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Hydrodynamics

We suppose that the Chaplygin sleigh is immersed in a
potential fluid: u = ∇Φ. Morover we assume the fluid to
be incompressible

∆Φ = 0 x ∈ R2 \ B
∂Φ
∂n = (V + Ω× x) · n x ∈ ∂B
|Φ| → 0 |x | → ∞

with

V Body translation velocity
Ω Body angular velocity
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L = T = T b + T f

with

T B =
1
2

vT


I + m(a2 + b2) −mb ma −mb ma

−mb m + M 0 m 0
ma 0 m + M 0 m
−mb m 0 m 0
ma 0 m 0 m

 v (1)

T f =
1
2

vT


πρ
4 (A2 − B2) 0 0 0 0

0 πρB2 0 0 0
0 0 πρA2 0 0
0 0 0 0 0
0 0 0 0 0

v (2)

where vT = (Ω,V , va, vb).
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Symmetry and reduction

The Hydro-Chaplygin sleigh is invariant under the action
of the group SE(2). We have the following

ġ =

θ̇ẋ
ẏ

 = gξ = g

Ω
v1
v2


Which link the velocities in the external frame with the
ones in the body one
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The Non-Holonomic constraint

The constraint of non-sliding of the blade is
Non-holonomic⇒ velocity constraint that cannot be
derived by a position constraint.

−ẋ sin θ + ẏ cos θ = 0

or in body coordinate

v2 = 0

Observation
The constraint is invariant under the action of SE(2).
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Equation of motion

General form for a non-holonomic system
ġ = g(J(s)p + A(s)u)

ṗ = 〈M(s)p,p〉+ 〈N(s)p,u〉+ 〈C(s)u,u〉
ṡ = u

(3)

ṡ = u ⇒ we are able to assign the velocity of some coordinates
as function of time.

u are called controls
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For the Chaplygin sleigh

Assumption

The center of mass remains in the contact point and the
body frame is aligned with the principal inertia axes

Writing the Lagrangian in the body frame, let

pΩ =
∂L
∂Ω

p1 =
∂L
∂v1

be the conjugate momenta to Ω and v1.
Solving this equations with respect to Ω and v1 and taking
into account the constraint v2 = 0
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Ω =
m(p1 −mva)b + (pΩ + mvba−mvab)(m + M + B2πρ)

m2b2 − (m + M + B2πρ)(I + m(a2 + b2) + (A2−B2)2πρ
4 )

v1 =

((p1 −mva)(I + ma2) + m(pΩ −mvba)b + mp1b2) + (A2 − B2)2πρ(p1 −mva)

2m2b2 − (m + M + B2πρ)(I + m(a2 + b2) + (A2−B2)2πρ
4 )

ȧ = va = u1

ḃ = vb = u2
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The associated momentum equations are

ṗΩ = −v1m(
u2

2
+ aΩ)

ṗ1 = Ωm(
u2

2
+ aΩ)

(4)

After solving these last two equations the evolution of the
group configuration variables can be obtained from the
reconstruction equations together with the constraint

ġ =

θ̇ẋ
ẏ

 =
Ω

v1 cos θ
v1 sin θ

(5)
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Controllability

We now analyze the kind of trajectories attainable depending
on the values of the controls ui .

Uncontrolled case

First of all let us consider the uncontrolled case, i.e u = 0. The
reduced equations (3)2,3 on Q/G are{

ṗ = 〈M(s)p,p〉
ṡ = 0

(6)

We analyze in first place what happens above an equilibrium
solution (p∗, s∗).

Definition
The orbit of (g,p, s) is a relative equilibrium point if
π(g,p, s) = (p, s) is an equilibrium of the reduced vector field
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Proposition (P. Ashwin and I. Melbourne [2])
Let ξ be the infinitesimal generator of the relative equilibrium (g, p∗, s∗) and
consider the set

K (ξ) := clos{exp(tξ)|t ∈ R}

Then

i) If the group G is compact K (ξ) is a torus and therefore the flow of the
equations (3) above the equilibrium (p∗, s∗) is quasiperiodic with at most
rank(G) frequencies.

ii) If G is non compact K (ξ) is a subgroup of G isomorphic either to a torus
or to R, therefore the flow of the equations (3) above the equilibrium
(p∗, s∗) is either quasiperiodic or a spiral flow.

