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Steklov eigenvalues for the Helmholtz equation



Scattering by an inhomogeneous medium (d = 2, 3)
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∇ ·A∇u+ k2nu = 0 in Rd

u = ui + us in Rd

lim
r→∞

r(d−1)/2
(
∂us

∂r
− ikus

)
= 0

I A is a d× d matrix function with A = I outside of some ball

I n is the index of refraction with n = 1 outside of some ball

I ui(x) = eikx·d̂ is a plane wave incident field with propagation
direction d̂

I D is a bounded domain outside of which A = I and n = 1

I The last equation is the Sommerfeld radiation condition.



Generating eigenvalue problems
I When the scattered field us is measured far away from the

scatterer, it can be recorded as the far field pattern u∞(x̂, d̂)
with observation direction x̂ and incident direction d̂.

I Eigenvalues can be generated by comparing u∞(x̂, d̂) with the
far field pattern uλ,∞(x̂, d̂) for some artificial auxiliary
problem depending on a parameter λ.

I We generate eigenvalue problems by asking the following
question:

For what values of λ do there exist nontrivial functions g such that∫
Sd−1

[
u∞(x̂, d̂)− uλ,∞(x̂, d̂)

]
g(d̂) ds(d̂) = 0 for all x̂?

I In other words, for what values of λ can we construct special
incident fields for which the physical problem and the
auxiliary problem produce essentially the same scattering
response?



Steklov eigenvalues

Let B ⊇ D. If for some λ ∈ C we consider the auxiliary problem of
finding a radiating solution usλ ∈ H1

loc(Rd \B) such that

∆usλ + k2usλ = 0 in Rd \B,
∂usλ
∂ν

+ λusλ = −∂u
i

∂ν
− λui on ∂B,

then we obtain the eigenvalue problem of finding λ ∈ C and a
nontrivial w ∈ H1(B) satisfying

∇ ·A∇w + k2nw = 0 in B,

∂w

∂νA
+ λw = 0 on ∂B.

Such values of λ are called Steklov eigenvalues.

Cakoni, Colton, Meng, and Monk, Stekloff eigenvalues in
inverse scattering, SIAM J. Appl. Math., 2016.



Operator theory

I Properties of Steklov eigenvalues can be established by
reformulating the problem in terms of operator theory.

I Define TA,n : L2(∂B)→ L2(∂B) such that TA,nh := wh|∂B,
where wh ∈ H1(B) satisfies

∇ ·A∇wh + k2nwh = 0 in B,

∂wh
∂ν

= h on ∂B.

I It can be shown that λ is a Steklov eigenvalue if and only if
−λ−1 is an eigenvalue of the operator TA,n!



Properties of the eigenvalues

Discreteness

Stekloff eigenvalues are discrete in the complex plane.
Proof: The operator TA,n is compact.

Existence

Infinitely many Steklov eigenvalues exist whenever

1) both A and n are real-valued (i.e. the material is
non-absorbing), or

2) the auxiliary domain B and the coefficients A and n are
infinitely smooth.

In the first case, all eigenvalues are real.
Proof: For 1), the operator TA,n is compact and self-adjoint.For
2), Agmon’s theory of non-selfadjoint boundary value problems can
be applied.



Properties of the eigenvalues

Continuous dependence

Steklov eigenvalues depend continuously on the coefficients A
and n.
Proof: The mapping (A,n) 7→ TA,n is continuous.

Detection

Steklov eigenvalues can be detected from measured scattering
data.
Proof: The Linear Sampling Method (LSM) or Generalized Linear
Sampling Method (GLSM) can be applied.



Detection with LSM

Linear Sampling Method

1. Choose a rectangular region in the complex plane (or an interval on
the real line if all eigenvalues are known to be real), and construct a
grid of λ-values.

2. Compute the auxiliary far field pattern uλ,∞(x̂, d̂) (for various x̂ and

d̂) for each λ in the grid.

3. For each λ in the grid, approximately solve the integral equation∫
Sd−1

[
u∞(x̂, d̂)− uλ,∞(x̂, d̂)

]
g(d̂) ds(d̂) =

1

4π
e−ikx̂·z for all x̂

for the function gλ = g, where z is a point in D.

4. Define an indicator function I(λ) = ‖gλ‖, which can be shown to
be large when λ is near an eigenvalue and small otherwise. Seek
eigenvalues as locations of peaks in the plot of I(λ) versus λ!



Example: Detection with LSM

Figure: D is an L-shaped domain and B is a disk that contains D. We
have chosen A = I and n = 4, and k = 1. Random points z are chosen
for LSM, and the results will be averaged.



Example: Detection with LSM

Figure: A plot of I(λ) versus λ, compared with the exact Steklov
eigenvalues obtained with a finite element method. Some eigenvalues are
detected well, while others are not.



