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Introduction

We consider a connected manifold M endowed with a complete
Riemannian metric.
We will denote by ‖·‖x the induced norm on either TxM or T ∗xM,
the fiber above x of the tangent TM or cotangent T ∗M bundle of
M.
We will denote bien d the Riemannian distance on M obtained
from the Riemannian metric. Due to the completeness of the
Riemannian metric, bounded sets for d are relatively compact.
Therefore the distance d is also complete.
The canonical projections from the tangent and cotangent bundle
are denoted by π : TM → M and π∗ : T ∗M → M.
If γ : [a, b]→ M is an absolutely continuous curve, its Riemannian
length `g (γ) is

`g (γ) =

∫ b

a
‖γ̇(s)‖γ(s) ds.



Tonelli Lagrangian
We will assume that L : TM → R is a Tonelli Lagrangian (with
respect to the Riemannian metric), i.e. L is at least C2 and
satisfies:

(a) (Uniform superlinearity) For every K ≥ 0, we have

C (K ) = sup
(x ,v)∈TM

K‖v‖x − L(x , v) <∞.

(b) (Uniform boundedness in the fibers) For every R ≥ 0, we have

A(R) = sup{L(x , v) | ‖v‖x ≤ R} < +∞ ;

(c) (C2 strict convexity in the fibers) for every (x , v) ∈ TM, the
second derivative ∂2L/∂v2(x , v) is positive strictly definite.

A and C are both non-decreasing as functions of R ∈ [0 +∞[.
Note also that (a) and (b) imply

∀(x , v) ∈ TM, L(x , v) ≥ K‖v‖x − C (K ). (1)

∀(x , v) ∈ TM, L(x , v) ≤ A(‖v‖x). (2)



Example

1) The easiest example of a Tonelli Lagrangian is L0 : TM → R
defined by pause

L0(x , v) =
1

2
‖v‖2

x .

In fact, in this case

A0(R) = sup{L0(x , v) | ‖v‖x ≤ R} =
R2

2
,

C0(K ) = sup
(x ,v)∈TM

K‖v‖x − L0(x , v) = sup
(x ,v)∈TM

K‖v‖x −
1

2
‖v‖2

x =
K 2

2
.

2) Let V : M → R be a Cr function, with r ≥ 2, the Lagrangian
LV : TM → R defined by

LV (x , v) =
1

2
‖v‖2

x − V (x)

is a Tonelli Lagrangian is and only if V is bounded.



Action and Lax-Oleinik

We recall that the action L(γ) of an absolutely continuous curve
γ : [a, b]→ M is defined by

L(γ) =

∫ b

a
L(γ(s), γ̇(s)) ds.

By the superlinearity of L, the action is always bounded below by
−C (0)(b − a).
Once the action of a curve is defined, we can introduce the
Lax-Oleinik semi-group T−t , t ≥ 0 on the space of real valued
functions on M.
Namely, if u : M → R is given, for t > 0, we define T−t u by

T−t u(x) = inf
γ
u(γ(0)) +

∫ t

0
L(γ(s), γ̇(s)) ds,

where the infimum is taken over all absolutely continuous curves
γ : [0, t]→ M with γ(t) = x . We also set T−0 u(x) = u(x).



Since the action of curves is bounded from below, if u is also
bounded from below, the function T−t u will be finite everywhere
on M.

In particular, if u is continuous and M compact, the Lax-Oleinik
evolution of u is finite.

As we already know in that case T−t u is also continuous.

When M is not compact, there are cases where T−t u assumes
everywhere the value −∞.

An example is provided below.

Moreover, even when T−t u is finite, it is not clear that T−t u is
continuous (however, upper semi-continuity is easy to establish).



Main Theorem for today

Our goal is to prove:

Theorem 1

Let u : M → R be a continuous function.
Assume that T−t0

u(x0) is finite for some t0 > 0 and some x0 ∈ M.
Then T−t u(x) is finite and continuous (even locally Lipschitz) on
[0, t0[×M.
Moreover, the function U defined by U(t, x) = T−t u(x) is a
viscosity solution of ∂tU + H(x , ∂xU) = 0 on ]0, t0[×M, where H
is the Hamiltonian associated to L.

