state that has those marginals, it is said
Uniquely Determined by its marginals among All states (UDA).

- | can unambiguously identify a UDA state using local information;
nterest in determining when UDA are generic [ Linden-Wooters];

 Practical Interest: locality-constrained tomography! [LaFlamme group, PRL17]




I. Unigue Invariant States for Markov Dynamics

- Consider n finite-dimensional systems, and a fixed locality notion.
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« Quantum dynamical semigroup dynamics (Markov, Time-independent),
GKS-L generator:

p
. . 1
Pt — £(/0) — _Z[Hv /Ot] =+ E LkptL]Tf - §{LJ]LL/€7 pt}

k=1
* Quasi-Local (QL) if Sum of
L 3 neighborhood
L= E LN k X IN k generators!
or, explicitly: k

H = ZHkv Hy = Hy, ®I/\7k; Lk,j — LNk(]) & ]f\_/k
k

 We consider unique steady-states.




I. Unigue Invariant States for Markov Dynamics

Fact: a state is it is the o O/\
unique equilibrium 01 O Pd 01 fO Pd
for a QDS if and only if
it is attracting O

P2 P2

Define: Pd is Quasi-Locally Stabilizable (QLS) if it is
1) Invariant: [,(pd) — 0

2) Attracting: Vo c ©(H), lim e*'(p) = pg

t— 400
for some quasi-local QDS dynamics.

Practical Interest: Basic task of QIP; Cooling to ground state;
Entanglement generation and preservation; One-way computing;

Metropolis-type sampling
[Cirac-Wolf; Kraus-Zoller;.. T-Viola and collaborators,2012-19]




. Unigue Ground States

- Consider n finite-dimensional systems, and a fixed locality notion.
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- Consider an Hamiltonian: [ = Z Hy, Hyp=Hpyn, ® [Nk
k

« Ground (sub)space: eigenspace of minimum eigenvalue;

Ao = min (WIH) Mo = {9) 5 HIt) = g

- |If one-dimensional, the ground subspace supports a unigque state:
Pd = Pgs = ‘¢> <¢‘ is called a Unique Ground State (UGS) for /.

 Unique solution of a (global) minimum-energy variational problem with QL
functional;

- Practical Interest: Cooling; solid-state physics; annealing...




1st aim oh

Talk: clarify
and challenge

intuition!/
* UDA vs. QLS (Information vs. Dynamics):
both seem to “reconstruct” the final state as the output of local
processing/dynamics; are they equivalent?

Three classes of states... relations?

(INTUITIONS -> “FOLKLORE”)

- UDA vs UGS (Information vs Energy):
we’ll see that both solve variational problems with “local structure”:
UDA can be reformulated as SDP/MEP... are they equivalent?

* UGS vs QLS (Energy vs Dynamics):
we expect that a UGS of a local Hamiltonian
to be obtainable as the output of local cooling.
UGS => QLS? are they equivalent?




Special Case: Frustration-Free UGS

. Let p = |1) (1| be a UGS of a QL Hamiltonian:

H =Y Hy, Hy=Hy, ®Ig,
k

If |¢> IS an eigenvector of minimal energy for both the global and
neighborhood Hamiltonians, namely:

(Y|H|Y) = min o(H) =  (¢|Hp|Y)) = min o(Hy), k.
it is said to be a frustration-free UGS (FF-UGS).

- If the global ground state is unique, we can obtain it by simultaneously

looking for minimal energy on each neighborhood, and it does not change if
we scale the neighborhood terms (no fine-tuning):

H:Z&ka, ai,...,o0r € R,
k




Investigating FF-UGS

« For each neighborhood compute the reduced states;
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« For each neighborhood calculate the support of the reduced state,
times the identity on the rest:
HNk — Supp(p./\fk & IJ\_/k)

- Theorem [T.-Viola, 2012]: The following are equivalent:

) () Hw, = span([1h)) (implies UDA)
k

ii) L is QLS with dissipation only (DQLS):
no Hamiltonian needed in the stabilizing ,C( ,0) ;

i) pis FF-UGS, for H = Y Hy, Hp= (-1, ®Iy)
k




s Frustration-Free Enough for Pure States”

- Which states are FF-UGS? Using our test, it turns out that [T-Viola12,14] ...

- All product states are FFS.

- GHZ states (maximally entangled) and W states are not DQLS
Unless we have neighborhoods that cover the whole network/nonlocal interactions;

pcuz = |U)(¥], |¥) = [gnz) = (]0000) + |1111))/v2.

- Any graph state is DQLS with respect to the locality induced by the
graph; Uz|00...0) = ]gograph,o>

To each node is assigned a neighborhood, which contain all the nodes connected by edges.

» Generic (injective) MPS/PEPS are DQLS for some locality definition...
NeighborhOOd size may be blg' [see work by Peres-Garcia, Wolf, Cirac and co-workers]

« Some Dicke states that are not graph can be stabilized!
E.g. on linear graph with NN interaction:

1
%(\110(» +|1010) + |0110) + [0101) + [0011) -+ |1001))




UDA vs UGS: General Case

- Let &y (o) = ZTI(O-BNk,j)BNkaj' the projection on
k,j neighborhood terms.