Steklov eigenvalues for Maxwell’s Equations



Maxwell’s equations
The standard Maxwell’s equations for a linear medium may be
written as

µ
∂H
∂t

+∇x × E = 0,

ε
∂E
∂t
−∇x ×H = −σE −J e,

∇x · (εE) = ρ,

∇x · (µH) = 0,

where

I µ and ε are the magnetic permeability and electric
permittivity,

I σ is the conductivity,

I H and E are the magnetic field and the electric field,

I J e and ρ are the external current density and charge
density.



Time-harmonic Maxwell’s equations
With H(x, t) = e−iωtH(x) and E(x, t) = e−iωtE(x) for a
frequency ω, the fields H and E satisfy

∇×E− iωµH = 0,

∇×H + (iωε− σ)E = Je,

∇ · (εE) = ρ,

∇ · (µH) = 0.

With the vacuum permeability and permittivity given by µ0 and ε0,
we can define the relative permeability and permittivity as

µr =
µ

µ0
and εc =

ε

ε0
+ i

σ

ωε0

and the wave number as k = ω
√
ε0µ0. The problem may be

written in terms of the electric field as

∇× µr−1∇×E− k2εcE = iωµ0Je.



Time-harmonic electromagnetic scattering (with µr = 1)

∂D
D

µ(x), ε(x), σ(x)

(E,H)

(Ei, Hi)

(Es, Hs)
R3 \D
µ0, ε0

1

∇×∇×E− k2εE = 0 in R3

E = Ei + Es in R3

lim
r→∞

(
∇×Es × x− ikrEs

)
= 0

I For simplicity we write ε to represent the relative permittivity
(equal to 1 outside of D).

I The incident field is an electromagnetic plane wave

Ei(x) = peikx·d̂ with polarization p and incident direction d̂.

I The last equation is the Silver-Müller radiation condition.



Electromagnetic Steklov eigenvalues

I When the scattered field Es is measured far away from the
scatterer, it can be recorded as the electric far field pattern
E∞(x̂, d̂; p).

I As before, eigenvalues can be generated by comparing
E∞(x̂, d̂; p) with the far field pattern Eλ,∞(x̂, d̂; p) for some
artificial auxiliary problem depending on a parameter λ.

I The electromagnetic analogue of the Steklov problem is to
find a radiating field Esλ such that

∇×∇×Esλ − k2Esλ = 0 in R3 \B,
ν ×∇×Esλ − λEsλ,T = −ν ×∇×Ei + λEiT on ∂B,

where FT := (ν × F)× ν is the tangential component of
the vector field F.



Electromagnetic Steklov eigenvalues

I The comparison with this auxiliary problem leads to the
electromagnetic Steklov eigenvalue problem of finding
λ ∈ C and a nontrivial w satisfying

∇×∇×w − k2εw = 0 in B,

ν ×∇×w − λwT = 0 on ∂B.

Camaño, Lackner, and Monk, Electromagnetic Stekloff
eigenvalues in inverse scattering, SIAM J. Math. Anal.,
2017.

I We will call such a value of λ a standard electromagnetic
Steklov eigenvalue.

I In principle, we can use operator theory like before to establish
properties of the eigenvalues, but it turns out that the
eigenvalues have degenerate behavior.



Standard Steklov eigenvalues

I It was shown in [Camaño, Lackner, Monk, 2017] that in a
simple case the eigenvalues accumulate at −∞ and at 0.

I In particular, the eigenvalues are not discrete in C, meaning
that the operator representing them cannot be compact as in
the scalar case!

I In a pair of papers, M. Halla showed that the essential
spectrum consists of only the point 0 and that the
eigenvalues are discrete in C \ {0}. He also showed that
infinitely many eigenvalues exist when all of the coefficients
are real-valued.

Halla, Electromagnetic Stekloff eigenvalues:
Approximation analysis, to appear in ESAIM, 2020.

Halla, Electromagnetic Stekloff eigenvalues: Existence
and behavior in the self-adjoint case, arXiv, 2019.



Modified Steklov eigenvalues

I Instead of studying the degenerate standard problem, the
authors in [Camaño, Lackner, Monk, 2017] altered the
auxiliary problem to produce the modified Steklov
eigenvalue problem

∇×∇×w − k2εw = 0 in B,

ν ×∇×w − λSwT = 0 on ∂B,

where S is a projection operator.

I For surface divergence free h, if we define the operator Tε
such that Tεh := SuT |∂B, where u satisfies

∇×∇× u− k2εu = 0 in B,

ν ×∇× u = h on ∂B,

then the operator Tε relates to the eigenvalues as before and
is compact!



The operator S
I A given tangential vector field ξ on ∂B can be written as

ξ =

∞∑
m=1

[
ξ(1)m ∇∂BYm + ξ(2)m ~∇∂B × Ym

]
,

where {Ym} is an orthonormal set of functions on ∂B
(eigenfunctions of the Laplace-Beltrami operator ∆∂B).