The Hamiltonian H, associated to L, is the function H : T ∗M → R
defined by

H(x , p) = sup
v∈TxM

p(v)− L(x , v).

In fact, today we will concentrate on the first part of the theorem,
and leave the viscosity aspects to the second lecture.



Minimizers and Extremals. Euler-Lagrange Equation and
Flow

Although we assume familiarity with minimizers, extremals and
Euler-Lagrange Equation for the Lagrangian L, we now sketch
some of the definition and properties.

Definition 2 (Minimizer)

A minimizier (for L) is a curve γ : [a, b]→ M such that

L(δ) =

∫ b

a
L(δ(s), δ̇(s)) ds ≥ L(γ) =

∫ b

a
L(γ(s), γ̇(s)) ds,

for every curve δ : [a, b]→ M, with δ(a) = γ(a), δ(b) = γ(b).



γ

δ

γ(a) = δ(a)

γ(b) = δ(b)

γ minimizer⇔∫ b
a L(δ(s), δ̇(s)) ds ≥

∫ b
a L(γ(s), γ̇(s)) ds,

for all δ with δ(a) = γ(a), δ(b) = γ(b)



I Minimizers play a crucial role in Aubry-Mather theory.

I Minimizers (like all minimums of a function) must be critical
points for the action functional L.

These critical points are called extremals.

I More precisely, an extremal (for L) is a curve γ : [a, b]→ M
such that the derivative DγL|Eγ at γ vanishes, with

Eγ = {δ : [a, b]→ M | δ(a) = γ(a), δ(b) = γ(b)}.

I By classical theory of Calculus of Variations, the curve γ is an
extremal if and only if it satisfies Euler-Lagrange equation,
given in local coordinates by

d

dt

[
∂L

∂v
(γ(t), γ̇(t))

]
=
∂L

∂x
(γ(t), γ̇(t)). (3)



This last ODE (3) defines a second order equation on M.
Therefore there exists a flow ϕt on TM, called the Euler-Lagrange
flow, such that γ : [a, b]→ M is an extremal if and only if its
speed curve s 7→ (γ(t), γ̇(t)) is an orbit of ϕt .

Moreover, for any (x , v) ∈ TM, the projected curve
γx ,v (t) = πϕt(x , v), where π : TM → M is the canonical
projection, is an extremal with (γx ,v (t), γ̇x ,v (t)) = ϕt(x , v).

We know recall Tonelli’s theorem.

Theorem 3 (Tonelli)

For every a, b ∈ R, with a < b, and every x , y ∈ M, there exists a
minimizer γ : [a, b]→ M, with γ(a) = x , γ(b) = y. Any such
minimizer γ is as smooth as L and is a solution of the
Euler-Lagrange equation.



Actions and Speed Estimates

For the properties of the Lax-Oleinik semi-group, for a
non-compact M, we need a control of the action and speed of
minimizers.
Lemma 4
Let γ : [a, b]→ M be absolutely continuous curve. For every
K ∈ [0,∞[, we have

L(γ) ≥ K`g (γ)−C (K )(b−a) ≥ Kd(γ(a), γ(b))−C (K )(b−a) (4)

d(γ(a), γ(b)) ≤ `g (γ) ≤ L(γ) + C (K )(b − a)

K
. (5)

Moreover, if γ : [a, b]→ M is a minimizer, we have

L(γ) ≤ (b − a)A

(
d(γ(a), γ(b))

b − a

)
. (6)

`g (γ)

b − a
≤ A(d(γ(a), γ(b))/(b − a)) + C (K )

K
(7)



Proof
We integrate the superlinear inequality (1)

L(γ(s), γ̇(s)) ≥ K‖γ̇(s)‖γ(s) − C (K ),

to obtain
L(γ) ≥ K`g (γ)− C (K )(b − a),

from which the first two inequalities (4) and (5) follow easily.
To bound the action of a minimizer (6), call δ : [a, b]→ M a
geodesic from γ(a) to γ(b), with `g (δ) = d(γ(a), γ(b)).
The speed of a geodesic has constant norm. But integrating the
speed yields the length, hence

‖δ̇(t)‖δ(t) = d(γ(a), γ(b))/(b − a), for t ∈ [a, b].

