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Scattering of time harmonic electromagnetic waves

E i Es = E − E i

S.M. rad. cond.

curlE − ikH = 0 , curlH + ikE = 0 in R3 \D .

Silver-Müller rad. cond. leads to

Es(x) =
eik |x |

4π|x |

(
E∞(

x
|x | ) +O(

1
|x | )

)
, |x | → ∞ .
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Boundary conditions
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Perfectly conducting:

ν× E = 0 , on ∂D .

Penetrable Scatterer:[
ε−

1
2 ν× E

]
±
= 0 ,

[
µ−

1
2 ν×H

]
±
= 0 , on ∂D .

Impedance condition:

ν×H + λ ν× (E × ν) = 0 , on ∂D .

...



Inverse Scattering Theory
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Theorem

E∞ = 0 on S2 implies Es = 0 in R3 \D.
(see D.Colton, R.Kress, 2013)

Inverse Scattering Problems:

Given: E∞ for one, several, or all E i

Determine: D, k |D, and/or λ, etc.



Inverse obstacle problem
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F (∂D) = E∞ ,

with E = Es + E i solves MWEq in R3 \D,

Silver-Müller rad. cond. for Es and ν× E = 0 on ∂D.

 severly ill-posed

Theorem (Uniqueness)

If E∞(.;D1, k,E i ) = E∞(.;D2, k,E i ) for all E i (x) = p eikd ·x , then

D1 = D2 .

(see D.Colton, R.Kress, 2013)
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Domain Derivative
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Perturbation of D ⊆ R3 (bounded domain, sufficiently smooth)

Dh = {ϕ(x) = x + h(x) : x ∈ D}

with h ∈ C1
0(R

3).
Note: ‖h‖C1 ≤ 1/2  ϕ diffeomorphism.

Derivative: F ′[∂D] ∈ L(C1
0(R

3),L2(S2)) with

1
‖h‖C1

‖F (∂Dh)− F (∂D)− F ′[∂D]h‖ → 0 , ‖h‖C1 → 0 .
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Weak formulation
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E ∈ H0(curl,Ω \D), with D ⊆ Ω ⊆ R3

(curlE, curlV )L2(Ω\D) − k2(E,V )L2(Ω\D) + ik(Λ(ν× E),V )L2(∂Ω)︸ ︷︷ ︸
=A(E,V )

= (ikΛ(ν× E i )− ν× curlE i ,V )L2(∂Ω)

for all V ∈ H0(curl,Ω \D) , with Λ : ν×W 7→ ν×Hs Calderon
operator .

 A(E,V ) = `(V ) , for all V ∈ H0(curl,Ω \D)

(see P. Monk (2006))
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Continuous dependence
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E and Eh denote the solutions w.r.t. D and Dh, respectively.

Transformation: Ẽh = Eh ◦ ϕ

Êh = J>ϕ Ẽh

Then, Êh ∈ H0(curl,Ω \D) ⇐⇒ Eh ∈ H0(curl,Ω \Dh).

Theorem (continuity)
It holds

lim
‖h‖C1→0

∥∥∥Êh − E
∥∥∥

H(curl,Ω\D)
= 0 .
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Then, Êh ∈ H0(curl,Ω \D) ⇐⇒ Eh ∈ H0(curl,Ω \Dh).

Theorem (continuity)
It holds

lim
‖h‖C1→0
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Scetch of the proof
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A(Êh − E,V ) = A(Êh,V )−Ah(Eh, V̌ )

=
∫

Ω\D
curl Êh

(
I − 1

detJϕ
J>ϕ Jϕ

)
curlV

− k2Êh

(
I − J−1

ϕ J−>ϕ det(Jϕ)
)

V dx
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A(Êh − E,V ) = A(Êh,V )−Ah(Êh, V̌ )

=
∫

Ω\D
curl Êh

(
I − 1

detJϕ
J>ϕ Jϕ

)
︸ ︷︷ ︸

=O(‖h‖C1 )

curlV

− k2Êh

(
I − J−1

ϕ J−>ϕ det(Jϕ)
)

︸ ︷︷ ︸
=O(‖h‖C1 )

V dx

A perturbation argument leads to∥∥∥Êh − E
∥∥∥

H(curl,Ω\D)
→ 0 , ‖h‖C1 → 0 .



