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Introduction/Motivation

- N

® A starting point:
® Study of electromagnetic wave propagation in plasmas, a popular model in
plasma physics
® Time-harmonic model, rigorously derived and studied mathematically in
® The model:

® Find E € H(curl;Q) := {v € L*(Q)| curlv € L?(Q)} governed by:
2
& curlcurlE — w—ng = 01in €2, where

S(x) —iD(x) 0
K(x) = | iD(x) S(x) 0
0 0 P(x)

is the anisotropic plasma response tensor (S, D, P C-valued coefficients) ;
£ aboundary condition on 952 (with non-zero data): value of E x n 5q, of

curl E X njgq, or of E X n|r and curl E X n o\, IS given.

€4
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Introduction/Motivation

- N

® Key properties of the anisotropic plasma response tensor:
$ K IS a normal, non-hermitian, matrix field of g’o(Q) :
$ K fulfills an ellipticity condition:

In >0, Vz € C°, n]z|* < S[z"Kz] aeinqQ.

® Main results from

#® the model, expressed variationally, involves a sesquilinear form that is
automatically coercive: hence it is well-posed.

® Plain, mixed and augmented variational formulations are analyzed.

® Discretization is achieved with the help of the piecewise H!-conforming Finite
Element Method (vector-valued Lagrange FE), together with a Fourier expansion
(€2 is a torus).

® A Domain Decomposition Method is proposed.
® No numerical analysis is provided.

. |
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Introduction/Motivation

- N

® Our goals and assumptions:
$ Study a time-harmonic electromagnetic wave propagation model with L°°,
anisotropic magnetic permeability p and electric permittivity .

$ Assume a "generalized" ellipticity condition for £ € {g, pu}:
(Bll) 30 €R, IE_ >0, Vz € C3, £_|z|> <R[ - 2"¢z] aein Q.

® Main results :

® the model, expressed variationally, enters Fredholm alternative (coerciveness
does not always hold) ;

#® derivation of the a priori regularity of the field E and of its curl;

e

discretization with the help of the H (curl)-conforming Finite Element Method ;
® numerical analysis.

. |
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Introduction/Motivation

- N

® Our goals and assumptions:

$ Study a time-harmonic electromagnetic wave propagation model with L°°,
anisotropic magnetic permeability p and electric permittivity .

$ Assume a "generalized" ellipticity condition for £ € {g, pu}:

(Bll) 30 €R, IE_ >0, Vz € C3, £_|z|> <R[ - 2"¢z] aein Q.

® Some references on these issues:
® "Useful" monographs : :

. |
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Introduction/Motivation

- N

® Our goals and assumptions:
$ Study a time-harmonic electromagnetic wave propagation model with L°°,
anisotropic magnetic permeability p and electric permittivity .

$ Assume a "generalized" ellipticity condition for £ € {g, pu}:
(Bll) 30 €R, IE_ >0, Vz € C3, £_|z|> <R[ - 2"¢z] aein Q.

® Some references on these issues:
#® On the regularity results:
£ inthe (PH?®(Q2))s>0 scale: assuming piecewise smooth, elliptic, scalar
fields/nermitian tensors : ,
& inthe (L"(92)),>1 scale: assuming L°°, elliptic, perturbation of hermitian
tensors ; B
& inthe (C%%(Q))a>0 scale: assuming (H6lder-)continuous, elliptic tensors

’ ’ .
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Time-harmonic Maxwell equations

- N

® Oisadomain;w > 0is the pulsation.

® Given volume data f and surface data g, solve:

( Find E € H(curl;Q) s.t.
curl (u_l curl E) — w2§E =f InQ;

/\

Exn=g on 0f2.

\

[Dirichlet boundary condition.]
® Thetensors € € {g, u} are elliptic (Ell), and they belong to L™ (£2).

Volume data: f € L?(Q).

L I )

Surface data: g = Eg4 X n|gq, With E4 € H(curl; (2).

. |
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Helmholtz decompositions-1

- N

® Define the function spaces

Ho(curl; Q) := {v € H(curL; Q) |v x n|5q = 0},
H(divg; Q) = {v € L*(Q) | €v € H(div;Q)},
H(div£0;2) = {v € H(div & ) |divgv = 0},
K x (& Q) = Ho(curl; Q) N H(div £0; Q).

® Helmholtz decompositions:
L*(Q) = V[H§(Q)] @ H(div£o; Q) and Ho(curl;Q) = V[Hg(Q)] @ K n (£ 9Q).

NB. Notion of orthogonality does not apply when £ is non-hermitian.

® To solve our model, we rely on the second Helmholtz decompostion.

