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Introduction/Motivation

A starting point:

Study of electromagnetic wave propagation in plasmas, a popular model in

plasma physics [Stix’92].

Time-harmonic model, rigorously derived and studied mathematically in

[PhD-Hattori’14], [Back-Hattori-Labrunie-Roche-Bertrand’15].

The model:

Find E ∈ H(curl;Ω) := {v ∈ L2(Ω) | curlv ∈ L2(Ω)} governed by:

curl curlE −
ω2

c2
KE = 0 in Ω, where

K(x) =

⎛

⎜

⎜

⎝

S(x) −iD(x) 0

iD(x) S(x) 0

0 0 P (x)

⎞

⎟

⎟

⎠

is the anisotropic plasma response tensor (S, D, P C-valued coefficients) ;

a boundary condition on ∂Ω (with non-zero data): value of E × n|∂Ω, of

curlE × n|∂Ω, or of E × n|Γ and curlE × n|∂Ω\Γ, is given.
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Introduction/Motivation

Key properties of the anisotropic plasma response tensor:

K is a normal, non-hermitian, matrix field of L∞(Ω) ;

K fulfills an ellipticity condition:

∃η > 0, ∀z ∈ C
3, η|z|2 ≤ ℑ[z∗Kz] ae in Ω.

Main results from [PhD-Hattori’14], [Back-Hattori-Labrunie-Roche-Bertrand’15]:

the model, expressed variationally, involves a sesquilinear form that is

automatically coercive: hence it is well-posed.

Plain, mixed and augmented variational formulations are analyzed.

Discretization is achieved with the help of the piecewise H1-conforming Finite

Element Method (vector-valued Lagrange FE), together with a Fourier expansion

(Ω is a torus).

A Domain Decomposition Method is proposed.

No numerical analysis is provided.
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Introduction/Motivation

Our goals and assumptions:

Study a time-harmonic electromagnetic wave propagation model with L∞,

anisotropic magnetic permeability µ and electric permittivity ε.

Assume a "generalized" ellipticity condition for ξ ∈ {ε,µ}:

(Ell) ∃θξ ∈ R, ∃ξ− > 0, ∀z ∈ C
3, ξ−|z|2 ≤ ℜ[eiθξ · z∗ξz] ae in Ω.

Main results [Chicaud-PC-Modave’21], [PhD-Chicaud’2x]:

the model, expressed variationally, enters Fredholm alternative (coerciveness

does not always hold) ;

derivation of the a priori regularity of the field E and of its curl ;

discretization with the help of the H(curl)-conforming Finite Element Method ;

numerical analysis.
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Introduction/Motivation

Our goals and assumptions:

Study a time-harmonic electromagnetic wave propagation model with L∞,

anisotropic magnetic permeability µ and electric permittivity ε.

Assume a "generalized" ellipticity condition for ξ ∈ {ε,µ}:

(Ell) ∃θξ ∈ R, ∃ξ− > 0, ∀z ∈ C
3, ξ−|z|2 ≤ ℜ[eiθξ · z∗ξz] ae in Ω.

Some references on these issues:

"Useful" monographs [Monk’03], [Costabel-Dauge-Nicaise’10],

[Roach-Stratis-Yannacopoulos’13], [Assous-PC-Labrunie’18].
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Introduction/Motivation

Our goals and assumptions:

Study a time-harmonic electromagnetic wave propagation model with L∞,

anisotropic magnetic permeability µ and electric permittivity ε.

Assume a "generalized" ellipticity condition for ξ ∈ {ε,µ}:

(Ell) ∃θξ ∈ R, ∃ξ− > 0, ∀z ∈ C
3, ξ−|z|2 ≤ ℜ[eiθξ · z∗ξz] ae in Ω.

Some references on these issues:

On the regularity results:

in the (PHs(Ω))s>0 scale: assuming piecewise smooth, elliptic, scalar

fields/hermitian tensors [Costabel-Dauge-Nicaise’99], [Jochmann’99],

[Bonito-Guermond-Luddens’13], [PC’20] ;

in the (Lr(Ω))r>1 scale: assuming L∞, elliptic, perturbation of hermitian

tensors [Xiang’20] ;

in the (C0,α(Ω))α>0 scale: assuming (Hölder-)continuous, elliptic tensors

[Alberti-Capdeboscq’14], [Alberti’18], [Tsering-xiao-Wang’20].
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Time-harmonic Maxwell equations

Ω is a domain ; ω > 0 is the pulsation.

Given volume data f and surface data g, solve:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find E ∈ H(curl;Ω) s.t.

curl

(

µ−1
curlE

)

− ω2εE = f in Ω ;

E × n = g on ∂Ω.