Therefore by the uniform boundedness inequality

L(δ(t), δ̇(t)) ≤ A (d(γ(a), γ(b))/(b − a)) , for every t ∈ [a, b],

and again by integration

L(γ) ≤ L(δ) ≤ (b − a)A

(
d(γ(a), γ(b))

b − a

)
.



Energy

To get further estimates, we need the concept of energy of a
Lagrangian.
Recall that the Energy E : TM → R is defined by

E (x , v) = 〈∂vL(x , v), v〉 − L(x , v) = sup
u∈TxM

〈∂vL(x , v), u〉 − L(x , u).

As is well known, the Energy E is constant along any solution of
the Euler-Lagrange equation, in particular, along any minimizer.

Definition 5

We define the functions α, β on [0,+∞[ by

α(R) = inf{E (x , v) | (x , v) ∈ TM, with ‖v‖x ≥ R},
β(R) = sup{E (x , v) | (x , v) ∈ TM, with ‖v‖x ≤ R}.



Lemma 6

There two functions α, β are finite-valued and non-decreasing.
Moreover, we have α(R)→ +∞, as R)→ +∞, and

α(‖v‖x) ≤ E (x , v) ≤ β(‖v‖x), for every (x , v) ∈ TM.

The fact that α, β are non-decreasing and the last inequalities are
obvious from the definitions of α and β.
To prove the rest of the Lemma, we use convexity of L(x , v) in v

L(x , v + u)− L(x , v) ≥ 〈∂vL(x , v), u〉. (8)

Setting u = v and subtracting L(x , v) from both sides, we get

L(x , 2v)− 2L(x , v) ≥ 〈∂vL(x , v), u〉 − L(x , v) = E (x , v).

Since L(x , v) ≥ −C (0) and L(x , 2v) ≤ A(2‖v‖x), we obtain

E (x , v) ≤ A(2‖v‖x) + 2C (0).

Therefore β(R) ≤ A(2R) + 2C (0) < +∞.



Taking u = −v in the convexity inequality (8), we get

L(x , 0)− L(x , v) ≥ −〈∂vL(x , v), v〉.
Hence, since A(0) = supx∈M L(x , 0)

E (x , v) = 〈∂vL(x , v), v〉 − L(x , v) ≥ −L(x , 0) ≥ −A(0),

Therefore α ≥ inf(x ,v)∈TM E (x , v) ≥ −A(0) is finite-valued.

It remains to show that α(R)→ +∞, as R → +∞.
Assume ‖v‖x ≥ R > 1. Use the convexity inequality (8), with

u = v
‖v‖x − v = 1−‖v‖x

‖v‖x v , to yield

L

(
x ,

v

‖v‖x

)
− L(x , v) ≥ 〈∂vL(x , v),

1− ‖v‖x
‖v‖x

v〉

=
1− ‖v‖x
‖v‖x

〈∂vL(x , v), v〉.

Since the norm of v/‖v‖x is equal to 1, we obtain

‖v‖x − 1

‖v‖x
〈∂vL(x , v), v〉 − L(x , v) ≥ −A(1).



If in this last inequality

‖v‖x − 1

‖v‖x
〈∂vL(x , v), v〉 − L(x , v) ≥ −A(1)

we multiply both sides by
‖v‖x
‖v‖x − 1

= 1 +
1

‖v‖x − 1
> 0, we get

〈∂vL(x , v), v〉 −
(

1 +
1

‖v‖x − 1

)
L(x , v) ≥ − ‖v‖x

‖v‖x − 1
A(1).

From which we obtain

E (x , v) = 〈∂vL(x , v), v〉 − L(x , v) ≥ L(x , v)

‖v‖x − 1
− ‖v‖x
‖v‖x − 1

A(1).

We now fix K > A(1). Since ‖v‖x − 1 > 0 and
L(x , v) ≥ K‖v‖x − C (K ) ≥ K‖v‖x − |C (K )|, we see that

E (x , v) ≥ [K − A(1)]
‖v‖x
‖v‖x − 1

− |C (K )|
‖v‖x − 1

.



