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Biological motivations
Towards a population model

Back to single-cell level

Biological motivations

In spite of their complexity, multi-cell systems (e.g., tissues,
organs) exhibit precisely regulated and finely coordinated be-
haviours leading to the formation of spatio-temporal patterns
and functionally different structures:
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In spite of their complexity, multi-cell systems (e.g., tissues,
organs) exhibit precisely regulated and finely coordinated be-
haviours leading to the formation of spatio-temporal patterns
and functionally different structures:

D.G. Belair, C.J. Wolf, C. Wood,
H. Ren, R. Grindstaff, W. Pad-
gett, et al., Engineering human
cell spheroids to model embry-
onic tissue fusion in vitro, PLOS
ONE, 12(9):1-31, September 2017.
Immunofluorescence staining for
extracellular matrix proteins colla-
gen I and collagen IV in human cell
spheroids on day 1 and day 7.
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Biological motivations

In spite of their complexity, multi-cell systems (e.g., tissues,
organs) exhibit precisely regulated and finely coordinated be-
haviours leading to the formation of spatio-temporal patterns
and functionally different structures:

Zhang et al., Evaluation of islets de-
rived from human fetal pancreatic
progenitor cells in diabetes treat-
ment, Stem Cell Research & Therapy,
4(6):141, 2013. Differentiation of pan-
creatic progenitor cells and formation
of islet-like structures. Islet immunoflu-
orescence stained for insulin (red) and
glucagon (green), DAPI used for nuclei
staining (blue).
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Biological motivations
Towards a population model

Back to single-cell level

Biological inspiring questions

How can cells orchestrate responses as a whole?

Which molecular mechanisms are responsible for cellular
patterning? Lateral stabilization, lateral inhibition?

Which is the role of (positive and negative) feedback?

Can we control or redirect the differentiation process?
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Biological inspiring questions

How can cells orchestrate responses as a whole?

Which molecular mechanisms are responsible for cellular
patterning? Lateral stabilization, lateral inhibition?

Which is the role of (positive and negative) feedback?

Can we control or redirect the differentiation process?

We need to understand regulatory mechanisms
both at single-cell level and at population level.
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Biological motivations
Towards a population model

Back to single-cell level

A control theoretic approach

How can we tackle these questions
from a control engineering perspective?

1) Dynamic model capturing pattern formation in multi-cell systems
2) Theoretical analysis of the model (stability, structural properties)
3) Hypothesis testing through model simulations
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Case study: Central Nervous System differentiation

From Understanding the Development Landscape of the

Canonical Fate-Switch Pair to Constructing a Dynamic

Landscape for Two-Step Neural Differentiation

Xiaojie Qiu
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., Tieliu Shi*
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Abstract

Recent progress in stem cell biology, notably cell fate conversion, calls for novel theoretical understanding for cell

differentiation. The existing qualitative concept of Waddington’s ‘‘epigenetic landscape’’ has attracted particular attention

because it captures subsequent fate decision points, thus manifesting the hierarchical (‘‘tree-like’’) nature of cell fate

diversification. Here, we generalized a recent work and explored such a developmental landscape for a two-gene fate

decision circuit by integrating the underlying probability landscapes with different parameters (corresponding to distinct

developmental stages). The change of entropy production rate along the parameter changes indicates which parameter

changes can represent a normal developmental process while other parameters’ change can not. The transdifferentiation

paths over the landscape under certain conditions reveal the possibility of a direct and reversible phenotypic conversion. As

the intensity of noise increases, we found that the landscape becomes flatter and the dominant paths more straight,

implying the importance of biological noise processing mechanism in development and reprogramming. We further

extended the landscape of the one-step fate decision to that for two-step decisions in central nervous system (CNS)

differentiation. A minimal network and dynamic model for CNS differentiation was firstly constructed where two three-gene

motifs are coupled. We then implemented the SDEs (Stochastic Differentiation Equations) simulation for the validity of the

network and model. By integrating the two landscapes for the two switch gene pairs, we constructed the two-step

development landscape for CNS differentiation. Our work provides new insights into cellular differentiation and important

clues for better reprogramming strategies.
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Introduction

The canonical view of differentiation as an irreversible process

has been largely reshaped since the emergence of induced

Pluripotent Stem Cells (iPSCs) and other lineage conversions

techniques in stem cell biology [1–8]. The success in inducing a

conversion between cellular fates raises several questions [9]: why

is a stable mature cell type retrodifferentiable or convertible? Is

there a universal principle that can explain cellular development,

and is there a fundamental commonality shared by the processes

of normal differentiaton, retrodifferentiation and transdifferentia-

tion? What are then the differences among the three processes?