[Dirichlet boundary condition.]

The tensors ξ ∈ {ε,µ} are elliptic (Ell), and they belong to L∞(Ω).

Volume data: f ∈ L2(Ω).

Surface data: g = Ed × n|∂Ω, with Ed ∈ H(curl;Ω).
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Helmholtz decompositions-1

Define the function spaces

H0(curl;Ω) := {v ∈ H(curl;Ω) |v × n|∂Ω = 0},

H(div ξ;Ω) := {v ∈ L2(Ω) | ξv ∈ H(div ;Ω)},

H(div ξ0;Ω) := {v ∈ H(div ξ;Ω) |div ξv = 0},

KN (ξ;Ω) := H0(curl;Ω) ∩H(div ξ0;Ω).

Helmholtz decompositions:

L2(Ω) = ∇[H1
0 (Ω)]⊕H(div ξ0;Ω) and H0(curl;Ω) = ∇[H1

0 (Ω)]⊕KN (ξ;Ω).

NB. Notion of orthogonality does not apply when ξ is non-hermitian.

To solve our model, we rely on the second Helmholtz decompostion.
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Helmholtz decompositions-2

First Helmholtz decomposition L2(Ω) = ∇[H1
0 (Ω)]⊕H(div ξ0;Ω).

Idea of proof: Let v ∈ L2(Ω).

The Dirichlet problem

(PDir)

⎧

⎨

⎩

Find p ∈ H1
0 (Ω) such that

(ξ∇p|∇q) = (ξv|∇q), ∀q ∈ H1
0 (Ω),

is well-posed, thanks to (Ell): ∃!p, with ∥p∥H1(Ω) ! ∥v∥L2(Ω).

Let vT = v −∇p ∈ L2(Ω): ∥vT ∥L2(Ω) ! ∥v∥L2(Ω) and

(ξvT |∇q) = 0, ∀q ∈ H1
0 (Ω),

ie. vT ∈ H(div ξ0;Ω).

The sum is direct because (PDir) is well-posed.

Second Helmholtz decomposition H0(curl;Ω) = ∇[H1
0 (Ω)]⊕KN (ξ;Ω) follows as a

straightforward corollary.
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Study of KN(ξ;Ω)

The embedding of KN (ξ;Ω) into L2(Ω) is compact.

NB. One has a similar property for the function space H0(curl;Ω) ∩H(div ξ;Ω).

Property relies on a key ingredient: a decomposition of H(div ξ0;Ω).

Let (Γk)k=0,K be the (maximal) connected components of ∂Ω:

QN (ξ;Ω) := {q ∈ H1(Ω) |div ξ∇q = 0 in Ω, q|Γ0
= 0, q|Γk

= cstk, 1 ≤ k ≤ K}.

H(div ξ0;Ω) = ∇[QN (ξ;Ω)]⊕ ξ−1
curl[H1(Ω)]. Moreover,

∀z ∈ H(div ξ0;Ω), ∃(qΓ,w) ∈ QN (ξ;Ω)×H1(Ω),

z = ∇qΓ + ξ−1
curlw with ∥∇qΓ∥L2(Ω) + ∥w∥H1(Ω) ! ∥z∥L2(Ω).

Idea of proof: extraction of vector potential Thm 3.4.1 [Assous-PC-Labrunie’18].
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Well-posedness (1)

Recall our model:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find E ∈ H(curl;Ω) s.t.

curl

(

µ−1
curlE

)

− ω2εE = f in Ω ;

E × n = g on ∂Ω.

An equivalent variational formulation reads

(FV E)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find E ∈ H(curl;Ω) such that

(µ−1 curlE| curlF )− ω2(εE|F ) = ℓD(F ), ∀F ∈ H0(curl;Ω),

E × n = g on ∂Ω,

where ℓD : F -→ (f |F ) belongs to (H0(curl;Ω))′.
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Well-posedness (1)

Recall our model:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find E ∈ H(curl;Ω) s.t.

curl

(

µ−1
curlE

)

− ω2εE = f in Ω ;

E × n = g on ∂Ω.

Introduce the new unknown E0 := E −Ed ∈ H0(curl;Ω), which is governed by

(FV E0)

⎧

⎨

⎩

Find E0 ∈ H0(curl;Ω) such that

(µ−1 curlE0| curlF )− ω2(εE0|F ) = ℓD,0(F ), ∀F ∈ H0(curl;Ω),

where ℓD,0 : F -→ (f + ω2εEd|F )− (µ−1 curlEd| curlF ) belongs to

(H0(curl;Ω))′.
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Well-posedness (1)

Recall our model:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find E ∈ H(curl;Ω) s.t.

curl

(

µ−1
curlE

)

− ω2εE = f in Ω ;

E × n = g on ∂Ω.

