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Scattering of time harmonic electromagnetic waves

£
“ ES=E-F

l S.M. rad. cond.
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curl E—ikH=0, curlH+ikE=0 inR3\D.
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Scattering of time harmonic electromagnetic waves ﬂ (IT

Ei ‘ ES=E-F'
S.M. rad. cond.

curl E—ikH=0, curlH+ikE=0 inR3\D.

Silver-Mller rad. cond. leads to

elkIx|
E°0) = 4o (Ew(|f(|) +0(|1X|)) x| > .
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Boundary conditions ﬂ(“'

Perfectly conducting:
vx E=0, onadD.

Penetrable Scatterer:

[e*%uthzo, [;f%vaL:o, onabD.

Impedance condition:

vxH+Avx (Exv)=0, onaD.
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Inverse Scattering Theory ﬂ(“'

Theorem

Ew = 0 0n S? implies ES = 0 inR®\ D.
(see D.Colton, R.Kress, 2013)

Inverse Scattering Problems:

m Given: E, forone, several, or all E’
m Determine: D, k|p, and/or A, etc.
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Inverse obstacle problem ﬂ(“'

F(dD) = E,
with E = ES + E' solves MWEq in R® \ D,
Silver-Muller rad. cond. for ES and v x E=0o0naD.
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Inverse obstacle problem ﬂ(“'

F(dD) = E,
with E = ES + E' solves MWEq in R® \ D,
Silver-Muller rad. cond. for ES and v x E=0o0naD.

~ severly ill-posed
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Inverse obstacle problem

F(dD) = E,
with E = ES + E' solves MWEq in R® \ D,
Silver-Muller rad. cond. for ES and v x E=0o0naD.

~ severly ill-posed

Theorem (Uniqueness)
If Exo(.; Dy, k, E") = Ex(.; D2, k, E) for all E'(x) = pe*?X, then

Dy = D,

(see D.Colton, R.Kress, 2013)
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Domain Derivative

Perturbation of D C R® (bounded domain, sufficiently smooth)
Dp={¢(x) =x+ h(x): x € D}

with h € C}(R?).
Note: ||h||ct <1/2 ~» ¢ diffeomorphism.
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Domain Derivative ﬂ(“.

Perturbation of D C R® (bounded domain, sufficiently smooth)
Dp={¢(x) =x+ h(x): x € D}

with h € C}(R?).
Note: ||h||ct <1/2 ~» ¢ diffeomorphism.
Derivative: F'[9D] € £(C}(IR®), L2(S?)) with

1

7l |1F(0n) = F2D) = F'a0}h] 0, [[ler = 0.
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Weak formulation ﬂ(“'
E € Hy(cur,Q\ D), withDC QCR®

(curl E, curl V)LQ(Q\E) — k2(E, V)LZ(Q\E) +1k(A(1/ X E), V)LZ(BQ)

—A(E,V)
= (ikA(v x E") —v x curl E', V)L2(aQ)

forall V € Hy(curl,Q\ D), with A:v x W — v x HS Calderon
operator.
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Weak formulation ﬂ(“'
E € Hy(cur,Q\ D), withDC QCR®

(curl E, curl V)LQ(Q\E) — k2(E, V)LZ(Q\E) +1k(A(1/ X E), V)LZ(BQ)

—A(E,V)
= (ikA(v x E") —v x curl E', V)L2(aQ)

forall V € Hy(curl,Q\ D), with A:v x W — v x HS Calderon
operator.

~ A(E,V)=£(V), forall Ve Hy(curl,Q\ D)
(see P. Monk (2006))

- The Domain Derivative in Time Harmonic Electromagnetic Scattering KIT, Institute of Applied and Numerical
Mathematics, January 2021



Continuous dependence

Karlsruhe Institute of Technology

E and Ej, denote the solutions w.r.t. D and Dy, respectively.
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Continuous dependence

_—
E and Ej, denote the solutions w.r.t. D and Dy, respectively.
Transformation: £, = E o ¢
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Continuous dependence ﬂ(“'

E and Ej, denote the solutions w.r.t. D and Dy, respectively.
Transformation: Eh =Epog
En=Jy En

Then, Ep € Hy(cur,Q\D) <= Ep € Ho(curl, O\ Dp).
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Continuous dependence ﬂ(“'

E and Ej, denote the solutions w.r.t. D and Dy, respectively.
Transformation: Eh =Epog
En=Jy En

Then, Ep € Hy(cur,Q\D) <= Ep € Ho(curl, O\ Dp).