Domain Derivative
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Theorem (material derivative)
E is differentiable, i.e.

lim
|h|C1→0

1
‖h‖C1

∥∥∥Êh − E −W
∥∥∥

Hcurl(ΩR)
= 0

with material derivative W ∈ H0(curl,Ω \D), linearly depending on h and
satisfying

A(W ,V ) =
∫

Ω\D
curlE>

(
div(h)I − Jh − J>h

)
curlV

+ k2E>
(

div(h)I − Jh − J>h
)

V dx

for all V ∈ H0(curl,Ω \D) .



Domain Derivative
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W = E ′ + J>h E + JEh ,

Theorem (domain derivative)

E ′ ∈ H(curl,Ω \D) radiating weak solution of Maxwell’s equations

curlE ′ − ikH ′ = 0 , curlH ′ + ikE ′ = 0 in R3 \D .

with
ν× E ′ = ν×∇τ(hνEν)− ik hν ν× (H × ν) on ∂D .

(see R. Kress (2001), M. Costabel and F. Le Louër (2012), F.H. (2012),
R. Hiptmaier and J. Li (2018), F. Hagemann (2019) )
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2nd Domain Derivative
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(∂Dh2
)h1

= {ϕ1(ϕ2(x)) = x + h2(x) + h1(x + h2(x)) : x ∈ ∂D}

 not symmetric !

Definition F ′′[∂D] bilinear, symmetric, bounded mapping with

lim
‖h2‖→0

sup
‖h1‖=1

1
‖h2‖

∥∥∥F ′[∂D2](h1 ◦ ϕ−1
2 )− F ′[∂D]h1 − F ′′[∂D](h1,h2)

∥∥∥ = 0 .

From h1 ◦ ϕ−1
2 = h1 − Jϕ1 ϕ2 +O(‖h2‖2) we obtain

F ′′[∂D](h1,h2) =
(
F ′[∂D]h2

)′
[∂D]h1 − F ′[∂D](Jϕ1h2) .
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Theorem (2nd domain derivative)

Let ∂D be of class C3. Then E ′′, H ′′ exist as radiating solution with

ν× E ′′ =
2

∑
i 6=j=1

ν×∇τ(hi,νE ′j,ν − Eνh>i,τ∇τhj,ν)

− ik
2

∑
i 6=j=1

Div(hj,νHτ)hi,ν − hi,νH ′j,τ

+ ik
2

∑
i 6=j=1

h>i,τ(ν×H)(ν×∇τ(hj,ν))

+ ν×∇τ

(
(h>2,τRh1,τ − 2κh1,νh2,ν)Eν

)
+ 2ikh1,νh2,ν(R− κ)Hτ − ik(h>2,τRh1,τ)Hτ on ∂D .

(F. Hagemann, F.H., 2020)



Iterative Regularization Methods
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F (∂D) = E∞ .

domain derivative Landweber iteration, regularized Newton method,
Halley-method, etc.
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F (∂D) = E∞ .

domain derivative Landweber iteration, regularized Newton method,
Halley-method, etc.

Iteration step:

((F ′[∂Dn])∗F ′[∂Dn]+αI)h = (F ′[∂Dn])∗(E∞ − F (∂Dn))

with update ∂Dn+1 = ∂Dn
h ,

stop condition:

‖Eδ
∞ − F (∂Dn)‖ ≤ τδ < ‖Eδ

∞ − F (∂Dj )‖

for 0 ≤ j < n.
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Tangential cone condition ?
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‖F (∂Dh)− F (∂D)− F ′[∂D]h‖ ≤ c‖h‖‖F (∂Dh)− F (∂D)‖

(M.Hanke, A.Neubauer, O.Scherzer (1995), M.Hanke (1997), F.H. and
W.Rundell (2000), B.Kaltenbacher, A.Neubauer, O.Scherzer (2008))

Corollary

If −k2 is no eigenvalue of the Laplace-Beltrami operator on ∂D and
hν = constant on ∂D, then F ′[∂D]h = 0 implies hν = 0.
(F. Hagemann, F.H. (2020))
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Integral Equation Method
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Ansatz: Es = −Eλ with

Eλ(x) = ik
∫

∂D
λ(y)Φ(x, y) dsy −

1
ik
∇
∫

∂D
Divλ(y)Φ(x, y) dsy .

 boundary integral equation (first kind):

γtEλ = γtE i ,

k2 no interior eigenvalue of D (A.Buffa, R.Hiptmaier (2003)).

Boundary element method library: Bempp

Similiarly for E ′ (and E ′′), (e.g. Eν or κ = − 1
2 ∑3

i=1 νi ∆∂Dxi .)