Using the second Helmholtz decomposition, split E0 as E0 = ∇p0 + k0, where

p0 ∈ H1
0 (Ω) and k0 ∈ KN (ε;Ω) are respectively governed by

(PE
Dir)

⎧

⎨

⎩

Find p0 ∈ H1
0 (Ω) such that

−ω2(ε∇p0|∇q) = ℓD,0(∇q), ∀q ∈ H1
0 (Ω),

(PE
K )

⎧

⎨

⎩

Find k0 ∈ KN (ε;Ω) such that

(µ−1 curlk0| curlk)− ω2(εk0|k) = ω2(ε∇p0|k) + ℓD,0(k), ∀k ∈ KN (ε;Ω),

with ℓD,0 : F -→ (f + ω2εEd|F )− (µ−1 curlEd| curlF ).
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Well-posedness (2)

(PE
Dir) is well-posed, thanks to the ellipticity condition (Ell).

(PE
K ) enters Fredholm alternative.

Idea of proof: Let α > 0.

The form (v,w) -→ (µ−1 curlv| curlw)− ω2(εv|w) is split as

(v,w) -→ (µ−1 curlv| curlw) + αeiθµ(v|w), which is coercive on KN (ε;Ω).

(v,w) -→ −((ω2ε+ αeiθµ)v|w), which is a compact perturbation on KN (ε;Ω),

thanks to the compact embedding of KN (ε;Ω) into L2(Ω).
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Well-posedness (2)

(PE
Dir) is well-posed, thanks to the ellipticity condition (Ell).

(PE
K ) enters Fredholm alternative.

So (FV E0) and (FV E) also enter Fredholm alternative:

either (FV E0) admits a unique solution E0 in H0(curl;Ω), which depends

continuously on the data f and Ed:

∥E0∥H(curl;Ω) ! ∥f∥L2(Ω) + ∥Ed∥H(curl;Ω) ;

or, (FV E0) has solutions if, and only if, f and Ed satisfy a finite number of

compatibility conditions.

Moreover, each alternative occurs simultaneously for (FV E0) and (FV E).

For the rest of the talk we assume that the problems are well-posed, ie. existence,

uniqueness and continuous dependence of the solution wrt the data.
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Extra-regularity of E

For E0 ∈ H0(curl;Ω), two key ingredients...

Regular-gradient splitting, see Lemma 2.4 [Hiptmair’02]:

In a domain Ω, for all u in H0(curl;Ω), there exist ureg in H1(Ω) and φ in H1
0 (Ω),

such that u = ureg +∇φ in Ω, with ∥ureg∥H1(Ω) + ∥φ∥H1(Ω) ! ∥u∥H(curl;Ω).

Shift theorem, see Thm 3.4.5 [Costabel-Dauge-Nicaise’10]:

Assume that ε ∈ C1(Ω) and that ∂Ω is of class C2.

Let ℓ in
(

H1
0 (Ω)

)′
, and p governed by the Dirichlet problem

⎧

⎨

⎩

Find p ∈ H1
0 (Ω) such that

(ε∇p|∇q) = ℓ(q), ∀q ∈ H1
0 (Ω).

Then, for all σ ∈ [0, 1] \ { 1
2}:

ℓ ∈
(

H1−σ
0 (Ω)

)′
=⇒ p ∈ Hσ+1(Ω);

∃Cσ > 0, ∀ℓ ∈
(

H1−σ
0 (Ω)

)′
, ∥p∥Hσ+1(Ω) ≤ Cσ∥ℓ∥(

H1−σ
0 (Ω)

)

′ .
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Extra-regularity of E

For E0 ∈ H0(curl;Ω), two key ingredients...

Regular-gradient splitting, see Lemma 2.4 [Hiptmair’02]:

In a domain Ω, for all u in H0(curl;Ω), there exist ureg in H1(Ω) and φ in H1
0 (Ω),

such that u = ureg +∇φ in Ω, with ∥ureg∥H1(Ω) + ∥φ∥H1(Ω) ! ∥u∥H(curl;Ω).

Shift theorem, see Thm 3.4.5 [Costabel-Dauge-Nicaise’10]:

Assume that ε ∈ C1(Ω) and that ∂Ω is of class C2.