Theorem (continuity)

It holds
S
I HEh—EH =G
||h\|c1—>0 H(curl,Q\D)
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Scetch of the proof

Karlsruhe Institute of Technology

A(Ep— E, V) = A(Ep, V) — An(Ep, V)
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Scetch of the proof

A(Ep— E, V) = A(Ep, V) — An(Ep, V)

_/ curIEh< - JJTJ(P>cur|v

— K2E, (I—J(; J;Tdet(J(p)>de
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Scetch of the proof ﬂ(“'

AE,—E V) = V) — Ap(Ep, V)
_ . _
_/ curl B, </ = J(PJ J(P> curl V
—O(||hll 1)

— K2E, (/ - J;1J(;Tdet(J¢)) Vx

=0(l[hllg1)
A perturbation argument leads to
HE,,—EH 50, |hle —0.
H(curl,Q\D)
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Domain Derivative A\‘(IT

Theorem (material derivative)
E is differentiable, i.e.

=0
Heurl QR)

EEW‘

lim ——
[hlg1—0 [[All g

with material derivative W € Hy(curl, Q' \ D), linearly depending on h and
satisfying

AW, V) = /Q\bcurl ET (div(h)/ — Jp—Jy ) curl V
+K2ET (div(h)l— Jp— JhT) Vx
for all V € Hy(curl, Q\ D).
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Domain Derivative

W= E' + JjE+ Jeh,
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Domain Derivative A\‘(IT

W= E' + JjE+ Jeh,
Theorem (domain derivative)
E' € H(curl, QO \ D) radiating weak solution of Maxwell’s equations
cul E' —ikH' =0, curlH' +ikE' =0 inR®\D.
with

vx E' =vxV¢(hE)—ikhyvx (Hxv) onaD.

(see R. Kress (2001), M. Costabel and F. Le Louér (2012), F.H. (2012),
R. Hiptmaier and J. Li (2018), F. Hagemann (2019) )
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2nd Domain Derivative

(0Dn,)hy = {@1(p2(x)) = x + h2(x) + hy (x + h2(x)) : x € 0D}

~ not symmetric !
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2nd Domain Derivative ﬂ(“.

(0Dn,)hy = {@1(p2(x)) = x + h2(x) + hy (x + h2(x)) : x € 0D}

~ not symmetric !
Definition F”'[0D] bilinear, symmetric, bounded mapping with

a0 o thH |F2)(h 9, ") — F'laD]y — F[aD] (s, he) | = 0.
1
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2nd Domain Derivative ﬂ(“.

(0Dn,)hy = {@1(p2(x)) = x + h2(x) + hy (x + h2(x)) : x € 0D}

~ not symmetric !

Definition F”[dD] bilinear, symmetric, bounded mapping with

im s [P o 05~ Faplm — Fialm. o) <o
2 1

From hy o ¢, ' = hy — Jp, 92 + O(||h2||?) we obtain

F"[3D](hy, hy) = (F'[2D])hy)’ [9D]hy — F'[3D](Jy, h)

- The Domain Derivative in Time Harmonic Electromagnetic Scattering KIT, Institute of Applied and Numerical
Mathematics, January 2021



AT

LetdD be of class C3. Then E", H" exist as radiating solution with

Theorem (2nd domain derivative)

2
vx E = Z v X Vr(hi,ij{,v — Evh;!—rvrhj,v)
A=1

2
— ik Z Div(h;,Hr)hj, — hi,vH;,T
i#j=1

2
+ik Y hi (v x H)(v x V(h;,))
i#j=1
+v X Ve ((hf, Rz — 2k yho, )y )
+ 2ikhy oy (R — k) Hy — ik(hy ;Rhy )H: ~ ondD.
(F. Hagemann, F.H., 2020)
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Iterative Regularization Methods A

Karlsruhe Institute of Technology

F(OD) = Ex .

domain derivative ~~ Landweber iteration, regularized Newton method,
Halley-method, etc.
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Iterative Regularization Methods

F(OD) = Ex .

domain derivative ~~ Landweber iteration, regularized Newton method,
Halley-method, etc.

