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Information and Quantum Physics today
• Quantum cryptography: 

Intrinsically “secure”. On the market (e.g. MagiQ). 

• Full-fledged Quantum Computer (QC): 
Theory: QC has advantage over state-of-the-art  
classical algorithms for factoring (exp), DFT (exp),  
search (quad). 
Practice: About 50 qubits (IBM)/ 
72 qubits Google Bristlecone; scalability issues.


• Dedicated quantum processors: 
Simulated annealing/adiabatic processors are 
on the market (D-Wave); Google-NASA,  
Lockheed-Martin bought them (M$)! 

• Quantum simulation: see QC - but needs  
exponentially less resources to be competitive. 
[original Feynman’s task,1960’s]

Also:  
Metrology, Spectroscopy, 
Controlled Q. chemistry, 

Q. biology.



Ok, if they buy it, I am sold too. But...

Do I have a chance to 
understand/contribute anything?



✓CLASSICAL PROBABILITY (finite     )


• Events,    -algebra: 

• Probability Distribution:


• Random variables:


• Probability and expectation: 

 

• Conditioning:

P(e) =
X

i

piei ! h~P,~ei

E(x) =
X

i

pixi ! h~P, ~xi

Quantum is Non-commutative (Finite) Probability

⌦
�

P(!i) = pi ! (p1, . . . , pn)
T

x(!i) = xi ! (x1, . . . xn)
T

!i ! (0, . . . , 0, 1, 0, . . . 0)T

e ! (0, 1, 1, 0, . . .)T

P(·|e) ! ~e · ~P
P(e)

✓ QUANTUM PROBABILITY (finite dim.)


• Orth. Projections: 

• Density matrices: 
(states) 

• Hermitian matrices: 

• Probability and expectation: 

 

• Conditioning:

X =
�

i

xi�i;

P⇢(⇧) ! h⇢,⇧i = trace(⇢⇧)

E⇢(X) ! h⇢, Xi = trace(⇢X)

⇢|⇧ =
⇧⇢⇧

trace(⇢⇧)

� =
�

i

pi�i,

{� | � =� 2 = �†}

H⌦
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Entanglement is a striking feature of quantum mechanics and an essential ingredient in most

applications in quantum information. Typically, coupling of a system to an environment inhibits

entanglement, particularly in macroscopic systems. Here we report on an experiment where dissipation

continuously generates entanglement between two macroscopic objects. This is achieved by engineering

the dissipation using laser and magnetic fields, and leads to robust event-ready entanglement maintained

for 0.04 s at room temperature. Our system consists of two ensembles containing about 1012 atoms and

separated by 0.5 m coupled to the environment composed of the vacuum modes of the electromagnetic

field. By combining the dissipative mechanism with a continuous measurement, steady state entanglement

is continuously generated and observed for up to 1 h.

DOI: 10.1103/PhysRevLett.107.080503 PACS numbers: 03.67.Bg, 03.65.Ud, 03.67.Hk, 42.50.!p

To date, experiments investigating quantum superposi-
tions and entanglement are hampered by decoherence. Its
effects have been studied in several systems [1]. However, it
was recognized [2] that the engineered interaction with a
reservoir can drive the system into a desired steady state. In
particular, dissipation common for two systems can drive
them into an entangled state [3]. The idea of using and
engineering dissipation rather than relying on coherent
evolutions only represents a paradigm shift with potentially
significant practical advantages. Contrary to other methods,
entanglement generation by dissipation does not require the
preparation of a system in a particular input state and exists,
in principle, for an arbitrary long time, which is expected to
play an important role in quantum information protocols
[4–7]. These features make dissipative methods inherently
stable against weak random perturbations, with the dissi-
pative dynamics stabilizing the entanglement.