Applying these results to E0, one concludes that:

if f ∈ L2(Ω) is such that div f ∈ Hs−1(Ω) with s ∈ [0, 1] \ { 1
2},

if Ed ∈ Hr(Ω) with r ∈ [0, 1] \ { 1
2},

then

⎧

⎨

⎩

E ∈ Hmin(s,r)(Ω) and

∥E∥
Hmin(s,r)(Ω) ! ∥f∥L2(Ω) + ∥div f∥Hs−1(Ω) + ∥Ed∥Hr(Ω) + ∥ curlEd∥L2(Ω).
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Extra-regularity of curlE

For µ−1 curlE ∈ H(curl;Ω), again two key ingredients...

Regular-gradient splitting of elements of H(curl;Ω) in a domain Ω of the A-type, see

Thm 3.6.7 [Assous-PC-Labrunie’18].

Shift theorem, see Thm 3.4.5 [Costabel-Dauge-Nicaise’10], for the Neumann problem.

One assumes that µ ∈ C1(Ω) and again that ∂Ω is of class C2.

Applying these results to µ−1 curlE, one concludes that:

if curlEd ∈ Hr
′

(Ω) with r
′ ∈ [0, 1] \ { 1

2},

then

⎧

⎨

⎩

curlE ∈ Hr
′

(Ω) and

∥ curlE∥
Hr′ (Ω)

! ∥f∥L2(Ω) + ∥Ed∥L2(Ω) + ∥ curlEd∥Hr′ (Ω)
.

NB. If Ω is a domain with boundary of class C2, it is automatically of the A-type.
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H(curl;Ω)-conforming discretization

For the sake of simplicity, assume that Ω is a (Lipschitz) polyhedron.

Let (Th)h>0 be a shape regular family of tetrahedral meshes of Ω.

We choose the first family of edge finite elements for the discretization [Nédélec’80]:

for h > 0, and K ∈ Th, let R1(K) := {v ∈ P 1(K) |v(x) = a+ b× x, a, b ∈ R3}.

For h > 0, introduce the discrete spaces

V h := {vh ∈ H(curl;Ω) |vh|K ∈ R1(K), ∀K ∈ Th}, V 0
h := H0(curl;Ω) ∩ V h.

The discrete variational formulation reads

(FV Eh)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find Eh ∈ V h such that

aω(Eh,F h) = ℓD(F h), ∀F h ∈ V 0
h,

Eh × n = gh on ∂Ω,

with the sesquilinear form aω : (u,v) -→ (µ−1 curlu| curlv)− ω2(εu|v).
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Error estimates-1

If the form aω is coercive in H0(curl;Ω), one uses Céa’s lemma.

If the form aω is not coercive, one must prove a uniform discrete inf-sup condition:

∃Cω , hω > 0, ∀h ≤ hω , ∀uh ∈ V 0
h, sup

vh∈V 0
h
\{0}

|aω(uh,vh)|
∥vh∥H(curl;Ω)

≥ Cω ∥uh∥H(curl;Ω).

– Tedious proof ! –
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Error estimates-1

If the form aω is coercive in H0(curl;Ω), one uses Céa’s lemma.

If the form aω is not coercive, one must prove a uniform discrete inf-sup condition.

In both instances, one concludes that

(Cea) ∃C > 0, ∀h(≤ hω), ∥E −Eh∥H(curl;Ω) ≤ C inf
vh∈V h

∥E − vh∥H(curl;Ω) .

Without any regularity assumption on E: limh→0+ ∥E −Eh∥H(curl;Ω) = 0.

When E ∈ PHt(Ω) and curlE ∈ PHt
′

(Ω) for some t, t′ > 0, one can bound

the right-hand side of (Cea) with respect to hmin(t,t′,1)...
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Error estimates-2

When E ∈ PHt(Ω) and curlE ∈ PHt
′

(Ω) for t, t′ > 0, one uses interpolation...

If t > 1/2, t′ > 0, one uses Nédélec’s classical interpolation

[Bermudez-Rodriguez-Salgado’05] to find the estimate

∥E −Πcurl
h E∥H(curl;Ω) ! hmin(t,t′,1)

(

∥E∥PHt(Ω) + ∥ curlE∥
PHt′ (Ω)

)

.

If t ∈ (0, 1/2], t′ > 0, one uses quasi-interpolation [Ern-Guermond’18], or

combined interpolation [PC’16]-[PC-preprint], to derive a similar estimate.
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Error estimates-2

When E ∈ PHt(Ω) and curlE ∈ PHt
′

(Ω) for t, t′ > 0, one uses interpolation...

