Efficient data transmission over dynamical complex networks

Giacomo Baggio Virginia Rutten Guillaume Hennequin Sandro Zampieri

The signal generated is characterized by a "rich" transient and by asymptotic stability target go cue

Introduction to neuronal networks

Peter Dayan and L.F. Abbott "Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems" The MIT Press, 2001

This is based on a **linearized model** of the interaction dynamics between neurons

The signals are the **spiking rates**

THEORETICAL NEUROSCIENCE

Computational and Mathematical Modeling of Neural Systems

Peter Dayan and L. F. Abbott

A model for information transmission

The question is how populations of neurons produce **large amplitude transient signals** for information transmission and storage.

In various papers it is emphasized the role the system **<u>non-normality</u>** for the generation of the "best" signals.

- 1.S. Ganguli, D. Huh, and H. Sompolinsky "Memory traces in dynamical systems." Proceedings of the National Academy of Sciences, vol. 105.48, pp. 18970-18975, 2008.S.
- 2.Ganguli, and P. Latham, "Feedforward to the Past: The Relation between Neuronal Connectivity, Amplification, and Short-Term Memory", Neuron, Vol. 41, pp. 499-501, 2009.
- 3.M. S. Goldman, "Memory without Feedback in a Neural Network", Neuron, Vol. 61, pp. 621–634, 2009.
- 4.G. Hennequin, T. P. Vogels, and W. Gerstner, "Non-normal amplification in random balanced neuronal networks", Physical Review E, Vol. 86, pp. 011909, 2012.
- 5.G. Hennequin, et al. "Optimal control of transient dynamics in balanced networks supports generation of complex movements." Neuron, 82.6 (2014): 1394-1406.

The key point is to have large transients while keeping the dynamics stable

A model for information transmission

Problems:

- Propose a consistent model for understanding why nonnormality plays a role in making information transmission more efficient.
- 2. Quantify the information transmission efficiency.
- 3. Verify whether the model complexity influences information transmission efficiency.

Generation of "rich" signals

It is important to produce transients that have high energy initially and then converge to zero fast

Channel model: conditional probability

$$p(Z|Y) \xrightarrow{Y} \text{channel} \xrightarrow{Z}$$

Shannon channel capacity

$$C = \max_{p(Y)} I(Y; Z) = \max_{p(Y)} h(Z) - h(Z|Y)$$

where $I(\cdot)$ is the mutual information and $h(\cdot)$ is the differential entropy

Continuous time channels

The capacity depends on the signal to noise ratio SNR

Modulation by a system transient

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t)$$

Modulation by a system transient

At time t = 0 with a symbol $a \in \mathcal{A}$ we associate an impulsive input

 $u(t) = u_0 \delta(t)$ with $||u_0|| \le P$

Inter-symbol interference

Inter-symbol interference

Inter-symbol interference: The signal transmitted at time -T, -2T, -3T, ... interfere with the signal transmitted at time 0 and acts as an additional noise.

Expression of the capacity

$$R_T = \frac{1}{2T} \max_{\Sigma \ge 0, \operatorname{tr}\Sigma \le P} \log_2 \frac{\det \left(\sigma I + \mathbf{OW}\right)}{\det \left(\sigma I + \mathbf{O}(\mathbf{W} - B\Sigma B^{\top})\right)}$$

where

$$\mathbf{O} := \int_0^T e^{A^\top t} C^\top C e^{At} \, dt$$

denotes the [0, T]-observability Gramian of the pair (A, C) and

$$\mathbf{W} := \sum_{k=0}^{\infty} e^{AkT} B \Sigma B^{\top} e^{A^{\top}kT}$$

denotes the discrete-time controllability Gramian of the pair $(e^{AT}, B\Sigma^{1/2})$.

Expression of the capacity

$$R_T = \frac{1}{2T} \max_{\Sigma \ge 0, \operatorname{tr}\Sigma \le P} \log_2 \frac{\det \left(\sigma I + \mathbf{OW}\right)}{\det \left(\sigma I + \mathbf{O}(\mathbf{W} - B\Sigma B^{\top})\right)}$$

where

$$\mathbf{O} := \int_0^T e^{A^\top t} C^\top C e^{At} \, dt$$

denotes the [0, T]-observability Gramian of the pair (A, C) and

$$\mathbf{W} := \sum_{k=0}^{\infty} e^{AkT} B \Sigma B^{\top} e^{A^{\top} kT}$$

denotes the discrete-time controllability Gramian of the pair $(e^{AT}, B\Sigma^{1/2})$.

$$R_{\max} := \max_{T \ge 0} R_T$$

Matrix non-normality

LLOYD N. TREFETHEN

MARK EMBREE

A matrix is normal iff $AA^T = A^T A$

SPECTRA

AND

PSEUDOSPECTRA

The Behavior of Nonnormal Matrices and Operators

 \times

Non-normality has two important features:

- I. The eigenvalues of a highly non-normal matrix A are very sensitive to matrix entries variations.
- 2. The exponential

of a stable highly non-normal matrix A is large for small t and then decays to zero according to the spectral abscissa $\alpha(A)$.

 e^{At}

The normal case

For normal networks R_T is decreasing in T and so the smaller is T the better the performance we obtain.