From this inequality

E (x , v) ≥ [K − A(1)]
‖v‖x
‖v‖x − 1

− |C (K )|
‖v‖x − 1

,

using K > A(1)), ‖v‖x ≥ R > 1, and the fact that x/(x − 1) ≥ 1,
for x > 1, we obtain

E (x , v) ≥ K − A(1)− |C (K )|
R − 1

.

Therefore α(R) ≥ K − A(1)− |C (K )|
R − 1

.

Keeping K fixed and letting R → +∞ shows that

lim inf
R→+∞

α(R) ≥ K − A(1).

Since K > A(1) is arbitrary, we get limR→+∞ α(R) = +∞.



The function η
We define the function η on [0,+∞[, by

η(R) = sup{ρ ≥ 0 | α(ρ) ≤ β(R)}.
The function η is indeed well-defined since α ≤ β, which also
implies η(R) ≥ R. From its very definition, the function η is
non-decreasing. It is finite-valued, since α(R)→ +∞, when
R → +∞.

Lemma 7

For every curve γ : [a, b]→ M which satisfies the Euler-Lagrange
equation, we have

sup
t∈[a,b]

‖γ̇(t)‖γ(t)≤ η
(

inf
t∈[a,b]

‖γ̇(t)‖γ(t))

)
.

Therefore
sup

t∈[a,b]
‖γ̇(t)‖γ(t)≤ η[`g (γ)/(b − a)].



Proof
Consider a solution γ : [a, b]→ M of the Euler-Lagrange equation.
Define smin and smax by

‖γ̇(smin)‖γ(smin) = inf
t∈[a,b]

‖γ̇(t)‖γ(t), ‖γ̇(smax)‖γ(smax) = sup
t∈[a,b]

‖γ̇(t)‖γ(t).

By last Lemma 6 , and the conservation of Energy along solutions
of the Euler-Lagrange equation, we get

β(‖γ̇(smin)‖γ(smin)) ≥ E (γ(smin), γ̇(smin))

= E (γ(smax), γ̇(smax))

≥ α(‖γ̇(smax)‖γ(smax)).

The definition of η yields

‖γ̇(smax)‖γ(smax) ≤ η(‖γ̇(smin)‖γ(smin)).

It remains to prove the last inequality. Since η is non-decreasing,
this follows from

(b − a) inf
t∈[a,b]

‖γ̇(t)‖γ(t)≤
∫ b

a
‖γ̇(s)‖γ(s) ds = `g (γ).



We now combine Lemma 4 and Lemma 7 to obtain:

Proposition 8

Suppose S ⊂ M and t0 > 0. Any minimizer γ : [a, b]→ M such
that γ(a), γ(b) ∈ S and b − a ≥ t0 satisfies

sup
t∈[a,b]

‖γ̇(t)‖γ(s) ≤ η
[
A(diam(S)/t0) + C (K )

K

]
,

for every K ≥ 0, where diam(S) = sup{d(x , y) | x , y ∈ S} is the
diameter of S for the Riemannian distance d on M.

In particular, the set of minimizers γ : [a, b]→ M such that
γ(a), γ(b) ∈ S and b − a ≥ t0 is equi-Lipschitz.



Proof
From inequality (6) in Lemma 4, for K > 0, we obtain

`g (γ)

b − a
≤ A(d(γ(a), γ(b))/(b − a)) + C (K )

K
.

Since b − a > t0, d(γ(a), γ(b)) ≤ diam(S) and A is
non-decreasing, we get

`g (γ)

b − a
≤ A (diam(S)/t0) + C (K )

K
.

From Lemma 7, we have

sup
t∈[a,b]

‖γ̇(t)‖γ(t)≤ η[`g (γ)/(b − a)].

Since η is non-decreasing, combining the last two inequalities, we
conclude that

sup
t∈[a,b]

‖γ̇(t)‖γ(s) ≤ η
[
A(diam(S)/t0) + C (K )

K

]
.



The minimal action

Definition 9 (Minimal action ht)

For x , y ∈ M, and t > 0 , we define the minimal action ht(x , y) to
join x to y in time t by

ht(x , y) = inf
γ

∫ t

0
L(γ(s)γ̇(s)) ds,

where the infimum is taken over all absolutely continuous curves
γ : [0, t]→ M, with γ(0) = x and γ(t) = y .