(see T.Arens, T.Betcke, F.Hagemann, F.H. (2019) and F.Hagemann, F.H.
(2020))
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Reconstruction (reg. Newton-Method)
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( 10% noise, starlike with 25 basis functions )
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Chirality of Scattering Objects

 shape optimization problem



Helicity of vector fields
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Consider following Beltrami fields

W±(B) = {U ∈ H(curl,B) : curlU = ±kU}

( U ∈ W±(B) has helicity ±1 ).

Example:
Plane waves:

E i (x) = A eikd ·x , H i (x) = (d × A) eikd ·x with A · d = 0 .

Then E i ,H i ∈ W±(B) if and only if i d × A = ±A .
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Herglotz wave functions
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For A ∈ L2
t (S

2) define

E i [A](x) =
∫

S2
A(d)eikd ·x dsd , H i [A](x) =

∫
S2

d × A(d)eikd ·x dsd

Left (or right) circularly polarized

E i [A],H i [A] ∈ W±(B) ⇐⇒ CA = ±A

C : L2
t (S

2)→ L2
t (S

2) with CA(d) = i d × A(d) , d ∈ S2 .

It holds L2
t (S

2) = V+ ⊕ V− , with

V± =
{

A± CA : A ∈ L2
t (S

2)
}
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C : L2
t (S

2)→ L2
t (S

2) with CA(d) = i d × A(d) , d ∈ S2 .

It holds L2
t (S

2) = V+ ⊕ V− , with

V± =
{

A± CA : A ∈ L2
t (S

2)
}



Helicity of radiating solutions
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Theorem

For B ⊆ R3 \D holds

Es,Hs ∈ W±(B) ⇐⇒ E∞,H∞ ∈ V± .

(see T.Arens, F. Hagemann, F.H., A. Kirsch (2017))
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Far field operator F : L2
t (S

2)→ L2
t (S

2)

F [A](x̂) =
∫

S2
E∞(x̂;d ,A(d)) dsd

Decomposition:

F = F++ +F+− +F−+ +F−− , Fpq := PpFPq

with orth. projections P± : L2
t (S

2)→ V± , P± =
1
2
(I ± C) .

Definition D is called em-achiral if there exist unitary transformations
U (j) : L2

t (S
2)→ L2

t (S
2) with U (j)C = −CU (j), j = 1, . . . ,4, such that

F++ = U (1)F−−U (2) and F−+ = U (3)F+−U (4)
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Observation: D em-achiral implies that F++ has the same singular
values as F−− and analogously for F+− and F−+.

Definition Let σpq
j , j ∈N, denote the singular values of Fpq,

p,q ∈ {+,−}.

χ(F ) =
(
‖σ++

j − σ−−j ‖2
`2 + ‖σ+−

j − σ−+j ‖2
`2

) 1
2

(see I. Fernandez-Corbaton, M. Fruhnert and C. Rockstuhl (2016))
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Lemma
(a) D achiral implies χ(F ) = 0 (see observation)

(b) Let σj be the singular values of F , then

χ(F ) ≤ ‖F‖HS =

√
∑
j

σ2
j .

(c) If D does not scatter fields of one helicity, then χ(F ) = ‖F‖HS

( “⇐” holds, if D satisfies reciprocity relation )

(see T.Arens, F. Hagemann, F.H., A. Kirsch (2017))
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By orthogonality

χ(F )2 = ‖F‖2
HS − 2

∞

∑
j=1

(
σ++

j σ−−j + σ+−
j σ−+j

)
Thus, “ = “ implies
either F++ = 0 or F−− = 0 and F+− = 0 or F−+ = 0.
By reciprocity, i.e. A · E∞(x̂, ŷ ,B) = B · E∞(x̂, ŷ ,A), follows(

FA,B
)

L2(S2)
= · · · =

(
FB(−.),A(−.)

)
L2(S2)

.

For A ∈ V+ and B ∈ V− we conclude from F+− = 0 and(
F−+A,B)L2(S2) = · · · = (F+−B(−.),A(−.))L2(S2)

that F−+ = 0 and vice versa .
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Find D with
χ(F ) = ‖F‖HS or argmax∂D χ(F ) .

Modified measure:

χ2
HS(F ) = ‖F‖

2
HS − 2

(
‖F++‖HS‖F−−‖HS + ‖F+−‖HS‖F−+‖HS

)

Lemma
(a) χHS(F ) ≤ χ(F )
(b) χ(F ) = 0 ⇒ χHS(F ) = 0

(c) χ(F ) = ‖F‖HS ⇔ χHS(F ) = ‖F‖HS

(d) χ2
HS(F ) differentiable w.r.t. h, if χHS(F ) 6∈ {0, ‖F‖HS}

(F. Hagemann (2019))
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