We report on the first demonstration of purely dissipa-
tive entanglement generation [8]. In contrast to previous
approaches [9–11], entanglement is obtained without using
measurements on the quantum state of the environment
(i.e., the light field). The dissipation-based method imple-
mented here is deterministic and unconditional and there-
fore fundamentally different from standard approaches
such as the quantum-nondemolition-based method [9] or
the Duan-Lukin-Cirac-Zoller (DLCZ) protocol [4], which
yield a separable state if the emitted photons are not
detected. Furthermore, we report the creation of a steady
state atomic entanglement by combining the dissipative
mechanism proposed in [12] with continuous measure-
ments. The generated entanglement is of the EPR type,
which plays a central role in continuous variable quantum
information processing [6,13], quantum sensing [14], and
metrology [11,15,16].

Figure 1(a) presents the principles of engineered dissi-
pation in our system consisting of two 133Cs ensembles,
interacting with a y-polarized laser field at !L. A pair
of two-level systems is encoded in the 6S1=2 ground
state sublevels j "iI " j4; 4iI, j #iI " j4; 3iI, and j "iII "
j4;!3iII, j #iII " j4;!4iII. Operators J#I;II with J! ¼PN

i¼1 j "iih# j describe collective spin flips, where N is the
number of atoms. The atoms are placed in a magnetic
field in the x direction and the collective operators
Jy ¼

ffiffiffi
2

p
ðJþ þ J!Þ and Jz ¼ i

ffiffiffi
2

p
ðJþ ! J!Þ are defined

in the frame rotating at the Larmor frequency !. The
two ensembles are initialized by optical pumping along
the x axis in the extreme states mF ¼ 4 and mF ¼ !4,
respectively, corresponding to hJxi " hJx;Ii ¼ !hJx;IIi (
4N (see Fig. 1). Within the Holstein-Primakoff approxi-

mation, we introduce the canonical variables XI;II ¼
Jy;I;II=

ffiffiffiffiffiffiffiffiffiffiffi
jhJxij

p
and PI;II ¼ #Jz;I;II=

ffiffiffiffiffiffiffiffiffiffiffi
jhJxij

p
[6]. The EPR

entanglement condition [9,17] for such ensembles is given
by !¼"J=ð2jhJxijÞ¼varðXI!XIIÞ=2þvarðPIþPIIÞ=2<1,
where "J ¼ varðJy;I ! Jy;IIÞ þ varðJz;I ! Jz;IIÞ.
The entangling mechanism is due to the coupling to the

x-polarized vacuum modes in the propagation direction z
of the laser field (Fig. 1), which are shared by both ensem-
bles and provide the desired common environment. Spin
flip processes in the two samples accompanied by forward
scattering result in indistinguishable photons leading
to quantum interference and entanglement of the ensem-
bles. These spin flips and the corresponding photon
scattering (see level schemes in Fig. 1) are descri-
bed by the interaction Hamiltonian of the type H /R
#!ls

dkðAayk þ AyakÞ þ
R
#!us

dkðBayk þ ByakÞ, where

the integrals cover narrow bandwidths centered around
the lower and upper sideband at !L )!, respectively,

PRL 107, 080503 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

19 AUGUST 2011

0031-9007=11=107(8)=080503(5) 080503-1 ! 2011 American Physical Society

Dynamics & Control for Quantum Information
• Gate design 

• Dissipation for 
QIP 

• State 
stabilization 

• Entanglement 
Generation 

• Open System 
simulation 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Anopen-systemquantum simulatorwith
trapped ions
Julio T. Barreiro1*, Markus Müller2,3*, Philipp Schindler1, Daniel Nigg1, Thomas Monz1, Michael Chwalla1,2, Markus Hennrich1,
Christian F. Roos1,2, Peter Zoller2,3 & Rainer Blatt1,2

The control of quantum systems is of fundamental scientific interest and promises powerful applications and
technologies. Impressive progress has been achieved in isolating quantum systems from the environment and
coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various
physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled
coupling to an environment remains largely unexplored. Herewe realize an experimental toolbox for simulating an open
quantum system with up to five quantum bits (qubits). Using a quantum computing architecture with trapped ions, we
combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We
illustrate our ability to engineer the open-system dynamics through the dissipative preparation of entangled states,
the simulation of coherentmany-body spin interactions, and the quantumnon-demolitionmeasurement ofmulti-qubit
observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system
quantum simulation and computation.