By Tonelli’s theorem 3, the infimum in the definition of ht(x , y) is
always attained by a minimizer which is as smooth as the
Lagrangian.

It is convenient to denote by H the function defined on
]0,+∞[×M ×M by

H(t, x , y) = ht(x , y).



Example

1) For the Tonelli Lagrangian L0 : TM → R defined by
L0(x , v) = 1

2‖v‖2
x , we have

h0
t (x , y) =

d(x , y)2

2t
.

2) For the Tonelli Lagrangian LV : TM → R defined by

LV (x , v) =
1

2
‖v‖2

x − V (x),

where V : M → R is a bounded Cr function, with r ≥ 2, we have

d(x , y)2

2t
− supV ≤ hVt (x , y) ≤ d(x , y)2

2t
− inf V .



Properties of minimal action
The properties of the ht ’s that we will use are the following ones:

(a) For every K ∈ [0,∞[, t > 0 and every x , y ∈ M, we have:

Kd(x , y)− C (K )t ≤ ht(x , y) ≤ tA

(
d(x , y)

t

)
. (9)

(b) (semi-group property) For every t, t ′ > 0 and every x , y ∈ M,
we have:

ht+t′(x , y) = inf
z∈M

ht(x , z) + ht′(z , y).

(c) The function H is locally Lipschitz, and locally semi-concave,
on ]0,+∞[×M ×M.

(d) If we fix x ∈ M, the function Hx :]0,+∞[×M → R, defined by

Hx(t, y) = H(t, x , y) = ht(x , y),

is a viscosity solution of

∂tHx + H(y , ∂yHx) = 0.



Sketch of proofs

Part (a) follows from the similar inequalities (4) and (6) given in
Lemma 4.
Part (b) is left to the reader.
Part (c). It suffices to prove the local properties of H on any
compact subset of the form [t0,T0]× S × S , with S a compact
subset of M. In the compact case, to prove the locally Lipschitz
(or semi-concave) property, the ingredients were:

I Minimizers exist (Tonelli’s theorem valid even for
non-compact manifolds)

I Speeds of minimizers, for a time bounded away for 0, are
uniformly bounded if the endpoints are in the compact set S ,
which we obtained Proposition 8.

Part (d) The proof is the same as in the compact case, since it is a
local argument which uses only domination properties and
existence of minimizers. More on this in the next lecture.



The Lax-Oleinik semi-group
We now come back to the definition of the (negative) Lax-Oleinik
semi-group T−t , t ≥ 0.
If u : M → [−∞,+∞] is a function and t > 0, the function
T−t u : M → [−∞,+∞] is defined by

T−t u(x) = inf
γ
u(γ(0)) +

∫ t

0
L(γ(s), γ̇(s)) ds.

Using that

ht(x , y) = inf
γ

∫ t

0
L(γ(s)γ̇(s)) ds,

where the infimum is taken over all absolutely continuous curves
γ : [0, t]→ M, with γ(0) = x and γ(t) = y . We can equivalently
define T−t u by

T−t u(x) = inf
y∈M

u(y) + ht(y , x).

We also set T−0 u = u.



First properties of the Lax-Oleinik semi-group

Let u : M → [−∞,+∞] be a function, we have:

(a) T−t u(x) ≤ u(x) + A(0)t, for x ∈ M and every t ≥ 0.

(b) If u < +∞ at one point in M, then T−t u < +∞ everywhere
t > 0.

(c) If u = −∞ at one point in M, then T−t u = −∞ everywhere,
for t > 0.

(d) T−t (u + c) = T−t (u) + c, for c ∈ R.

(e) If u ≤ v everywhere , then T−t u ≤ T−t v .

(f) −‖u − v‖∞ + T−t v ≤ T−t u ≤ T−t v + ‖u − v‖∞.

(g) (semi-group property) T−t+t′ = T−t ◦ T−t′ for t, t ′ ≥ 0.



Sketch of Proof

From the property of ht (9), we have
ht(x , x) ≤ tA(d(x , x)/t) = A(0)t. Therefore
T−t u(x) ≤ u(x) + ht(x , x) ≤ u(x) + A(0)t. This proves (a).