Iteration step:
((F'[oD")*F'[oD"+al)h = (F'[oD"])*(Es — F(0D"))

with update 0D 1 = 9D,
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lterative Regularization Methods AT

F(OD) = Ex .

domain derivative ~~ Landweber iteration, regularized Newton method,
Halley-method, etc.

Iteration step:
((F'[oD")*F'[oD"+al)h = (F'[oD"])*(Es — F(0D"))

with update 0D 1 = 9D,
stop condition:

|ES — FD")|| < w0 < || ES — F(D)|

for0<j<n.
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Tangential cone condition ? ﬂ(“.

IF(0Dn) — F(3D) — F'[oD]h|| < cl|hll[|F(2Dn) — F(3D)||

(M.Hanke, A.Neubauer, O.Scherzer (1995), M.Hanke (1997), F.H. and
W.Rundell (2000), B.Kaltenbacher, A.Neubauer, O.Scherzer (2008))
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Tangential cone condition ? Q(IT

IF(0Dn) — F(3D) — F'[oD]h|| < cl|hll[|F(2Dn) — F(3D)||

(M.Hanke, A.Neubauer, O.Scherzer (1995), M.Hanke (1997), F.H. and
W.Rundell (2000), B.Kaltenbacher, A.Neubauer, O.Scherzer (2008))

Corollary

If —k? is no eigenvalue of the Laplace-Beltrami operator on 9D and
h, = constant on dD, then F'[dD]h = 0 implies h, = 0.
(F. Hagemann, F.H. (2020))
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Integral Equation Method

Ansatz: ES = —EA with

EM(X) = ik /BDA(y) ®(x,y) ds, — iv'/aDDm(y) O(x, y) ds,
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Integral Equation Method AT
Ansatz: ES = —&A with
. 1 .
EA(X) = ik /BDA(y) ®(x, y) ds, — EV'/aDDW/\(y) ®(x,y) dsy .
~» boundary integral equation (first kind):

')’tg)\ = ’)/tEi ,

k? no interior eigenvalue of D (A.Buffa, R.Hiptmaier (2003)).
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Integral Equation Method ﬂ(“'

Ansatz: ES = —EA with

. 1 .
EA(X) = ik /BDA(y) ®(x, y) ds, — EV'/aDDW/\(y) ®(x,y) dsy .
~» boundary integral equation (first kind):
TEA = 1E,

k? no interior eigenvalue of D (A.Buffa, R.Hiptmaier (2003)).
Boundary element method library: Bempp
Similiarly for £/ (and E”), (e.g. E, ork = —3 Y3 viAypx;.)

(see T.Arens, T.Betcke, F.Hagemann, F.H. (2019) and F.Hagemann, F.H.
(2020))
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Reconstruction (reg. Newton-Method)

Karlsruhe Institute of Technology

Exact shape D Initial guess Do Iteration 1
2 2
1 1
0 0
1 1
0 0
z 1 ¢ 2 2 ¢
Iteration 4 Cut with plane x =z Cut with plane x =y

( 10% noise, starlike with 25 basis functions )
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Chirality of Scattering Objects

~~ shape optimization problem
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20

Helicity of vector fields

Consider following Beltrami fields
W*(B) = {U € H(curl, B) : curl U = +kU}

(U € W*(B) has helicity £1).
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20

Helicity of vector fields
Consider following Beltrami fields

W=(B) = {U € H(curl, B) : curl U = +kU}
(U € W*(B) has helicity £1).

Example:
Plane waves:

E'(x) = AehdX  Hi(x) = (d x A)e*®* with A-

Then E' H € WE(B) ifandonlyif idxA=+A.
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21

Herglotz wave functions

For A € L2(S?) define

EVA](x) = /5 _A(d)el@ dsy.