I The operator S is defined such that

Sξ :=

∞∑
m=1

ξ(2)m ~∇∂B × Ym,

and hence the operator projects ξ onto its surface
divergence free component.

I This property combined with regularity results for
Maxwell’s equations imply compactness of Tε.



Properties of modified Steklov eigenvalues

I The presence of S results in a discrete set of eigenvalues in
C, as in the scalar case.

I It can also be shown that the eigenvalues exist in the
self-adjoint case, depend continuously on ε, and may be
detected with LSM.

I However, no existence results are available when ε is not
real-valued.

I Other properties (such as sensitivity to changes in ε) have
been investigated numerically.

C., Colton, and Monk, Eigenvalue problems in inverse
electromagnetic scattering theory, ch. 5 of Maxwell’s
Equations: Analysis and Numerics, de Gruyter, 2019.



Trace class Steklov eigenvalues



Existence for complex coefficients
I There are no existence results when the coefficients are

generally complex-valued and nonsmooth.

I Like the modified Steklov eigenvalues from [Camaño, Lackner,
Monk], we can alter the auxiliary problem to prove this type
of result.

I For δ ≥ 0, the electromagnetic δ-Steklov eigenvalue
problem is to find λ ∈ C and a nontrivial w satisfying

∇×∇×w − k2εw = 0 in B,

ν ×∇×w − λSδwT = 0 on ∂B,

where Sδ is a smoothing projection operator.

C., Analysis of a trace class Stekloff eigenvalue problem
arising in inverse scattering, SIAM J. Appl. Math., 2020.

C., Existence and stability of electromagnetic Stekloff
eigenvalues with a trace class modification, to appear in
Inverse Probl. Imaging, 2020.



The operator Sδ

I With {µm}∞m=0 the sequence of eigenvalues of the
Laplace-Beltrami operator ∆∂B := −∇∂B · ∇∂B, we define
Sδ as

Sδξ :=

∞∑
m=1

µ−δm ξ(2)m ~∇∂B × Ym.

I In particular, we see that S0 = S.

I In addition to projecting onto the surface divergence free
component of ξ, the operator Sδ also smooths the vector
field.

I When B is chosen to be the unit ball in R3, the eigenvalues
{µm} and the eigenfunctions {Ym} can be easily computed
(the latter being the spherical harmonics).



An operator formulation

In this case the correct operator is defined by Tε(δ)h := Sδ/2uT |∂B,
where u satisfies

∇×∇× u− k2εu = 0 in B,

ν ×∇× u = Sδ/2h on ∂B.

Lemma

If δ > 1, then the operator Tε(δ) is a trace class operator,
meaning that there exists a sequence {TN} of operators such that
rank(TN ) ≤ N and

∞∑
N=1

∥∥∥Tε(δ) − TN∥∥∥ <∞.



Lidski’s theorem and existence of eigenvalues

Lidski’s Theorem

If T is a trace class operator on a Hilbert space X such that T has
finite-dimensional nullspace and Im(T g, g)X ≥ 0 for each g ∈ X,
then T has infinitely many eigenvalues.

I The operator Tε(δ) is trace class whenever δ > 1.

I The operator can be assumed to be injective under mild
conditions.

I The common assumption Im(ε) ≥ 0 ensures the nonnegativity
condition.

Existence Theorem

If δ > 1, then infinitely many electromagnetic δ-Steklov
eigenvalues exist.



Stability of eigenvalues
Suppose that ε̃ and ε are piecewise continuously differentiable.

Stability with respect to permittivity

If ε̃ is fixed and ε is a perturbed permittivity for which
‖ε̃− ε‖L∞(B) is sufficiently small, then there exist constants

s ∈ (0, 12) and Cs,ε̃ > 0 such that∥∥∥Tε̃(δ) − Tε(δ)∥∥∥ ≤ Cs,ε̃ ‖ε̃− ε‖L3/s(B) .

I The constant s ∈ (0, 12) depends on the regularity of ε̃ (see
[Bonito,Guermond,Luddens,2013] and [Ciarlet,2020]).

Bonito, Guermond, and Luddens, Regularity of the Maxwell
equations in heterogenous media and Lipschitz domains, J.
Math. Anal. Appl., 2013.

Ciarlet, On the approximation of electromagnetic fields by
edge finite elements. Part 3: Sensitivity to coefficients, SIAM
J. Math. Anal., 2020.



Stability of eigenvalues

I The stability result follows from factoring the solution
operator in the form

Tε(δ) = VεMε̃,εWε̃.

I Regularity properties of Wε̃ lead to the appearance of the
L3/s(B)-norm, but the same regularity does not appear to
hold for Vε, which limits the desired control over ε̃− ε to the
L∞(B)-norm.

I It is not known if these results may be extended to the case
µ 6= 1, as different regularity results must be used.

I Finally, it can also be shown that the δ-Steklov eigenvalues
converge to the standard Steklov eigenvalues as δ → 0+.



Questions?
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