Every quantum system is inevitably coupled to its surrounding
environment. Significant progress has been made in isolating systems
from their environment and coherently controlling the dynamics of
several qubits1–4. These achievements have enabled the realization of
high-fidelity quantum gates and the implementation of small-scale
quantum computing and communication devices, as well as the
measurement-based probabilistic preparation of entangled states in
atomic5,6, photonic7, NMR8 and solid-state set-ups9–11. In particular,
successful demonstrations of quantum simulators12,13, which allow
one to mimic and study the dynamics of complex quantum systems,
have been reported14.
In contrast, controlling themore general dynamics of open systems

amounts to engineering both the Hamiltonian time evolution of
the system as well as the coupling to the environment. In previous
work15–18, controlled decoherence has been used to systematically
study the detrimental effects of decoherence on many-body or
multi-qubit open systems. The ability to design dissipation can,
however, be a useful resource, as in the context of the preparation of
a desired entangled state from an arbitrary initial state19–21, and in the
closely related fields of dissipative quantum computation22 and
quantummemories23. It also enables the preparation andmanipulation
of many-body states and quantum phases20, and provides an enhanced
sensitivity in precision measurements24. In particular, by combining
suitably chosen coherent and dissipative operations, one can engineer
the system–environment coupling, thus generalizing the concept of
Hamiltonian quantum simulation to open quantum systems13,25.
Here we provide an experimental demonstration of a toolbox of

coherent and dissipative multi-qubit manipulations to control the
dynamics of open systems. In a string of trapped ions, each ion
encoding a qubit, we subdivide the qubits into ‘system’ and ‘environ-
ment’. The system–environment coupling is then engineered
through the universal set of quantum operations available in ion-trap
quantum computers26,27, whereas the environment ion is coupled to

the dissipative bath of vacuummodes of the radiation field via optical
pumping. Following ref. 22 (see also ref. 28), these quantum resources
provide a complete toolbox to engineer general Markovian open-
system dynamics in our multi-qubit system25,29.
We first illustrate this engineering by dissipatively preparing a Bell

state in a 211 ion system (that is, two system ions and one ancilla
ion), such that an initially fully mixed state is pumped into a given
Bell state. Similarly, with 411 ions, we also dissipatively prepare a
four-qubit Greenberger–Horne–Zeilinger (GHZ) state, which can be
regarded as a minimal instance of Kitaev’s toric code30. Besides the
dissipative elements, we show coherent n-body interactions by imple-
menting the fundamental building block for four-spin interactions. In
addition, we demonstrate a readout of n-particle observables in a
non-destructive way with a quantum-non-demolition (QND) mea-
surement of a four-qubit stabilizer operator. We conclude by out-
lining future perspectives and implications of the present work for
quantum information processing and simulation, as well as open-
system quantum control scenarios including feedback25.

Open-system dynamics and Bell-state pumping
The dynamics of an open quantum system S coupled to an environ-
ment E can be described by the unitary transformation rSE.UrSEU

{,
with rSE the joint density matrix of the composite system S1 E. Thus,
the reduced density operator of the system will evolve as
rS5TrE(UrSEU

{). The time evolution of the system can also be
described by a completely positive Kraus map

rS.E rSð Þ~
X

k

EkrSE
{
k ð1Þ

with Ek operation elements satisfying
X

k
E{
kEk~1, and initially

uncorrelated system and environment31. If the system is decoupled
from the environment, the general map (1) reduces to rS.USrSU

{
S ,

withUS the unitary time evolution operator acting only on the system.

1Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria. 2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften,
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Quantum computation and quantum-state
engineering driven by dissipation
Frank Verstraete1*, Michael M.Wolf2 and J. Ignacio Cirac3*
The strongest adversary in quantum information science is
decoherence, which arises owing to the coupling of a system
with its environment1. The induced dissipation tends to destroy
and wash out the interesting quantum effects that give rise
to the power of quantum computation2, cryptography2 and
simulation3. Whereas such a statement is true for many
forms of dissipation, we show here that dissipation can also
have exactly the opposite effect: it can be a fully fledged
resource for universal quantum computation without any
coherent dynamics needed to complement it. The coupling to
the environment drives the system to a steady state where
the outcome of the computation is encoded. In a similar
vein, we show that dissipation can be used to engineer a
large variety of strongly correlated states in steady state,
including all stabilizer codes, matrix product states4, and their
generalization to higher dimensions5.

The situation we have in mind is shown in Fig. 1. A quantum
system composed of N particles (such as qubits) is organized in
space according to a particular geometry (in the figure, a one-
dimensional lattice). Neighbouring systems are coupled to some
local environments, which are dissipative in nature and tend to
drive the system to a steady state. Our idea is to engineer those
couplings, so that the environments drive the system to a desired
final state. The coupling to the environmentwill be static, so that the
desired state is obtained after some time without having to actively
control the system. Note that the role of the environments is to
dissipate (or, more precisely, evacuate) the entropy of the system,
and by choosing the couplings appropriately we can use this effect
to drive our system.

We will show first how to design the interactions with
the environment to implement universal quantum computation.
This new method, which we refer to as dissipative quantum
computation (DQC), defies some of the standard criteria for
quantum computation because it requires neither state preparation,
nor unitary dynamics6. However, it is nevertheless as powerful as
standard quantum computation. Thenwewill show that dissipation
can be engineered7 to prepare ground states of frustration-free
Hamiltonians. Those include matrix product states4,8,9 (MPSs) and
projected entangled pair states5,9 (PEPSs), such as graph states10
and Kitaev11 and Levin–Wen12 topological codes. Both DQC and
dissipative state engineering (DSE) are robust in the sense that,
given the dissipative nature of the process, the system is driven
towards its steady state independent of the initial state and hence
of eventual perturbations along the way.

Here, we will concentrate first on DQC, showing how given
any quantum circuit one can construct a locally acting master
equation for which the steady state is unique, encodes the outcome
of the circuit and is reached in polynomial time (with respect to
the one corresponding to the circuit). Then we will show how

1Fakultät für Physik, Universität Wien, 1090Wien, Austria, 2Niels Bohr Institute, 2100 Copenhagen, Denmark, 3Max-Planck-Institut für Quantenoptik,
85748 Garching, Germany. *e-mail: fverstraete@gmail.com; ignacio.cirac@mpq.mpg.de.

to construct dissipative processes that drive the system to the
ground state of any frustration-free Hamiltonian. In the Methods
section, we will prove that MPS (ref. 9) and certain kinds of
PEPS (ref. 9) can be efficiently prepared using this method, and
in Supplementary Information we will give details of the proofs.
In this letter we will not consider specific physical set-ups where
our ideas can be implemented. Nevertheless, the Methods section
will provide a universal way of engineering the master equations
required for DQC and DSE, which can be easily adapted to current
experiments13 based on, for example, atoms in optical lattices14
or trapped ions15. Thus, we expect that our predictions may be
experimentally tested in the near future.

Let us start with DQC by considering N qubits in a line and a
quantum circuit specified by a sequence of nearest-neighbour qubit
operations {Ut }Tt=1. We define |�t � :=UtUt�1 ...U1|0�1⌅ ...|0�N, so
that |�T � is the final state after the computation. Our goal is to find
amaster equation ⇧̇ = L(⇧)with a Liouvillian in Lindblad form16

L(⇧)=
↵

k

Lk⇧L†
k � 1

2
⇤
L†
kLk,⇧

⌅
+ (1)

where the Lk acts locally and has a steady state, ⇧0: (1) that is unique;
(2) that can be reached in a time poly(T ); (3) such that �T can be
extracted from it in a time poly(T ). As in Feynman’s construction
of a quantum simulator3, we consider another auxiliary register
with states {|t �}Tt=0, which will represent the time. We choose
the Lindblad operators