Note that from the definition of T−t u

T−t u(x) = inf
y∈M

u(y) + ht(y , x),

we get T−t u(x) ≤ u(y) + ht(y , x), for every y ∈ M. Since ht(y , x)
is finite everywhere, this proves (b) and (c).

(d) and (e) are clear from the definition of T−t u.

(f) is a consequence of (d) and (e) since
−‖u − v‖∞ + tv ≤ u ≤ v + ‖u − v‖∞.

(g) is a consequence of the semi-group property of ht .



Example with T−t u finite everywhere

Proposition 10

If θ : M → R is a Lipschitz function, then T−t θ is everywhere
finite-valued for t ≥ 0.

Moreover the function Θ : [0,+∞[× → R defined by

Θ(t, x) = T−t θ(x),

is bounded below by a (globally) Lipschitz function on [0,+∞[×M.

Therefore, for any u : M → R which is bounded below by a
Lipschitz function, we also have that T−t u is everywhere
finite-valued for t ≥ 0, and the function U(t, x) = T−t u(x) is
everywhere bounded below by a (globally) Lipschitz function on
[0,+∞[×M.



Proof

Call K a Lipschitz constant for θ.

Hence θ(y) ≥ θ(x)− Kd(x , y).

By the superlinearity (9), we also have
ht(y , x) ≥ Kd(y , x)− C (K )t.

Adding the two inequality yields θ(y) + ht(y , x) ≥ θ(x)− C (K )t.

Therefore

Θ(t, x) = T−t θ(x) = inf
y∈M

θ(y) + ht(y , x) ≥ θ(x)− C (K )t.

Hence, the function Θ is everywhere bounded below by the
finite-valued Lipschitz function t 7→ θ(x)− C (K )t on [0,+∞[×M.

Moreover, if u ≥ θ, we know that T−t u ≥ T−t θ.



Example with T−t u not necessarily finite everywhere

For the Tonelli Lagrangian L0 : TM → R defined by
L0(x , v) = 1

2‖v‖2
x , we know that h0

t (y , x) = d(y , x)2/2t.
Therefore, if u : M → R, we get

T−t u(x) = inf
y∈M

u(y) +
d(y , x)2

2t
.

Fix some x0 ∈ M, and consider the case uα(x) = −αd(x0, x)2,
where α > 0. In this case,

T−t uα(x) = inf
y∈M
−αd(x0, y)2 +

d(y , x)2

2t
.

If M is not compact, then T−t uα = −∞ everywhere, for

−α +
1

2t
> 0 or equivalently t >

1

2α
, and T−t uα is finite

everywhere, for t <
1

2α
. Note also that T−1/2αuα(x0) = 0.



Pointwise finiteness of the Lax-Oleinik semi-group

Proposition 11 (Pointwise Finiteness)

Let u : M → R be a continuous function. Assume that T−t0
u(x0) is

finite for some t0 > 0 and some x0 ∈ M, then we have:

(a) For every t < t0, and every x ∈ M, the value T−t u(x) is finite.

(b) For every t < t0, and every x ∈ M, we can find y ∈ M such
that T−t u(x) = u(y) + ht(y , x).

(c) For any compact subset K ⊂ M, and any t ′0 ∈]0, t0[, we can
find R < +∞, such that for any x ∈ K, any t ∈]0, t ′0], and any
y ∈ M, if T−t u(x) = u(y) + ht(y , x), then d(x , y) ≤ R.

(d) For any compact subset K ⊂ M and any ε > 0, we can find a
δ > 0 such that T−t u(x) = u(y) + ht(y , x), with x ∈ K and
t ≤ δ implies d(x , y) ≤ ε.



Theorem 12

Let u : M → R be a continuous function.
Assume that T−t0

u(x0) is finite for some t0 > 0 and some x0 ∈ M.
The function U defined by U(t, x) = T−t u(x) is finite, continuous
on [0, t0[×M and locally Lipschitz (even locally semi-concave) on
]0, t0[×M.
Moreover, the function U is a viscosity solution of
∂tU + H(x , ∂xU) = 0 on ]0, t0[×M.