- The Domain Derivative in Time Harmonic Electromagnetic Scattering
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21

Herglotz wave functions AT
For A € L2(S?) define

E'[A)(x) = /52 A(d)e* > dsy,  HI[A](x) = /82 o % Ald)e*x s,

Left (or right) circularly polarized
E'A H'[Al e W5(B) <= CA=+A
C: L2(S?) — L2(S?) with CA(d) =id x A(d), d € S?.
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21

Herglotz wave functions ﬂ(“'

For A € L2(S?) define

E'[A)(x) = /52 A(d)e* > dsy,  HI[A](x) = /82 o % Ald)e*x s,

Left (or right) circularly polarized
E'A H'[Al e W5(B) <= CA=+A
C: L2(S?) — L2(S?) with CA(d) =id x A(d), d € S?.

ltholds L2(S2) = V© & V—, with
t={AtCA:Ac 3($)]
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Helicity of radiating solutions Q(IT

Theorem
For B C R®\ D holds

ES,HS € WE(B) <= Ew,Hwoe VE.

(see T.Arens, F. Hagemann, F.H., A. Kirsch (2017))

22 - The Domain Derivative in Time Harmonic Electromagnetic Scattering KIT, Institute of Applied and Numerical
Mathematics, January 2021



23

EM-chirality
Far field operator F : L2(S?) — [2(S?)

FIAI(R) = /S E(%:d,A(d)) dsg

- The Domain Derivative in Time Harmonic Electromagnetic Scattering

KIT, Institute of Applied and Numerical
Mathematics, January 2021



EM-chirality ﬂ(“.

Far field operator F : L2(S?) — [2(S?)
FIAI(R) = /S E(%:d,A(d)) dsg
Decomposition:
F=FttqoFt-—4 7t 7 FP9.— pPFEPI

’
with orth. projections P+ : L2(8?) — V*, P* = 5 (1£0).
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EM-chirality ﬂ(“.

Far field operator F : L2(S?) — [2(S?)

FIAI(R) = /52 Ew(X: d, A(d)) dsg

Decomposition:
F=FttqoFt-—4 7t 7 FP9.— pPFEPI
with orth. projections P+ : L2(8?) — V*, P* = 5 (1+C) .

Definition D is called em-achiral if there exist unitary transformations
U : 12(82) — 12(8?) with yV)¢c = —cu), j=1,...,4, such that

FrH=uWr—uy® and F+=uB®F—y*
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Measure of chirality ﬂ(“'

Observation: D em-achiral implies that 7™ has the same singular
values as F~~ and analogously for #©~ and F .

Definition Let aqu,j € N, denote the singular values of FP9,
p.qe{+ -}
1

o _ _ 2
x(F) = (lof* = o7 |2 + o~ — o7 *11%)

(see I. Fernandez-Corbaton, M. Fruhnert and C. Rockstuhl (2016))
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Measure of chirality A\‘(IT

Lemma
(a) D achiral implies x(F) = 0 (see observation)
(b) Let o; be the singular values of F, then

X(F) < Fllus = [ of -
\/ 7

(c) If D does not scatter fields of one helicity, then x(F) = || F|lns
( “=" holds, if D satisfies reciprocity relation )
(see T.Arens, F. Hagemann, F.H., A. Kirsch (2017))
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Sketch of proof of last statement ﬂ(“'

By orthogonality

X(F)? = |1 Flls - 2( of fo T+ oo )
Thus, “ = “implies
either F**—Oor]—"**_o and F™~ =0or F T =0.
By reciprocity, i.e. A- Ex(X, ¥, B) = B- Ex(X,y, A), follows

(FAB) o) =+ = (FB(=). A=) 12(s2)

For A€ V* and B € V~ we conclude from F+~ = 0 and

(FTAB) 22y = - = (FB(=.), A(—)) 12(s2)

that 7/—* = 0 and vice versa. ]
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Shape Design Problem

Find D with
X(F) = |[Fllns or argmaxypx(F).
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Shape Design Problem

Find D with
X(F) = |[Fllns or argmaxypx(F).

Modified measure:

1s(F) = 1 F I = 2(IF sl F~ llms + 17 sl F~ llms)
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27

Shape Design Problem ﬂ(“'

Find D with
X(F) = |[Fllns or argmaxypx(F).

Modified measure:

1s(F) = 1 F I3 = 2(I1F sl F~ s + 17 sl F~* s )

Lemma

(@) xus(F) < x(F)

0) x(F) =0 = xus(F) =0

©) x(F) = [|Fllus < xus(F) = Fllns

(d) x,5(F) differentiable w.r.t. h, if xys(F) & {0, || Fllus}
(F. Hagemann (2019))
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