Li = |0�i�1|⌅|0�t �0|

Lt =Ut ⌅ |t +1��t |+U †
t ⌅ |t ��t +1|

where i= 1,...,N and t = 0,...,T . It is clear that the L terms act
locally except for the interaction with the extra register, which can
be made local as well. Furthermore,

⇧0 = 1
T +1

↵

t

|�t ���t |⌅ |t ��t |

is a steady state, that is, L(⇧0)=0.Given such a state, the result of the
actual quantum computation can be read out with probability 1/T
by measuring the time register. In Supplementary Information, we
show that ⇧0 is the unique steady state and that the Liouvillian has
a spectral gap ⌦=�2/(2T +3)2. This means indeed that the steady
state will be reached in polynomial time in T . Note that this gap is
independent ofN as well as of the actual quantum computation that
is carried out (that is, independent of the Ut ). It is also shown that
the same gap is retained if the clock register is encoded in the unary
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� � D(H) := {� = �† > 0, trace(�) = 1}

⇢d

Pure States Stabilization for Quantum Systems
Consider a finite-dimensional quantum system;  

General states (density operators) form a convex set,  
extreme points are pure states (rank-one orth. projections):

Stabilization Task: 
 Design dynamics that  

1) prepare a given state from any initial condition,  
(asymptotycally or in finite time) and  

2) leave it invariant.  

⇢ ⇢



Multipartite Systems and Locality
• Consider n finite-dimensional systems, indexed: 

• Locality notion: from the start, we specify subsets of indexes,  
or neighborhoods, corresponding to group of subsystems:  
 
 
 
 
...on which “we can act simultaneously”: how?


‣ Neighborhood operator:


‣ A Hamiltonian respects locality if: 
 
 
 
Neighborhood operators will model the allowed interactions.

HQ =
nO

a=1

Ha

a = 1 2 3 · · ·

N1 = {1, 2}
N2 = {1, 3}
N3 = {2, 3, 4}

H =
X

k

Hk, Hk = HNk ⌦ IN̄k

Hyper-graphs 
include: graph-induced 
locality, N-body locality, 

etc...

Mk = MNk ⌦ IN̄k



How can I describe a global pure state  
using only locality-constrained means? 

Which states allow for that? 
How can I create them using control?

We’ll review three (well-known!) classes… 
and their relations 

Using 
Information, 
Dynamics & 

Energy



I. States Uniquely Determined By Their Marginals
• Consider n finite-dimensional systems, and a fixed locality notion. 

• Consider a pure state                              on the whole systems;


• Compute its marginal states                                     (reduced density operator): 
 
 
 

• If                             is the unique state that has those marginals, it is said  
Uniquely Determined by its marginals among All states (UDA).


• I can unambiguously identify a UDA state using local information;  
Interest in determining when UDA are generic [Linden-Wooters];


• Practical Interest: locality-constrained tomography! [LaFlamme group, PRL17]

a = 1 2 3 · · ·

N1 = {1, 2} N2 = {1, 3}
N3 = {2, 3, 4} · · ·

⇢N1 , ⇢N2 , ⇢N3

N1 N2 N3

⇢d = | ih |
⇢Ni = TrN i

(⇢d)

⇢d = | ih |



• Consider n finite-dimensional systems, and a fixed locality notion. 

• Quantum dynamical semigroup dynamics (Markov, Time-independent), 
GKS-L generator: 

•  Quasi-Local (QL) if 
 
 
or, explicitly: 
 
 

• We consider unique steady-states.

a = 1 2 3 · · ·

N1 = {1, 2} N2 = {1, 3}
N3 = {2, 3, 4}

H =
X

k

Hk, Hk = HNk ⌦ IN̄k

· · ·

L =
X

k

LNk ⌦ IN̄k

Sum of 
neighborhood 
generators!