Proof assuming Proposition 11 above
It suffices to show the properties of U on any set of the form
[0, t ′0]× K, with t ′0 ∈]0, t0[ and K ⊂ M compact.
By part (c) of the Pointwise Finiteness Proposition 11, we can find
R > 0 such that for x ∈ K and t ∈]0, t ′0], we have

U(t, x) = T−t u(x) = inf
y∈V̄R(K)

u(y) + ht(y , x),

since the map (t, x , y) 7→ ht(x , y) is locally Lipschitz on
]0,+∞[×M ×M, and V̄R(K) is compact, we indeed see that U is
locally Lipschitz on ]0,+∞[×M.



Moreover, since (t, x , y) 7→ ht(x , y) is locally semi-concave on
]0,+∞[×M ×M, then again by the compactness of V̄R(K), we
also get the local semi-concavity of U.
To show the continuity at t = 0, fix ε > 0. By part (b) and (d),
there exists δ > 0 such that for x ∈ K and t ∈]0, δ], we can find
yx ,t ∈ M, such that

T−t u(x) = u(yx ,t) + ht(yx ,t , x), with d(yx ,t , x) ≤ ε.

By the inequalities (9) on ht , we also have

u(yx ,t)− C (0)t ≤ T−t u(x) ≤ u(x) + A(0)t.

Therefore, if we set

ρ(ε) = sup{|u(y)− u(x)| | x ∈ K, d(x , y) ≤ ε},

for t ≤ δ, we obtain

sup
x∈K
|T−t u(x)− u(x)| ≤ ρ(ε) + t max [|A(0)|, |C (0)|]



Hence for t ≤ min(δ, ε), we get

sup
x∈K
|T−t u(x)− u(x)| ≤ ρ(ε) + εmax [|A(0)|, |C (0)|] .

Since u is continuous and K is compact, we get

ρ(ε) = sup{|u(y)− u(x)| | x ∈ K, d(x , y) ≤ ε} → 0, when ε→ 0.

Therefore U is continuous on [0, t ′0]× K.

The fact that U is a viscosity solution is standard since (c) holds,
see next lecture.



Proof of the Pointwise Finiteness Proposition 11

By the semi-group property T−t0
= T−t0−tT

−
t , we get

T−t0
u(x0) ≤ T−t u(x) + ht0−t(x , x0),

for every x ∈ M and any t < t0. Therefore

T−t u(x) ≥ T−t0
u(x0)− ht0−t(x , x0),

from which part (a), about finiteness of T−t u(x) for t < t0 follows.
Moreover, by continuity of ht0−t(x , y), for t < t0, the value
T−t u(x) is uniformly bounded below on any compact subset of
[0, t0[×M.
Fix now a compact subset K ⊂ M and t ′0 ∈]0, t0[. Using the fact
that T−t u(x) ≤ u(x) + A(0)t, and the boundedness by below that
we just obtained, we can find a finite constant α such that

−α ≤ T−t u(x) ≤ α,

for every t ∈ [0, t ′0] and every x ∈ V̄1(K) = {x ∈ M | d(x ,K) ≤ 1}.



Consider the set

S = {(x , y , t) | u(y) + ht(y , x) ≤ α + 1, x ∈ K, y ∈ M, t ∈ [0, t ′0]}.
Claim For every ε > 0, we can find Rε ≥ 0 such that for any
(x , y , t) ∈ S, we have d(x , y) ≤ ε+ Rεt.

Without loss of generality, to prove the claim, we can suppose that
ε ≤ 1 and that (x , y , t) ∈ S is such d(x , y) > ε.
Let us consider a minimizing curve γ : [0, t]→ M with γ(0) = y
and γ(t) = x .
It suffices to show that there exists a constant R̄ε which does not
depend on the particular (x , y , t) ∈ S such that for
‖γ̇(s0)‖γ(s0) ≤ R̄ε for some s0 ∈ [0, t].

In fact, by Lemma 7, this implies that ‖γ̇(s)‖γ(s) ≤ η(R̄ε), and
therefore we would obtain

d(x , y) ≤ `g (γ) ≤ Rεt, with Rε = η(R̄ε).



