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regulatory network cell level
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Biological motivations

Biological motivations

In spite of their complexity, multi-cell systems (e.g., tissues,
organs) exhibit precisely regulated and finely coordinated be-
haviours leading to the formation of spatio-temporal patterns
and functionally different structures:
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Biological motivations

In spite of their complexity, multi-cell systems (e.g., tissues,
organs) exhibit precisely regulated and finely coordinated be-
haviours leading to the formation of spatio-temporal patterns
and functionally different structures:

D.G. Belair, C.J. Wolf, C. Wood,
H. Ren, R. Grindstaff, W. Pad-
gett, et al., Engineering human
cell spheroids to model embry-
onic tissue fusion in vitro, PLOS
ONE, 12(9):1-31, September 2017.
Immunofluorescence staining for
extracellular matrix proteins colla-
gen | and collagen IV in human cell
spheroids on day 1 and day 7.
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Biological motivations

Biological motivations

In spite of their complexity, multi-cell systems (e.g., tissues,
organs) exhibit precisely regulated and finely coordinated be-
haviours leading to the formation of spatio-temporal patterns
and functionally different structures:

Zhang et al., Evaluation of islets de-
rived from human fetal pancreatic
progenitor cells in diabetes treat-
ment, Stem Cell Research & Therapy,
4(6):141, 2013. Differentiation of pan-
creatic progenitor cells and formation

of islet-like structures. Islet immunoflu-
orescence stained for insulin (red) and

glucagon (green), DAPI used for nuclei
staining (blue).
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Biological motivations

Biological inspiring questions

How can cells orchestrate responses as a whole?

Which molecular mechanisms are responsible for cellular
patterning? Lateral stabilization, lateral inhibition?

Which is the role of (positive and negative) feedback?

Can we control or redirect the differentiation process?
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Biological motivations

Biological inspiring questions

How can cells orchestrate responses as a whole?

Which molecular mechanisms are responsible for cellular
patterning? Lateral stabilization, lateral inhibition?

Which is the role of (positive and negative) feedback?

Can we control or redirect the differentiation process?

We need to understand regulatory mechanisms
both at and at
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Biological motivations

A control theoretic approach

How can we tackle these questions
from a ?

1) Dynamic model capturing pattern formation in multi-cell systems
2) Theoretical analysis of the model (stability, structural properties)
3) Hypothesis testing through model simulations
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Biological motivations

Case study:
y: Central Nervous System differentiation
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Regulatory network with 12 genes
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Biological motivations

Case study: Central Nervous System differentiation
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Case study: Central Nervous System differentiation
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Towards a population model

Towards a population model . ..

@ Focus on the subnetwork responsible for single-
level differentiation into two cellular types:

irene.zorzan@unipd.it From single-cell to multi-cell systems differentiation 7/19



Towards a population model

Towards a population model . ..

@ Focus on the subnetwork responsible for single-
level differentiation into two cellular types:

- Type 2: Gene 2 is overexpressed w.rt. Gene 3

irene.zorzan@unipd.it From single-cell to multi-cell systems differentiation 7/19



Towards a population model

Towards a population model . ..

@ Focus on the subnetwork responsible for single-
level differentiation into two cellular types:

- Type 2: Gene 2 is overexpressed w.rt. Gene 3

- Type 3: Gene 3 is overexpressed w.r.t. Gene 2

irene.zorzan@unipd.it From single-cell to multi-cell systems differentiation 7/19



Towards a population model

Towards a population model . ..

@ Focus on the subnetwork responsible for single-
level differentiation into two cellular types:

- Type 2: Gene 2 is overexpressed w.rt. Gene 3

- Type 3: Gene 3 is overexpressed w.r.t. Gene 2

@ Grid of cells modelling a monolayer cell culture
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Towards a population model

Simulations

1) If we don’t model cell-cell interactions and each cell behaves
independetly of its neighbours, the result is unrealistic!
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Towards a population model

Simulations

2) differentiated cells promote their
neighbours to have the same fate (lateral stabilization).

Cells
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Towards a population model

Simulations

3) local mechanical stimuli enforce
cells differentiation to a specific type.