Lk,j = LNk(j) ⌦ IN̄k

II. Unique Invariant States for Markov Dynamics

�̇t = L(�) = �i[H, �t] +
p�

k=1

Lk�tL
†
k �

1
2
{L†

kLk, �t}



Fact: a state is it is the  
unique equilibrium 
for a QDS if and only if 
it is attracting 
 
 
Define:        is Quasi-Locally Stabilizable (QLS) if it is  
1) Invariant: 

2) Attracting: 
 
for some quasi-local QDS dynamics. 

Practical Interest: Basic task of QIP; Cooling to ground state;   
Entanglement generation and preservation; One-way computing; 
Metropolis-type sampling 
[Cirac-Wolf; Kraus-Zoller;… T-Viola and collaborators,2012-19]

II. Unique Invariant States for Markov Dynamics

⇢2

⇢1

⇢2

⇢1

8⇢ 2 D(H), lim
t!+1

eLt(⇢) = ⇢d

⇢d

⇢d

L(⇢d) = 0

Constraints!

⇢d



III. Unique Ground States
• Consider n finite-dimensional systems, and a fixed locality notion. 

• Consider an Hamiltonian: 

• Ground (sub)space: eigenspace of minimum eigenvalue; 

• If one-dimensional, the ground subspace supports a unique state: 
                                         is called a Unique Ground State (UGS) for      .   


• Unique solution of a (global) minimum-energy variational problem with QL 
functional;


• Practical Interest: Cooling; solid-state physics; annealing…

a = 1 2 3 · · ·

N1 = {1, 2} N2 = {1, 3}
N3 = {2, 3, 4} · · ·

H =
X

k

Hk, Hk = HNk ⌦ IN̄k

Hgs = {| i : H| i = �gs}�gs = min
h | i=1

(h |H| i)

⇢d = ⇢gs = | ih | H



Three classes of states… relations?

(INTUITIONS  -> “FOLKLORE”) 

• UDA vs. QLS (Information vs. Dynamics):  
both seem to “reconstruct” the final state as the output of local 
processing/dynamics; are they equivalent? 

• UDA vs UGS (Information vs Energy): 
we’ll see that both solve variational problems with “local structure”:  
UDA can be reformulated as SDP/MEP… are they equivalent? 

• UGS vs QLS (Energy vs Dynamics):   
we expect that a UGS of a local Hamiltonian 
to be obtainable as the output of local cooling. 
UGS => QLS? are they equivalent?

1st aim of this 
Talk: clarify 

and challenge 
intuition!



Special Case: Frustration-Free UGS

• Let                       be a UGS of a QL Hamiltonian: 
 
 
 
 
If         is an eigenvector of minimal energy for both the global and 
neighborhood Hamiltonians, namely: 
 
 
it is said to be a frustration-free UGS (FF-UGS). 

• If the global ground state is unique, we can obtain it by simultaneously 
looking for minimal energy on each neighborhood, and it does not change if 
we scale the neighborhood terms (no fine-tuning):

H =
X

k

Hk, Hk = HNk ⌦ IN̄k

⇢ = | ih |

h |Hk| i = min �(Hk), 8k.

| i

h |H| i = min �(H) =)

H =
X

k

↵kHk, ↵1, . . . ,↵k 2 R,



• For each neighborhood compute the reduced states;


• For each neighborhood calculate the support of the reduced state,  
times the identity on the rest: 

• Theorem [T.-Viola, 2012]: The following are equivalent: 
 
i)                                                  (implies UDA); 
 
 
ii)        is QLS with dissipation only (DQLS): 
     no Hamiltonian needed in the stabilizing            ; 
 
iii)      is FF-UGS,  for                                                                            . 