» A pure state is UDA iff the following has optimum Tr(po,,t) = 1

minimize : Tr(po),
Imposes
subject to : Par(0) = Par(p), \ marginals

o > 0.

- If | compute the Lagrange dual (optimal bound on above), | get:

maximize : —Tr(Hp), If optimal value is 1

subjectto : H +p = 0 Equivalent to UGS!
H =2y (H), Hyo:=H+1
H=H"

 Refined Slater’s Condition for Linear Programming:
Strong duality holds - optimal values for both are the same, but...




UDA vs UGS: General Case

* No guarantee that either problem attain (finite) solutions!

minimize : Tr(po), maximize : — Tr(Hp),
subject to : Par(0) = Par(p), subjectto: H + p > 0
H=H"

* Fact 1:
UGS implies UDA, direct simple proof.

* Fact 2 [details in arXiv:1902.09481]
UDA does not imply UGS!
Counterexample provided by suitably constructed state:

1 _
Wg) = 7 (10)6 + D)6 5 Dicke
. without NN
D)e = =(]13 14 15 24 25 terms;
D)6 3(I b6 + |14)6 + |15)6 + |24)6 + [25)6 No TGS via
+ |26>6 -+ ‘35>6 -+ |36>6 —+ |46>6) symmetry




QLS vs DQLS: General Case

» Key result to establish relations -
characterize QLS (but not DQLS, which we know) states

* Define DQLS subspace as the smallest subspace that contains
and that can be stabilized by dissipation alone:

qu p— ﬂHNk H./\/'k — SU_pp(,O_/\/‘k ®Iﬁk)
k

- THM: pq = |¥)(¥| not DQLS, is QLS if and only if
there exists an Hamiltonian H such that:

Hly) =0
Hlp) & Hy, V|o) € Hy

\

Necessary
conditions
[T-Viola, QIP 2014];
“iff” forthcoming

- ldea: invariance is the hard part; Hamiltonian takes care of :
then dissipator stabilizes H.,;, .



UGS (and UDA) but not QLS: W states

« W states are UGS, but not QLS

W) = ([100...0) +[010...0) + ... 4 |000...1))/v/x.

* It is known that W states can be described as UGS of XX-
antiferromagnetic type Hamiltonian with transverse magnetic field
for NN interactions [D. BruB, et al.PRA 72,014301(2005)]

* In [arxiv:1902.09481] we prove it is UDA for any locality notion.

» Consider in same NN interactions/neighborhoods as above.

Hyw = span{[00...0), [W)}

* But it cannot be QLS for n>5: we prove H s.t.
Hl) =0
H|¢p) ¢ Hy, V|o) € Hy

does not exists [T-Kuravade-Viola, forthcoming].

Recall:
necessary
conditions

for QLS




QLS but not UGS or UDA: GHZ States

* GHZ states are never DQLS for non-trivial locality:

penz = [UNU|,  |¥) = |Uauz) = (]000...0) +|111...1))/V2.
By symmetry, H\I’GHZ must contain 000...0),[111...1)
Hence the following orthogonal states must remain stable for the QL dynamics.

Wapg+) = (]000...0) + [111...1))/v/2;
Wogz-) = (]000...0) —[111...1))/V/2;

We need to “select” the right one How?
Hamiltonlanmaking  r1000. . 0) = [1...10...0) = [0...01...1})/v?2,
1

GHz QLs: H|111...1) = —|1...10...0)+1]0...01...1))/V2,
2
H|Uguz) =0, H|Uy,) = ﬁ(u...m...m —10...01...1)) & Hagy,-

- However these are provably never UDA, hence never UGS.
[Walck-Lyons, PRA 79, 2009].




Visual Conclusions

—

How do we “cool” to
UGS states?
We need nonlocal
resources




Recovering Intuition: Feedback Cooling of UGS

[Prototypical Setting]

Local Oscillator

Measurements of
global Hamiltonian
M = Hy,

H = Heontu(pt)

u(pe) =1

Local Control

dp; = (—i[H, ps] + D(M, pt))dt + G(M, p;)dW,



—stimation-Based Feedback

K

1 .
dy: = /5 Tr(pe(Lo + Li))dt + dw, :[> dpr = (—i[H,ps] + Y _D(Lg, pr))dt + G(Lo, pr)dWs,
k=0

> . Real-Time SME Integration:

Pt :/d/)t(Yt,Ut) \_\‘
l -

Compute feedback law:
u(pt)

-

System
in Opt.Cavity

[Prototypical Setting]

Controlled Hamiltonian:

_[ J Hioy = Ho + H. + u(p;) Hy

oAl OedllEiE Not time-invariant anymore!




Switching Feedback Controller

. Following [Mirrahimi-van Handel
Define: Vi(p) =1 —Tr(pap) SIAM Cont. Opt. 2007]

Exists v > () such that...

Vi(p) <v/2
De-Stabilizing Law: .
Trajectories exit
the set in finite time _
in expectation. / u(pe) = —tr(e[Hy, p)pa)
Proved using
Support Theorem. Local Stabilizing Law:
/ Trajectories that do not

exit the set converge.
Proved using

stochastic Lyapunov
method, with:

Va(p) =1 — Tr(pap)”

Open loop control
does most of the job!
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