. |
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Helmholtz decompositions-2

- N

® First Helmholtz decomposition L*(Q2) = V[H} (Q)] & H (div £0; Q).
Idea of proof- Let v € L?(Q).
#® The Dirichlet problem

Find p € H;(€2) such that
(PDir) 1
(EVpIVa) = (§v[Va), Vg€ Hy(Q),

is well-posed, thanks to (Eil): 3!p, with [|p[| g1 (o) < l[vllL2q)-
9 Let v = v — VpE L2(Q) ||’UT||L2(Q) Sj ”v”LQ(Q) and

(§vr|Vq) =0, Vg€ Hy(),

ie. vr € H(div £0; ).
® The sum is direct because (Pp;.) is well-posed.
® Second Helmholtz decomposition H(curl; Q) = V[H} ()] & K n(&; Q) follows as a

straightforward corollary.

€4
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Stlldy of KN<€; Q)

- N

® The embedding of K x (&; Q) into L?(2) is compact.
NB. One has a similar property for the function space Ho(curl; ) N H(div §; §2).

® Property relies on a key ingredient: a decomposition of H (div £0; Q).
® Let (I'y)r=0,x be the (maximal) connected components of 6S2:

QN(€7Q) ‘= {q € Hl(Q)|d1V£vq =0in QvQH—‘O — 07 Q|l—‘k — CStkv 1 S k S K}

® H(divéo; ) = VIQn ()] ® £ curl[H'(Q)]. Moreover,

Vz € H(div£0;Q), (¢, w) € Qn(£Q) x H' (Q),

z=Vq" +§_1 curlw with [V || 2 ) + [lwll g1 ) S I12llL20)-

Idea of proof. extraction of vector potential

. |
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Well-posedness (1)
B o

® Recall our model:

( Find E € H(curl;Q) s.t
curl (u_l curl E) — w2§E =f InQ;

I\

Exn=g on 0f2.

\
® An equivalent variational formulation reads

[ Find E € H(curl; ) such that
(FVE) ¢ (p~'curlE|curlF) — wQ(EE\F) ={p(F), VF € Hy(curl; Q2),

E x n =g on of,

\

where /p : F s (f|F) belongs to (Ho(curl;2))".

. |

ENSTA
ElectroSeminar, March 2021 — p. 11/25



Well-posedness (1)

® Recall our model:

( Find E € H(curl;Q) s.t
curl (u_l curl E) — WQEE =f inQ;

2\

Exn=g on 0f2.

\
® Introduce the new unknown Eq := E — E; € H(curl; Q), which is governed by

(FVE Find Eg € Hp(curl; Q2) such that
° (p~ ! curl Eg|curl F) — w?(eEo|F) = {p o(F), VF € Ho(curl;Q),

where lp o : F — (f + w?eE4|F) — (u~ ' curl E4] curl F) belongs to
(Ho(curl; Q))".

. |
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Well-posedness (1)

® Recall our model:

( Find E € H(curl;Q) s.t.
curl (u_l curl E) — wQEE =f InQ;

I\

Exn=g on 012.

\

® Using the second Helmholtz decomposition, split Eq as Eq = Vpg + kg, Where
po € Hg(2) and ko € K n(g; Q) are respectively governed by

)
(PE. ) 4 Find po € H} (©2) such that
Dir
L _w2(§Vp0|vq) — ED,O(VQ)v Vq S Hol (Q)v
)
. Find kg € K n(g; ) such that
(PK) A 1 B 2 2
(™" curlkg|curlk) — w”(ekolk) = w?(eVpolk) + ¢p o(k), Vk € K N(g;),
L = = = =
with {p o : F — (f + w?’eE4|F) — (u~ ' curl E4| curl F).

€4
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Well-posedness (2)

® (Pf. ) is well-posed, thanks to the ellipticity condition (Ell).

® (PE) enters Fredholm alternative.
Idea of proof. Let o > 0.
The form (v, w) — (u~! curlv| curlw) — w?(gv|w) is split as

® (v,w)—~ (u!curlv|curlw) + ae'?s (v|w), which is coercive on K (g5 92).

® (v,w)— —((w?e+ ae'n)v|w), which is a compact perturbation on K y (g; Q),
thanks to the compact embedding of K (g; 2) into L?%(Q).

. |
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Well-posedness (2)

(P%,.) is well-posed, thanks to the ellipticity condition (El).
(P#) enters Fredholm alternative.

So (FV Ep) and (FV E) also enter Fredholm alternative:

® either (F'V Ey) admits a unique solution Eg in Hy(curl; ©2), which depends
continuously on the data f and E;:

”EOHH(curl;Q) SJ ||f||L2(Q) + ||Ed||H(curl;Q) 3

® or, (FV Ep) has solutions if, and only if, f and E; satisfy a finite number of
compatibility conditions.