Investigating FF-UGS

⇢N1 , ⇢N2 , ⇢N3

N1 N2 N3

⇢

HNk = supp(⇢Nk ⌦ IN̄k
)

⇢Nk = traceN̄k
(⇢),

⇢ H =
X

k

Hk, Hk = (I �⇧HNk
⌦ INk

)

L(⇢)

\

k

HNk = span(| i)



1p
6
(|1100i+ |1010i+ |0110i+ |0101i+ |0011i+ |1001i)

Is Frustration-Free Enough for Pure States?
• Which states are FF-UGS? Using our test, it turns out that [T-Viola12,14] … 

• All product states are FFS. 
• GHZ states (maximally entangled) and W states are not DQLS  

Unless we have neighborhoods that cover the whole network/nonlocal interactions; 
 

• Any graph state is DQLS with respect to the locality induced by the 
graph;  
To each node is assigned a neighborhood, which contain all the nodes connected by edges. 


• Generic (injective) MPS/PEPS are DQLS for some locality definition... 
Neighborhood size may be big! [see work by Peres-Garcia, Wolf, Cirac and co-workers] 

• Some Dicke states that are not graph can be stabilized!  
E.g. on linear graph with NN interaction: 

UG|00 . . . 0i = |'graph,0i

⇢GHZ = | ih |, | i ⌘ | GHZi = (|0000i+ |1111i)/
p
2.



UDA vs UGS: General Case
• Let                                                        the projection on 

                                                             neighborhood terms.

• A pure state is UDA iff the following has optimum 

•  If I compute the Lagrange dual (optimal bound on above), I get: 
 
 
 
 

• Refined Slater’s Condition for Linear Programming: 
Strong duality holds - optimal values for both are the same, but…

minimize : Tr(⇢�),

subject to :�N (�) = �N (⇢),

� � 0.

maximize : � Tr(H⇢),

subject to :H + ⇢ � 0

H = �N (H),

H = H†.

Tr(⇢�
opt

) = 1

Hgs := H + I

If optimal value is 1 
Equivalent to UGS!

Imposes 
marginals

�N (�) =
X

k,j

Tr(�BNk,j)BNk,j .



UDA vs UGS: General Case
• No guarantee that either problem attain (finite) solutions! 
 
 
 

• Fact 1: 
UGS implies UDA, direct simple proof.


• Fact 2  [details in arXiv:1902.09481] 
UDA does not imply UGS!  
Counterexample provided by suitably constructed state: 
 

minimize : Tr(⇢�),

subject to :�N (�) = �N (⇢),

� � 0.

maximize : � Tr(H⇢),

subject to :H + ⇢ � 0

H = �N (H),

H = H†.

Might  
“explode”!

| 6i =
1p
2
(|0i6 + |Di6

|Di6 =
1

3
( |13i6 + |14i6 + |15i6 + |24i6 + |25i6

+ |26i6 + |35i6 + |36i6 + |46i6).

2-Dicke 
without NN 

terms; 
No UGS via 
symmetry



QLS vs DQLS: General Case
• Key result to establish relations -  

characterize QLS (but not DQLS, which we know) states 
• Define DQLS subspace as the smallest subspace that contains  

and that can be stabilized by dissipation alone: 
 
 
 

• THM:                       not DQLS, is QLS if and only if 
there exists an Hamiltonian       such that: 
 
 

• Idea: invariance is the hard part; Hamiltonian takes care of        , 
then dissipator stabilizes         .

H :=
\

k

HNk HNk = supp(⇢Nk ⌦ INk
)

⇢d = | ih |

H| i = 0

H|�i /2 H , 8|�i 2 H 

H

H 

Necessary 
conditions 

[T-Viola, QIP 2014]; 
“iff” forthcoming



UGS (and UDA) but not QLS: W states
• W states are UGS, but not QLS 
 

• It is known that W states can be described as UGS of XX-
antiferromagnetic type Hamiltonian with transverse magnetic field 
for NN interactions [D. Bruß, et al.PRA 72,014301(2005)]


• In [arXiv:1902.09481] we prove it is UDA for any locality notion.

• Consider in same NN interactions/neighborhoods as above.