one of the two behaviors (quasiperiodic or spiral) is called generic depending
on the codimension of the two sets

gT := {ξ ∈ g | K (ξ) is a torus}
gR := {ξ ∈ g | K (ξ) is a subgroup isomorphic to R}
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The group G acting on the system of the hydro-Chaplygin sleigh is the
euclidean group SE(2) therefore we are in the non compact case and
according to [2] and taking into account the nonholonomic constraint

gT := {(v1,Ω) ∈ R× R | Ω 6= 0} ∪ {(0, 0)}
gR := {(v1,Ω) ∈ R× R | Ω = 0, v1 6= 0}

The relative equilibria are of two types

i) a = 0 and Ω 6= 0,
i.e a = 0 and (m + M + B2πρ)pΩ + mbp1 6= 0

ii) Ω = 0,
i.e (m + M + B2πρ)pΩ + mbp1 = 0

In the case i) the infinitesimal generator of the equilibrium belong to
gT therefore the system moves along a circle. Instead in the case ii)
ξ ∈ gR and the system moves along a straight line.
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Controlled case

Let us assume now to be able to control the velocities of
the two coordinates a and b

Definition
A nonholonomic mechanical shape control system is
configuration controllable, if, for every g0 , g1. there exist
a finite time T > 0 and an admissible control
u : t ∈ [0,T ] −→ U such that a solution (g(t),p(t)) of (4)
(5) satisfies g(0) = g0 and g(T ) = g1.

I Use periodic controls which produce a periodic
solutions of the reduced equation whose
reconstructed trajectory is either quasiperiodic or a
spiral flow depending on the target.
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Definition
Let X be a smooth vector field on Q invariant under a proper and free
action of a Lie group G on Q. A relative periodic orbit for X is the set
of the X -orbits in Q which project on a periodic orbit on Q/G.
Moreover we will call a periodic orbit on Q/G a loop.

g0	
  

p.g0	
  
p2.g0	
  

π	
  

s0	
  

S	
  

G	
  

Proposition
The phase p is

I a smooth map;
I constant along the X-orbits,

i.e. p ◦ ϕX
t = p, ∀t ;

I equivariant with respect to
the conjugation, i.e
p(h · γ) = hp(γ)h−1, ∀h ∈
G,∀γ ∈ F .
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Theorem
Given the dynamical system (3) after a relative periodic orbit F :

i) If the group G is compact, the flow over F is quasiperiodic with
at most rankG + 1 frequencies;

ii) if G is non compact the flow over F can be either quasiperiodic,
or a spiral flow.

Also in this case if ξ is the infinitesimal generator of the phase p
associated to a relative periodic orbit F , we can introduce the
semialgebric sets

gT := {ξ ∈ g | K (ξ) is a torus}
gR := {ξ ∈ g | K (ξ) is a subgroup isomorphic to R}

and, as before, depending of their codimension have a generic or
special reconstructed trajectory.
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We can use the non compact statement for the Chaplygin
sleigh

gT := {(v1,Ω) ∈ R× R | Ω 6= 0} ∪ {(0,0)}
gR := {(v1,Ω) ∈ R× R | Ω = 0, v1 6= 0}

and
codim(gT) = 0 codim(gR) = 1

The hydrodynamic Chaplygin sleigh momentum reduced
equations for some choice of periodic controls are

ṗ = A(t)p + b(t) (7)

with A and b T−periodic.

Proposition

If one is not an eigenvalue of the monodromy matrix of
the T–periodic homogeneous system ṗ = A(t)p, then (7)
has at least one T–periodic solution.
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Thus the generic reconstructed behavior after a periodic
loop is quasiperiodic and the special one is the spiral
flow. Given a loop which of the two trajectories we will
have is determined by the value of Ω and v1 .

I If Ω 6= 0 the hydro Chaplygin sleigh will move along a
circle

I If Ω = 0 it will move spiraling along a certain
direction.
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Numerical Simulations

Using the following parameters: A = 2, B = 2√
3
, ρ = 1,

M = 1, m = 0.01 and J = A2 + B2 = 16
3 . Chosing the

following periodic controls

u1(t) = 3 cos t , u2(t) = 10 sin t .
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Figure: Reduced periodic solutions of (4) on the left and
reconstructed periodic trajectory on the right.
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Using instead the following periodic controls

u1(t) = cos
(

t +
π

2

)
, u2(t) = sin 2t ,
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Figure: Reduced periodic solutions of (4), that give rise to a
special reconstructed behaviour.
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Conclusions and perspectives

I The hydro-Chaplygin sleigh is configuration
controllable using a moving mass

I Use reconstruction techniques to prove configuration
controllability of other non-holonomic mechanical
shape control systems
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