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In these two lectures, I will give a background to the development of sta-
ble methods including the flat limit behavoiur of radial basis function (RBF)
approximations [3, 8, 12, 11] and an overview of stable methods such as the
Contour-Padé approach [7], the RBF-GA method, and RBF-QR methods with
more detail for the latter, including the RBF-QR method on the sphere [6] that
was the first RBF-QR method, the RBF-QR method in Cartesian space [5, 9],
and the different formulations introduced in [4, 1, 10, 2]. Relevant in this context
is also node placement, and different ways in which this affects approximation
performance.

Furthermore, I will give arguments for why stable methods are necessary, in
particular when localized RBF methods are concerned. Exemples with stencil-
based methods (RBF-FD) and partition of unity-based methods (RBF-PUM)
will be given. Theoretical and numerical results for different scaling strategies
and applications will be used to illustrate the point. Finally, simulation result
for the solution of partial differential equations in application areas such as
atmospheric science and finance will be shown.
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