• But it cannot be QLS for n>5: we prove H s.t. 
 
 
 
 
does not exists [T-Kuravade-Viola, forthcoming].

| Wi = (|100 . . . 0i+ |010 . . . 0i+ . . .+ |000 . . . 1i)/
p
n.

H| i = 0

H|�i /2 H , 8|�i 2 H 

Recall: 
necessary 
conditions 
for QLS

HW = span{|00 . . . 0i, |Wi}



QLS but not UGS or UDA: GHZ States
• GHZ states are never DQLS for non-trivial locality: 
 
 
By symmetry,                 must contain                                   . 
 
Hence the following orthogonal states must remain stable for the QL dynamics. 
 
 
 
 
We need to “select” the right one  How? 
Hamiltonian making 
GHZ QLS:  
 
 

• However these are provably never UDA, hence never UGS. 
[Walck-Lyons, PRA 79, 2009].

⇢GHZ = | ih |, | i ⌘ | GHZi = (|000 . . . 0i+ |111 . . . 1i)/
p

2.

|000 . . . 0i, |111 . . . 1i

| GHZ+i = (|000 . . . 0i+ |111 . . . 1i)/
p
2;

| GHZ�i = (|000 . . . 0i � |111 . . . 1i)/
p
2;

H GHZ

H|000 . . . 0i = |1 . . . 10 . . . 0i � |0 . . . 01 . . . 1i)/
p

2,

H|111 . . . 1i = �|1 . . . 10 . . . 0i+ |0 . . . 01 . . . 1i)/
p

2,

H| GHZi = 0, H| ?
GHZi =

2p
2
(|1 . . . 10 . . . 0i � |0 . . . 01 . . . 1i) /2 H GHZ

.



Visual Conclusions

UDA

QLS
UGSFF UGS 

= 
DQLS

|W i

|GHZi

How do we “cool” to  
UGS states? 

We need nonlocal 
resources

| 6i

DQLS states 
are reconstructable from 

marginal supports



V1(⇢) = 1� Tr(⇢d⇢)

Recovering Intuition: Feedback Cooling of UGS

V1(⇢) < �/2

⇢d

u(⇢t) = �tr(i[Hf , ⇢t]⇢d)

u(⇢t) = 1

V1(⇢) < �
Measurements of  

global Hamiltonian

d⇢t =
�
� i[H, ⇢t] +D(M, ⇢t)

�
dt + G(M, ⇢t)dWt,

M = Hgs

H = H
cont

u(⇢t)
Local Control



dyt =
p

⌘
1
2
Tr(⇢t(L0 + L†

0))dt + dWt,

u(⇢t)

⇢t =
Z

d⇢t(Yt, Ut)

Hf

H
tot

= H0 + H
c

+ u(⇢
t

)H
f

Estimation-Based Feedback 

Local Oscillator

Real-Time SME Integration:

System 
in Opt.Cavity

[P
ro

to
ty

pi
ca

l  
Se

tti
ng

]

Compute feedback law:

Controlled Hamiltonian:

Not time-invariant anymore!

d⇢t =
�
� i[H, ⇢t] +

KX

k=0

D(Lk, ⇢t)
�
dt + G(L0, ⇢t)dWt,



V2(⇢) = 1� Tr(⇢d⇢)2

V1(⇢) = 1� Tr(⇢d⇢)

V1(⇢) < �/2
V1(⇢) < �

� > 0

Switching Feedback Controller

⇢d

Define:

u(⇢t) = �tr(i[Hf , ⇢t]⇢d)

u(⇢t) = 1

Local Stabilizing Law: 
Trajectories that do not 
exit the set converge. 

Proved using  
stochastic Lyapunov 

method, with:

De-Stabilizing Law: 
Trajectories exit  

the set in finite time 
in expectation.  
Proved using 

Support Theorem.

Following [Mirrahimi-van Handel 
SIAM Cont. Opt. 2007]

Exists

Open loop control  
does most of the job!

such that...
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