If t > 1/2, t′ > 0, one uses Nédélec’s classical interpolation

[Bermudez-Rodriguez-Salgado’05] to find the estimate

∥E −Πcurl
h E∥H(curl;Ω) ! hmin(t,t′,1)

(

∥E∥PHt(Ω) + ∥ curlE∥
PHt′ (Ω)

)

.

If t ∈ (0, 1/2], t′ > 0, one uses quasi-interpolation [Ern-Guermond’18], or

combined interpolation [PC’16]-[PC-preprint], to derive a similar estimate.

When Ω has a boundary of class C2, one follows [§8,Dello Russo-Alonso’09] to take

into account the approximation of the domain by the meshes. One concludes that

∥E −Eh∥H(curl;Ω) ! hmin(s,r,r′)
(

∥f∥L2(Ω) + ∥div f∥Hs−1(Ω)

+ ∥Ed∥Hr(Ω) + ∥ curlEd∥Hr′ (Ω)

)

where the exponents s, r, r′ ∈ [0, 1] \ { 1
2} are related to the regularity of the data.
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Numerical results

Software: Freefem++.

Example 1: Ω := {x | |x| < 1} ; ω = 1 ;

material tensors: µ = diag
(

1, 1, 1
)

, ε = diag
(

1 + 10−1i, 1 + 10−1i,−2 + 10−1i
)

.

The sesquilinear form is coercive.

Manufactured solution: Eref(x) =

⎛

⎜

⎜

⎝

−1

1

1

⎞

⎟

⎟

⎠

exp(iπk · x), with k =
1

√
14

⎛

⎜

⎜

⎝

3

2

1

⎞

⎟

⎟

⎠

.

The volume data f and surface data g are chosen accordingly.
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Numerical results

Software: Freefem++.

Example 1: Ω := {x | |x| < 1} ; ω = 1 ;

material tensors: µ = diag
(

1, 1, 1
)

, ε = diag
(

1 + 10−1i, 1 + 10−1i,−2 + 10−1i
)

.

The sesquilinear form is coercive.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
10

-2

10
-1

Numerical error
Projection error
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Numerical results

Software: Freefem++.

Example 2: Ω := (0, 1)3 ; ω = 1 ;

material tensors: µ = diag
(

1, 1, 1
)

, εη = diag
(

1, 1,−2 + iη
)

, for η > 0.

Manufactured solution: Eref(x) =

⎛

⎜

⎜

⎝

2 cos(πx1) sin(πx2) sin(πx3)

− sin(πx1) cos(πx2) sin(πx3)

− sin(πx1) sin(πx2) cos(πx3)

⎞

⎟

⎟

⎠

.

The volume data f and surface data g are chosen accordingly.
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Numerical results

Software: Freefem++.

Example 2: Ω := (0, 1)3 ; ω = 1 ;

material tensors: µ = diag
(

1, 1, 1
)

, εη = diag
(

1, 1,−2 + iη
)

, for η > 0.
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Conclusion

We solved theoretically and numerically the time-harmonic Maxwell equations with a

Dirichlet boundary condition.

For the problem with a Neumann boundary condition, ie. µ−1 curlE × n = j on ∂Ω,

see [Chicaud-PC-Modave’21].

For the problem with a mixed boundary condition:

variational formulation, see [Back-Hattori-Labrunie-Roche-Bertrand’15] ;

compact embedding, see [Fernandes-Gilardi’97] ;

a priori regularity, see [Jochmann’99] for partial results.

"Limit case" of a hyperbolic metamaterial, ie. ε0 = diag
(

1, 1,−2
)

, see

[PC-Kachanovska-preprint] for some preliminary results.

Adding a Domain Decomposition Method "layer" is possible.

Other anisotropic models, see [PhD-Chicaud’2x].
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Thank you for your attention.
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Domain of the A-type

A domain Ω is said of the A-type if, for any x ∈ ∂Ω, there exists a neighbourhood V of x in

R3, and a C2 diffeomorphism that transforms Ω ∩ V into one of the following types, where

(x1, x2, x3) denote the cartesian coordinates and (ρ, ω̃) ∈ R× S2 the spherical coordinates:

1. [x1 > 0], i.e. x is a regular point;

2. [x1 > 0, x2 > 0], i.e. x is a point on a salient (outward) edge;

3. R3 \ [x1 ≥ 0, x2 ≥ 0], i.e. x is a point on a reentrant (inward) edge;

4. [ρ > 0, ω̃ ∈ Ω̃], where Ω̃ ⊂ S2 is a topologically trivial domain. In particular, if ∂Ω̃ is

smooth, x is a conical vertex; if ∂Ω̃ is a made of arcs of great circles, x is a polyhedral

vertex.
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