Denote by B̄(x , ε) the closed ball of center x and radius ε. Since
d(x , y) > ε, the curve γ(s) must cross the boundary of B̄(x , ε) at
some time t ′ ∈]0, t[.
We set y ′ = γ(t ′). Note that d(x , y ′) = ε.
Since γ is a minimizer we have ht(y , x) = ht′(y , y

′) + ht−t′(y
′, x).

Therefore we get

u(y) + ht(y , x) = u(y) + ht′(y , y
′) + ht−t′(y

′, x)

≥ T−t′ u(y ′) + ht−t′(y
′, x),

hence, since (x , y , t) ∈ S , we get

T−t′ u(y ′) + ht−t′(y
′, x) ≤ u(y) + ht(y , x) ≤ α + 1.

Note also that T−t′ u(y ′) ≥ −α, since t ′ ∈]0, t ′0] and
y ′ ∈ B̄(x , ε) ⊂ V̄1(K).
Combining the two inequalities, we get

ht−t′(y
′, x) ≤ 2α + 1.



Since γ̄ = γ|[t ′, t] is a minimizer joining y ′ to x whose action is
ht−t′(y

′, x) ≤ 2α + 1, by Lemma 4, for every K > 0, we have

ε = d(x , y ′) ≤ `g (γ̄) ≤ 2α + 1 + C (K )(t − t ′)

K
, (10)

We now show that there is a positive constant ρε > 0 independent
of the choice of (x , y , t) ∈ S such that t − t ′ ≥ ρε. Since
d(x , y ′) = ε, choosing Kε such that

2α + 1

Kε
=
ε

2
,

from the inequality (10), we obtain that

C (Kε)(t − t ′)

Kε
≥ ε

2
.

This finishes the proof of the existence of ρε.



Using now t − t ′ ≥ ρε and the inequality (10) with K = 1, we get

`g (γ̄) ≤ R̄ε(t − t ′)

where

R̄ε =
2α + 1

ρε
+ C (1).

This implies, using γ̄ = γ|[t ′, t], that there exists some s0 ∈ [t ′, t]
such that ‖γ̇(s0)‖γ(s0) ≤ R̄ε.
This finishes the proof of the claim:
Claim For every ε > 0, we can find Rε ≥ 0 such that for any
(x , y , t) ∈ S, we have d(x , y) ≤ ε+ Rεt,

we can prove easily the remaining parts (b), (c) and (d).



For part (b), we note that x ∈ K, we can find a sequence
yn ∈ M,≥ 1 such that

T−t u(x) ≤ u(yn) + ht(yn, x) ≤ T−t u(x) +
1

n
.

If moreover t ≤ t ′0, we know, by choice of α that T−t u(x) ≤ α.
Hence

T−t u(x) ≤ u(yn) + ht(yn, x) ≤ T−t u(x) +
1

n
≤ α +

1

n
.

Since

S = {(x , y , t) | u(y) + ht(y , x) ≤ α + 1, x ∈ K, y ∈ M, t ∈ [0, t ′0]},

we conclude (x , yn, t) ∈ S .
Therefore by the claim, we obtain d(x , yn) ≤ 1 + R1t ≤ 1 + R1t

′
0.

Hence the sequence yn is bounded in M. Extracting if necessary,
we can assume that yn → y .
Obviously, by continuity, we have T−t u(x) = u(y) + ht(y , x).



To prove (c), consider x ∈ K, y ∈ M and t ≤ t ′0 such that
T−t u(x) = u(y) + ht(y , x). Since T−t u(x) ≤ α, for x ∈ K and
t ∈ [0, t ′0], we have (t, x , y) ∈ S . By the claim, we get

d(x , y) ≤ 1 + R1t ≤ 1 + R1t
′
0 = R.

To prove (d), consider again x ∈ K, y ∈ M and t ≤ t ′0 such that
T−t u(x) = u(y) + ht(y , x). Again as above (t, x , y) ∈ S , hence

d(x , y) ≤ ε

2
+ R ε

2
t.

Therefore, if we set

δ = min

[
t ′0,

ε

2R ε
2

]
,

for t ≤ δ, we get

d(x , y) ≤ ε

2
+
ε

2
= ε.