Border effect: outer border forced to Type 2, inner square to Type 3
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Towards a population model

Simulations

3) local mechanical stimuli enforce
cells differentiation to a specific type.
Border effect: outer border forced to Type 2, inner square to Type 3
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Towards a population model

A multi-cell model

From a qualitative point of view the model is able to capture
different macroscopic behaviours (e.g., islet formation, sharp
differentiation) of
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A multi-cell model

From a qualitative point of view the model is able to capture
different macroscopic behaviours (e.g., islet formation, sharp
differentiation) of

@ As the feedback intensity parameter varies, different
spatio-temporal patterns arise:
e Weak cell-cell interactions lead to jagged borders
between cell populations;
e Strong cell-cell interactions result in sharper
differentiation bounds.

irene.zorzan@unipd.it From single-cell to multi-cell systems differentiation 9/19



Towards a population model

A multi-cell model

From a qualitative point of view the model is able to capture
different macroscopic behaviours (e.g., islet formation, sharp
differentiation) of

@ As the feedback intensity parameter varies, different
spatio-temporal patterns arise:
e Weak cell-cell interactions lead to jagged borders
between cell populations;
e Strong cell-cell interactions result in sharper
differentiation bounds.

@ Enforced patterns mimicking the effect of external
stimuli acting locally (border effect) can be identified.
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Stability analysis
Pluripotency and differentiation

Back to single-cell level

Theoretical analysis

Single- 3 gene regulatory network
cell level

When is differentiation possible?

When does the activator gene triggers
the differentiation process?

Do cooperativity of the activator and cooperativity
of the repressors play equal roles?
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. Pluripotency and differentiation
Back to single-cell level P Y

Minimal gene regulatory network
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Stability analysis
Pluri iff iati
Back to single-cell level uripotency and differentiation

Minimal gene regulatory network
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@ Activation from Gene 1 to both Gene 2 and Gene 3

@ Mutual inhibitibion among Gene 2 and Gene 3
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Stability analysis
Pluri iff iati
Back to single-cell level uripotency and differentiation

Minimal gene regulatory network
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@ Activation from Gene 1 to both Gene 2 and Gene 3
(m Ry, m>0)

m —
@ Mutual inhibitibion among Gene 2 and Gene 3
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Stability analysis
Pluri iff iati
Back to single-cell level uripotency and differentiation

Minimal gene regulatory network
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@ Activation from Gene 1 to both Gene 2 and Gene 3
m — cooperativity of the activator (m € Ry, m > 0)

@ Mutual inhibitibion among Gene 2 and Gene 3

n — (’I’LER+,’I’L>O)
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Stability analysis
Pluri iff iati
Back to single-cell level uripotency and differentiation

Minimal gene regulatory network
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Stability analysis
Pluri iff iati
Back to single-cell level uripotency and differentiation

Minimal gene regulatory network
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Stability analysis
Pluri iff iati
Back to single-cell level uripotency and differentiation

Minimal gene regulatory network
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@ o — steady-state expression level of Gene 1 (a € Ry)

@ a — production rate (a € R)

ok — (k€R+)
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Stability analysis

. Pluripotency and differentiation
Back to single-cell level P Y

Asymptotic behaviour

Structural properties of the Jacobian:
@ All entries are sign definite
@ All diagonal entries are negative
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. Pluripotency and differentiation
Back to single-cell level P Y

Asymptotic behaviour

Structural properties of the Jacobian:
@ All entries are sign definite For every x e R :

@ All diagonal entries are negative 0 o

sign(J(x))=|+ — -—
+ — —
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Stability analysis

. Pluripotency and differentiation
Back to single-cell level P Y

Asymptotic behaviour

Structural properties of the Jacobian:
@ All entries are sign definite For every x e R :

@ All diagonal entries are negative 0 o

sign(J(x))=|+ — -—
All cycles are positive

L

If unstable dynamics appeatr, it is solely
due to

(o +
|"Q
O +

No limit cycles are possible!
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Stability analysis

. Pluripotency and differentiation
Back to single-cell level P Y

Equilibrium points

Let x*? = [a x5! m;ﬁ]T be an equilibrium point.

T3
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Stability analysis

. Pluripotency and differentiation
Back to single-cell level P Y

Equilibrium points

Let x*? = [a x5! m;ﬁ]T be an equilibrium point.