Moreover, each alternative occurs simultaneously for (F'V Eg) and (FV E).

For the rest of the talk we assume that the problems are well-posed, ie. existence,
uniqueness and continuous dependence of the solution wrt the data.

ElectroSeminar, March 2021 — p. 12/25
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Extra-regularity of E/
- -

For Eg € Hg(curl; 2), two key ingredients...

L I

Regular-gradient splitting, see ;
In a domain €, for all w in Ho(curl; ), there exist u*8 in H*(Q) and ¢ in H} (Q),
such that u = w8 4+ V¢ in Q, with [[u™8|| 71 ) + |0l 51 (o) S |wllEH(curtn)-

® Shift theorem, see
Assume that e € C'(Q2) and that 9Q is of class C2.

Let ¢in (H}(2))', and p governed by the Dirichlet problem

Find p € H} () such that
(eVpIVaq) = €(q), Vg € Hi(Q).

Then, forall o € [0,1] \ {3}

e (Hé_(’(ﬂ))/ — pe HTL(Q):

/
3C, > 0, V¢ € (H(%_J(Q)) 3 ||p||Ha+1(Q) < CaHe”(H(l)—a(Q))’-

€4
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Extra-regularity of E/
® For Eg € Hy(curl; Q), two key ingredients...
9

Regular-gradient splitting, see ;
In a domain €, for all w in Ho(curl; ), there exist u*8 in H(Q2) and ¢ in H} (),
such that u = ™8 + V¢ in Q, with [[u™8 || g1 o) + |0l 51 () S [|wllEH(curtn)-

® Shift theorem, see
Assume that e € C'(Q2) and that 9Q is of class C2.

® Applying these results to Eq, one concludes that:
if f € L?(Q) is such that div f € H5~1(Q) with s € [0,1] \ {3},
if E; € H*(Q) withr € [0,1]\ {21},
then

1B grmineeo) ) S [ FllL2o) + 1div fllgs—1 ) + |1 Bdllmr (o) + [ curl Eq|[ L2 q).

. |
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Extra-regularity of curl E/

- N

® For p~ ! curl E € H(curl;2), again two key ingredients...

® Regular-gradient splitting of elements of H(curl; Q) in a domain Q of the 2-type, see

® Shift theorem, see , for the Neumann problem.
One assumes that p € gl (Q) and again that 6% is of class C2.

® Applying these results to E—l curl E, one concludes that:
if curl B4 € H™ (Q) with =/ € [0,1]\ {1},
then

curl E € Hr/(Q) and
leurl Bl o o) S Ifllz2(ay + 1 Ball 2y + | eurl Eall o o

NB. If ©2 is a domain with boundary of class C?, it is automatically of the -type.

. |

ENSTA
oo ElectroSeminar, March 2021 — p. 15/25



ENSTA

Outline

Introduction/Motivation

The model and its well-posedness
A priori regularity of the fields
Discretization and error estimates
Numerical illustrations

Conclusion and perspectives

|

ElectroSeminar, March 2021 — p. 16/25



H (curl; (2)-conforming discretization

- N

® For the sake of simplicity, assume that 2 is a (Lipschitz) polyhedron.

Let (71)n>0 be a shape regular family of tetrahedral meshes of 2.

L I )

We choose the first family of edge finite elements for the discretization

forh >0,and K € Tj,, let R1(K) :={v € P1(K)|v(x) =a+bx x, a,bc R3}.
® For h > 0, introduce the discrete spaces

Vi i={vp € H(curl; Q)| v x € R1(K), VK € Tp}, V) := Ho(curl; Q) NV,

® The discrete variational formulation reads

[ Find E}, € V, such that
(FVER)  § aw(En, Fp) ={p(Fp), VF, € V],
| En X 1n =g, o0n o,
with the sesquilinear form a., : (u,v) — (p~! curlu| curlv) — w? (eu|v).

ENSTA
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Error estimates-1

- N

® [f the form a,, is coercive in Hy(curl; 2), one uses Céa’s lemma.

® |f the form a,, is not coercive, one must prove a uniform discrete inf-sup condition:

ik > 0, VR < hoy, Vap € VY, sup (2O o .

vrevo\{0} 1Vnll H(curLe)

— Tedious proof | —

. |
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Error estimates-1

- N

® |f the form a, is coercive in Hg(curl; ), one uses Céa’s lemma.
® If the form a,, is not coercive, one must prove a uniform discrete inf-sup condition.

® |n both instances, one concludes that

(Cea) 3¢ > 0, \V/h(é hw)? HE - EhHH(curl;Q) <C "Jhig{/h HE - vhHH(curl;Q) .