In fact, a first effort to find a general principle traces back to

Waddington’s pioneering work in embryogenesis which gave rise

to his ‘‘epigenetic landscape metaphor’’ (Fig. S1) for development

[10]. Here the landscape metaphor describes differentiation as a

‘‘down-hill’’ process, which is about a cell ‘‘rolling’’ down from the

pluripotent hilltop (the embryonic stem cells) to the lower valleys

(the terminal differentiated cells), with multiple bifurcations at the

watersheds on the landscape [10]. This metaphor, apparently

lacking physical basis in Waddington’s time, has long been ignored

by experimental biologists until seen a renaissance among them in

the recent years [11,12]. Theorists had revisited this problem at

various times. About twenty years after the first revelation of

Waddington landscape, Thom proposed the catastrophe theory to

explain the branching process in biological system [13]. However,

he failed to find a potential function to construct the landscape.

Kauffman, in a perspective different from that of Thom, starting

from the idea of complex gene regulatory networks (GRNs)

proposed that cell types are attractors in GRNs [14,15]. His work

used an efficient mathematical tool - Random Boolen Network

(RBN). In parallel, more detailed modeling approaches (like

Ordinary Differential Equations or ODEs) were also increasingly

applied in modeling gene regulatory circuits. However, detailed

studies of differentiation remain scanty and theories from

dynamical systems have been applied only recently to the analysis

of gene regulatory networks in development, starting with a single

binary cell fate branching process [16]. Subsequently, the proposal

of ‘‘sequential branching’’ model for hierarchical determination of

cell fates, implemented both as ODEs or Stochastic Differentiation

Equations (SDEs), has led to insights of how gene network

PLOS ONE | www.plosone.org

1
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Two-stage differentiation process:
i) From undifferentiated stem cell

into neuron or glia;
ii) From glia into astrocyte or

oligodendrocyte.

Stem cell
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Biological motivations
Towards a population model

Back to single-cell level

Towards a population model . . .

Focus on the subnetwork responsible for single-
level differentiation into two cellular types:

- Type 2: Gene 2 is overexpressed w.r.t. Gene 3
- Type 3: Gene 3 is overexpressed w.r.t. Gene 2

x1

x2 x3

Grid of cells modelling a monolayer cell culture
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Biological motivations
Towards a population model

Back to single-cell level

Simulations

1) If we don’t model cell-cell interactions and each cell behaves
independetly of its neighbours, the result is unrealistic!
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Biological motivations
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Back to single-cell level

Simulations

2) Cell-cell interactions: differentiated cells promote their
neighbours to have the same fate (lateral stabilization).

Weak cell-cell
interactions
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Biological motivations
Towards a population model

Back to single-cell level

Simulations

3) Cell-environment interactions: local mechanical stimuli enforce
cells differentiation to a specific type.
Border effect: outer border forced to Type 2, inner square to Type 3

Weak cell-cell
interactions
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Biological motivations
Towards a population model

Back to single-cell level

A multi-cell model

From a qualitative point of view the model is able to capture
different macroscopic behaviours (e.g., islet formation, sharp
differentiation) of multi-cell systems.

As the feedback intensity parameter varies, different
spatio-temporal patterns arise:

Weak cell-cell interactions lead to jagged borders
between cell populations;
Strong cell-cell interactions result in sharper
differentiation bounds.

Enforced patterns mimicking the effect of external
stimuli acting locally (border effect) can be identified.
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Biological motivations
Towards a population model

Back to single-cell level

Stability analysis
Pluripotency and differentiation

Theoretical analysis

Single-
cell level

3 gene regulatory network

When is differentiation possible?

When does the activator gene triggers
the differentiation process?