Corollary

If $\mathcal{V}_{in} = \mathcal{V}_{out} = \mathcal{V}$ and $A \in \mathbb{R}^{n \times n}$ is a normal and stable matrix, then

$$R_{\max} := \max_{T \ge 0} R_T = R_0 = \frac{1}{\ln 2} \frac{-\operatorname{tr}(A) SNR}{SNR - 2\operatorname{tr}(A)}.$$

Example

Example: Non normal matrix

Example: Non normal matrix

 R_{\intercal}

Line network: varying anysotropy

strength

Line network: varying length

varying n

Limit behaviors in the noise

If the noise variance $\sigma^2 \to 0$, then

$$R_{\max} \simeq -\frac{1}{\ln 2} \operatorname{tr}(A)$$

If the noise variance $\sigma^2 \to \infty$, then

$$R_{\max} \simeq \frac{1}{2\ln 2} \frac{\ell}{\sigma^2}$$

where

$$\ell := \max_{T \ge 0} \frac{\|B^T O_T B\|}{T} \qquad O_T = \int_0^T e^{A^T t} C^T C e^{At} dt$$

Matrix non-normality

For normal matrices A we have that

- 1. A is diagonizable by an orthonormal matrix.
- 2. The eigenvalues of $\frac{A+A^T}{2}$ are the real values of the eigenvalues of A and so

$$\omega(A) := \max\{\lambda_i : \lambda_i \text{ eigenvalues of } \frac{A + A^T}{2}\} \\ = \max\{Re[\lambda_i] : \lambda_i \text{ eigenvalues of } A\}$$

Phase transition

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a stable matrix.

If $\omega(A) \leq 0$, then

$\ell(A, B, C) \le 1$

If $\omega(A) > 0$ and B = C = I, then

 $\ell(A, B, C) > 1$

$A = \begin{bmatrix} -\delta & \alpha & 0 & & \\ 0 & -\delta & \alpha & \ddots & \\ & \ddots & \ddots & \ddots & \ddots \\ & & \ddots & -\delta & \alpha \\ & & & 0 & -\delta \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 & \dots & 0 & 1 \end{bmatrix},$

Example

If the noise is small then

$$R_{\max} \simeq \frac{\delta n}{\ln 2}$$

Notice moreover that $\omega(A) \simeq -\delta + \alpha$ and so $\alpha > \delta$ guarantees that $\omega(A) > 0$.

$$\ell(A, B, C) \ge \frac{1}{4(2n-1)\sqrt{\pi(n-1)}} \left(\frac{\alpha}{\delta}\right)^{2n-2}$$

Conclusions

1. We proposed a model to quantify the information transmission performance in linear dynamic networks.

- 2. By introducing the intersymbol interference, we can highlight the role of non-normality of the dynamics.
- 3. For normal dynamics a theoretical analysis is possible. However this is the less interesting case.
- 4. Non-normal dynamics is more interesting and harder to study.

Thank you

Matrix non-normality

 $\mathbf{A} \in \mathbb{R}^{N imes N}$

normal matrices

 $\mathbf{A}\mathbf{A}^{ op} = \mathbf{A}^{ op}\mathbf{A}$

A = U*DU,
U unitary, D diagonal
(spectral decomposition)

 $\boldsymbol{D} = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & \lambda_N \end{bmatrix}$ $\sigma(\boldsymbol{A}) = \{\lambda_i\}_{i=1}^N$

non-normal matrices $AA^{\top} \neq A^{\top}A$ $A = U^{*}TU$, U unitary, T triangular (Schur decomposition)

 $\boldsymbol{\mathcal{T}} = \begin{bmatrix} \lambda_1 & & \\ \star & \lambda_2 & & \\ \star & \star & \cdot & \\ \star & \star & \star & \lambda_N \end{bmatrix}$ $\boldsymbol{\mathcal{T}} = \boldsymbol{\mathcal{D}} + \boldsymbol{\mathcal{N}}$