$ Without any regularity assumption on E: limj, .o+ [|[E — Ex|| g (cur;0) = 0-

® When E € PH*(Q)and curl E € PHt/(Q) for some t,t’ > 0, one can bound
the right-hand side of (Cea) with respect to pmin(t:t,1)

. |
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Error estimates-2

- N

® When E € PH®(Q) and curl E € PH*® (Q) for t,t/ > 0, one uses interpolation...

® Ift>1/2,t' > 0, one uses Nédélec’s classical interpolation
to find the estimate

. /
HE - H%urlEHH(curl;Q) 5 hmm(t’t L) (HEHPH'C(Q) + H CurlEHth’(Q)) .

® Ift e (0,1/2],t" > 0, one uses quasi-interpolation , Or
combined interpolation , to derive a similar estimate.

. |
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Error estimates-2

- N

® When E € PH®(Q) and curl E € PH*® (Q) for t,t/ > 0, one uses interpolation...

® Ift>1/2,t' > 0, one uses Nédélec’s classical interpolation
to find the estimate

. /
|E — 5 B g eurni) S D™D (1B pregey + | curl Bl p g g ) -

® Ift e (0,1/2],t" > 0, one uses quasi-interpolation , Or
combined interpolation , to derive a similar estimate.
® When Q has a boundary of class C?, one follows to take

into account the approximation of the domain by the meshes. One concludes that

|E — Epll mr(curt.o) S R™METT) (||f||L2(Q) + |div fll grs—1(0)

+ | Eallzre(@) + | curl Egll s ) )

where the exponents s, r,r’ € [0,1] \ {%} are related to the regularity of the data.
€4
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Numerical results

- N

® Software: Freefem++.

® Example 1: Q:={z||z| < 1};w=1;
material tensors: p = diag(1,1,1), € = diag(1 + 10~ "4, 1+ 1074, =2 + 10~ 14).
The sesquilinear form is coercive.

—1
Manufactured solution: E.s(x) = | 1 | exp(irk - x), with k =

1
The volume data f and surface data g are chosen accordingly.

1
v 14

=N W

. |
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Numerical results

Software: Freefem++.

L I

Example 1: Q :={x||z| < 1};w =1;

-

material tensors: p = diag(1,1,1), € = diag(1 + 10~ "4, 1+ 1074, =2 + 10~ 14).

The sesquilinear form is coercive.

—6— Numerical error
—6— Projection error

Relative error in H (curl)-norm

]0— 1 1 1 1 1 1 1 1
0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10.11

Mesh size h

ENSTA
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Numerical results

-

® Software: Freefem++.

® Example2:Q:=(0,1)3;w =1;
material tensors: p = diag(1,1,1), €” = diag(1,1, —2 4 in), for n > 0.

2 cos(mxy) sin(mxa) sin(mxs)
Manufactured solution: Eg(x) = | — sin(wz1) cos(ma2) sin(mxs)

— sin(mz1) sin(mwxg) cos(mxs)
The volume data f and surface data g are chosen accordingly.

. |
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Numerical results

-

® Software: Freefem++.

® Example2: Q:=(0,1)3;w =1;
material tensors: p = diag(1,1,1), €” = diag(1,1, —2 4 in), for n > 0.

= —&— Projection error
; n=le-1
= ]0U r[—%—n=le-2
Ly —d—=le-3
= —F—=le4
= — T n=le-6
L
=i
=
=
o 107}
2
’4—;
~
0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

Mesh size h

. |
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Conclusion

We solved theoretically and numerically the time-harmonic Maxwell equations with a
Dirichlet boundary condition.

For the problem with a Neumann boundary condition, ie. H—l curl E X n = j on 0%,
see

For the problem with a mixed boundary condition:

#® variational formulation, see

® compact embedding, see ;

® a priori regularity, see for partial results.

"Limit case" of a hyperbolic metamaterial, ie. £ = diag(1,1, —2), see
for some preliminary results.

Adding a Domain Decomposition Method "layer" is possible.

Other anisotropic models, see

-

|
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Domain of the 2(-type
B -

A domain €2 is said of the 2-type if, for any x € 052, there exists a neighbourhood V of x in
R3, and a C? diffeomorphism that transforms £ N V into one of the following types, where
(x1, 2, x3) denote the cartesian coordinates and (p, @) € R x S? the spherical coordinates:

1. [z1 > 0], L.e. x is a regular point;
2. [x1 > 0,22 > 0], i.e.  is a point on a salient (outward) edge;
3. R3\ [z1 > 0,22 > 0], i.e. = is a point on a reentrant (inward) edge;

4. [p>0,u € Q], where Q C S? is a topologically trivial domain. In particular, if 9 is
smooth, x is a conical vertex; if 9Q is a made of arcs of great circles, « is a polyhedral

vertex.

. |
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