Do cooperativity of the activator and cooperativity
of the repressors play equal roles?

x1

x2 x3
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Biological motivations
Towards a population model

Back to single-cell level

Stability analysis
Pluripotency and differentiation

Minimal gene regulatory network

x1

x2 x3

Activation from Gene 1 to both Gene 2 and Gene 3

m − cooperativity of the activator (m ∈ R+, m > 0)

Mutual inhibitibion among Gene 2 and Gene 3

n − cooperativity of the repressors (n ∈ R+, n > 0)

α − steady-state expression level of Gene 1 (α ∈ R+)

a − production rate (a ∈ R+)

k − first order degradation rate (k ∈ R+)
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Biological motivations
Towards a population model

Back to single-cell level

Stability analysis
Pluripotency and differentiation

Asymptotic behaviour

Structural properties of the Jacobian:
All entries are sign definite
All diagonal entries are negative

1

2 3

+ +

−
−
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Structural properties of the Jacobian:
All entries are sign definite
All diagonal entries are negative

For every x∈R3
+:

sign (J(x))=

− 0 0
+ − −
+ − −


All cycles are positive

If unstable dynamics appear, it is solely
due to real unstable eigenvalues.

No limit cycles are possible!
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Biological motivations
Towards a population model

Back to single-cell level

Stability analysis
Pluripotency and differentiation

Equilibrium points

Let xeq =
[
α xeq

2 xeq
3

]> be an equilibrium point.

1) If xeq
2 6= xeq

3 , then also
[
α xeq

3 xeq
2

]> is an equilibrium.
2) There is always an equilibrium point with xeq

2 = xeq
3 = x̄.

x̄ is monotone increasing in both α and a
k

x̄ < a
k

0 x2

x3
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Biological motivations
Towards a population model

Back to single-cell level

Stability analysis
Pluripotency and differentiation

Stability of equilibria

We assume that J(x) evaluated at xeq is invertible.
1) If x̄ is the unique equilibrium, it is asymptotically stable.

2) If 3 equilibria exist, x̄ is unstable while the other two
equilibria are asymptotically stable.

0 x2

x3 as. stable
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Biological motivations
Towards a population model

Back to single-cell level

Stability analysis
Pluripotency and differentiation

Non-differentiating vs pluripotent cell

Which region of the parameter space corresponds to pluripotency?

n − repressors Hill coeff.
a − production rate
k − degradation rate

1) If n ≤ 1, the cell is undifferentiated
and no differentiation is possible.

2) If n > 1, define a∗

k∗ :=
(
n+1
n−1

)n+1
n .

If a
k
< a∗

k∗ , the cell is undifferentiated
and no differentiation is possible.
If a

k
> a∗

k∗ , the cell undergoes
differentiation when α belongs to a
specific range of values.
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Biological motivations
Towards a population model

Back to single-cell level

Stability analysis
Pluripotency and differentiation

Pluripotet vs differentiated state

Given a pluripotent cell, when does Gene 1 induce differentiation?

Assume that n > 1 and a
k
> a∗

k∗ .
Define:

α∗ := m

√
n− 1

2

[
1 +

(
a

k

n− 1

n+ 1

)n]
There exist αmin ∈ (0, α∗) and
αmax ∈ (α∗,+∞) such that for
α ∈ (αmin, αmax) the cell is in
differentiated state, and is in
pluripotent state otherwise.
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Biological motivations
Towards a population model

Back to single-cell level

Stability analysis
Pluripotency and differentiation

Biological implications

Mutual inhibition among competing genes doesn’t
ensure cell’s ability to differentiate. A characterization
of pluripotency region has been provided.

Gene 1 represents the triggering gene: appropriate
expression levels are required to induce differentiation.

Repressor cooperativity and activator cooperativity
play different role: the first one is crucial to control
differentiation.
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Stability analysis
Pluripotency and differentiation

Ongoing and future work

Aim: analysing the behaviour of interacting pluripotent cells
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It is (not so) easy to prove that
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- equilibrium points are shifted
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What’s the probability of
jumping from one basin

of attraction to the other? x2

x3
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hilltop represents pluripotent state,
valleys represent differentiated states
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Ongoing and future work

Aim: analysing the behaviour of interacting pluripotent cells

In a (((((((
deterministic setting . . .

Waddington’s epigenetic landscape:
hilltop represents pluripotent state,
valleys represent differentiated states

stochastic

- diffusive noise

- stationary distribution

x2

x3
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Biological motivations
Towards a population model

Back to single-cell level

Stability analysis
Pluripotency and differentiation

Thanks for your attention!

Questions?

Possible collaborations?
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