T. .
1) Ifx5? #£ 259, then also [ x5? z5%|  is an equilibrium.
2 3 3 2

T3
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Stability analysis

. Pluripotency and differentiation
Back to single-cell level P Y

Equilibrium points

Let x*? = [a x5! m;ﬁ]T be an equilibrium point.
1) If 237 # x57, then also [a  x3? wgq]T is an equilibrium.
2) There is always an equilibrium point with z5? = z3? = z.

T3
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Stability analysis

. Pluripotency and differentiation
Back to single-cell level P Y

Equilibrium points

Let x*? = [a x5! m;ﬁ]T be an equilibrium point.
1) If 237 # x57, then also [a  x3? wgq]T is an equilibrium.
2) There is always an equilibrium point with z5? = z3? = z.

T3 N
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1) If 237 # x57, then also [a  x3? wgq]T is an equilibrium.
2) There is always an equilibrium point with z5? = z3? = z.
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Stability analysis

. Pluripotency and differentiation
Back to single-cell level P Y

Equilibrium points

Let x*? = [a x5! m;ﬁ]T be an equilibrium point.
1) If 237 # x57, then also [a  x3? wgq]T is an equilibrium.
2) There is always an equilibrium point with z5? = z3? = z.

T3 N
a/kf---------- = _ . Lo a
o 2 Z is monotone increasing in both o and 2
4 1
P = a
// : T < E
/// :
/® :
, (] :
0 T2

There exist either 3 distinct equilibria or a unique equilibrium.
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Stability analysis
Pluripotency and differentiation

Back to single-cell level

Stability of equilibria

We assume that J(x) evaluated at x4 is invertible.
1) If x is the unique equilibrium, it is asymptotically stable.

® as. stable
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Pluripotency and differentiation

Back to single-cell level

Stability of equilibria

We assume that J(x) evaluated at x4 is invertible.
1) If x is the unique equilibrium, it is asymptotically stable.

2) If 3 equilibria exist, x is unstable while the other two
equilibria are asymptotically stable.

as. stable

unstable
as. stable
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Back to single-cell level

Stability of equilibria

We assume that J(x) evaluated at x4 is invertible.
1) If x is the unique equilibrium, it is asymptotically stable.

2) If 3 equilibria exist, x is unstable while the other two
equilibria are asymptotically stable.

Undifferentiated cell Differentiating cell
T3 ® as. stable T3

O unstable

o as. stable
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Stability analysis
Pluripotency and differentiation

Back to single-cell level

Stability of equilibria

We assume that J(x) evaluated at x4 is invertible.
1) If x is the unique equilibrium, it is asymptotically stable.

2) If 3 equilibria exist, x is unstable while the other two
equilibria are asymptotically stable.

Undifferentiated cell Differentiating cell
T3 ® as. stable T3
O unstable
o as. stable
0 0
Which region of the parameter space corresponds to ?

Given a pluripotent cell, when does Gene 1 induce differentiation?
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Stability analysis

Back to single-cell level Pluripotency and differentiation

Non-differentiating vs pluripotent cell

Which region of the parameter space corresponds to ?
n — repressors Hill coeff.
1) If n < 1, the cell is undifferentiated a — production rate
and no differentiation is possible. k — degradation rate
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Stability analysis
Back to single-cell level Pluripotency and differentiation

Non-differentiating vs pluripotent cell

Which region of the parameter space corresponds to ?
n — repressors Hill coeff.
a — production rate

k — degradation rate

1) If n < 1, the cell is undifferentiated
and no differentiation is possible.

n+i
2) If n > 1, define & = (2£1) ™. a
a* | _____.
k*
0 «a
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Stability analysis

Back to single-cell level Pluripotency and differentiation

Non-differentiating vs pluripotent cell

Which region of the parameter space corresponds to ?
n — repressors Hill coeff.
1) If n < 1, the cell is undifferentiated a — production rate
and no differentiation is possible. k — degradation rate
n+i
2) If n > 1, define & = (2£1) ™. a
If 2 < % W, the cell is undifferentiated
and no differentiation is possible.
a* I
Ex[ """ttt
0 o
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Stability analysis
Pluripotency and differentiation

Back to single-cell level

Non-differentiating vs pluripotent cell

Which region of the parameter space corresponds to ?
n — repressors Hill coeff.
1) If n < 1, the cell is undifferentiated a — production rate
and no differentiation is possible. k — degradation rate
n+i
i * . (ntl) m
2) If n > 1, define & = (2£1) ™.

If & < 22 the cell is undifferentiated

and no differentiation is possible.

If ¢ > 22, the cell undergoes
differentiation when « belongs to a
specific range of values.
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Stability analysis

Back to single-cell level Pluripotency and differentiation

Pluripotet vs differentiated state

Given a pluripotent cell, when does Gene 1 induce differentiation?
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Stability analysis
Back to single-cell level Pluripotency and differentiation

Pluripotet vs differentiated state

Given a pluripotent cell, when does Gene 1 induce differentiation?

Assume that n > 1 and & > %
Define:

.. Ln—1 [l_i_(an—l)"]
> = 2 kn+ 1

e
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Stability analysis
Pluripotency and differentiation

Back to single-cell level

Pluripotet vs differentiated state

Given a pluripotent cell, when does Gene 1 induce differentiation?

Assume that n > 1 and & > %
Define:

%
. mn—l[l_i_(an—l)"]

a = e

2 kn+1
There exist amin € (0, a*) and
Amaz € (™, +00) such that for
a € (QAmin, Amaz) the cellis in :
differentiated state, and is in 0 Amin

otherwise.
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Stability analysis

Back to single-cell level Pluripotency and differentiation

Biological implications

@ Mutual inhibition among competing genes doesn’t
ensure cell’s ability to differentiate. A characterization
of has been provided.
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Stability analysis
Back to single-cell level Pluripotency and differentiation

Biological implications

@ Mutual inhibition among competing genes doesn’t
ensure cell’s ability to differentiate. A characterization
of has been provided.

@ Gene 1 represents the . appropriate
expression levels are required to induce differentiation.

° and activator cooperativity
play different role: the first one is crucial to control
differentiation.
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Stability analysis

Back to single-cell level Pluripotency and differentiation

Ongoing and future work

analysing the behaviour of interacting pluripotent cells
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Stability analysis

Back to single-cell level Pluripotency and differentiation

Ongoing and future work

analysing the behaviour of interacting pluripotent cells

In a deterministic setting ... T3 "
To = H(ml, £U3) — kxo + us ° //'
T3 :H($1,$2) — kx3 + ug //
/®/
’ [}
0 T2
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Stability analysis

Back to single-cell level Pluripotency and differentiation

Ongoing and future work

analysing the behaviour of interacting pluripotent cells

In a deterministic setting ... T3 K
[ ] /
Ty = H(x1,x3) — kxa + us o
3 = H(x1, z2) — kxs + us o
It is (not so) easy to prove that 9 °
for uy < wus: T2

- equilibrium points are shifted
- basins of attraction vary in amplitude
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Stability analysis

Back to single-cell level Pluripotency and differentiation

Ongoing and future work

analysing the behaviour of interacting pluripotent cells

In a deterministic setting ... T3 K
[ J /
Ty = H(x1,x3) — kxa + us o
What's the probability of
It is jumping from one basin 2 o

for «l  of attraction to the other? 2o

- equilibrium points are shifted
- basins of attraction vary in amplitude
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Stability analysis
Pluripotency and differentiation

Back to single-cell level

Ongoing and future work

analysing the behaviour of interacting pluripotent cells

In a deterministic setting ... T3 y
[ J /
5‘62 == H($1, wg) — k;mg —|— Uz ///
What'’s the probability of
jumping from one basin o .

of attraction to the other?

Waddington’s epigenetic landscape:
hilltop represents pluripotent state,
valleys represent differentiated states
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Back to single-cell level

Ongoing and future work

analysing the behaviour of interacting pluripotent cells

stochastic
In a deterministic setting ... T3 ,
° //
- diffusive noise
- stationary distrigution Q/
/ [ )

Waddington’s epigenetic landscape:
hilltop represents pluripotent state,
valleys represent differentiated states
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Back to single-cell level Pluripotency and differentiation

Thanks for your attention!

Questions?

Possible collaborations?
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