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Introduction

The setting is the same as in Lecture 1, namely M is a connected
complete Riemannian manifold.
Assume that L is a Tonelli Lagrangian. Its associated Hamiltonian
H : T ∗M → R is defined by

H(x , p) = sup
v∈TxM

p(v)− L(x , v).

If u : M → R is a function bounded below by a Lipschitz function,
we have said in the first lecture that its Lax-Oleinik evolution

U(t, x) = T−t u(x),

is continuous on [0,+∞[×M, with U(0, x) = u(x), everywhere on
M, and is also a viscosity solution, on ]0,+∞[×M, of

∂u

∂t
(t, x) + H

(
x ,
∂u

∂x
(t, x)

)
= 0.

We will address the problem: if a function V : [0,+∞[×M → R
shares the properties of U given above is it necessarily equal to U?



Crash Course on Viscosity

We will now introduce the notion of viscosity solutions and their
properties.
We do it by recalling the parts of

Albert Fathi, Weak KAM from a PDE point of view: viscosity
solutions of the Hamilton-Jacobi equation and Aubry set, Proc.
Roy. Soc. Edinburgh Sect. A, 120 (2012) 1193–1236

that are relevant here.

Again, the setting is the same as in Lecture 1, namely M is a
connected complete Riemannian manifold.

We will suppose that H : T ∗M → R is a continuous function,
which we will call the Hamiltonian.



Examples

1) If L : TM → R is a Tonelli Lagrangian, its associated
Hamiltonian H : T ∗M → R is defined by

H(x , p) = sup
v∈TxM

p(v)− L(x , v).

2) The Hamiltonian HV : T ∗M → R is defined by

H(x , p) =
1

2
‖p‖2

x + V (x).

It is the Hamiltonian associated to the Lagrangian LV : TM → R
defined by

LV (x , v) =
1

2
‖v‖2

x − V (x).

The Hamiltonian HV is a good example to keep in mind.



Hamilton-Jacobi equation

The (stationary) Hamilton-Jacobi equation associated to H is the
equation

H(x , dxu) = c,

where c is some constant.

A classical solution of the Hamilton-Jacobi equation H(x , dxu) = c
on the open subset U of M is a C1 map u : U → R such that
H(x , dxu) = c , for each x ∈ U.

Usually, one deals only with the case H(x , dxu) = 0, since it is
possible to reduce the general case to that case by replacing the
Hamiltonian H by Hc , defined by Hc(x , p) = H(x , p)− c .



Evolutionary Hamilton-Jacobi equation

The evolutionary Hamilton-Jacobi equation associated to the
Hamiltonian H is the equation

∂u

∂t
(t, x) + H

(
x ,
∂u

∂x
(t, x)

)
= 0.

A classical solution to this evolutionary Hamilton-Jacobi equation
on the open subset W of R× T ∗M is a C1 map u : W → R such
that

∂u

∂t
(t, x) + H

(
x ,
∂u

∂x
(t, x)

)
= 0,

for each (t, x) ∈W .
The evolutionary form can be reduced to the stationary form by
introducing the Hamiltonian Ĥ : T ∗(R×M) defined by

Ĥ(t, x , s, p) = s + H(x , p),

where (t, x) ∈ R×M, and (s, p) ∈ T ∗(t,x)(R×M) = R× T ∗xM.



It is generally impossible to find C1-solutions to the
Hamilton-Jacobi equation. One has to define a notion of weak
solution. For the Hamilton-Jacobi equation, at least when H is
convex in the momentum, the most successful notion of weak
solution is the notion of viscosity solution.

Viscosity Subsolution
A function u : V → R is a viscosity subsolution of H(x , dxu) = c
on the open subset V ⊂ M, if for every C1 function φ : V → R,
with φ ≥ u everywhere, at every point x0 ∈ V where u(x0) = φ(x0)
we have H(x0, dx0φ) ≤ c .

Graph(u)

(x0, u(x0))

Graph(φ)

Subsolution: φ ≥ u, u(x0) = φ(x0)⇒ H(x0, dx0φ) ≤ c .



Viscosity Supersolution

A function u : V → R is a viscosity supersolution of H(x , dxu) = c
on the open subset V ⊂ M, if for every C1 function ψ : V → R,
with u ≥ ψ everywhere, at every point x0 ∈ V where
u(x0) = ψ(x0) we have H(x0, dx0ψ) ≥ c .

(x0, u(x0))
Graph(u)

Graph(ψ)

Supersolution: ψ ≤ u, u(x0)=ψ(x0)⇒H(x0, dx0ψ)≥c .



Viscosity Solution

A function u : V → R is a viscosity solution of H(x , dxu) = c on
the open subset V ⊂ M, if it is both a subsolution and a
supersolution.

In the sequel of this lecture, we will concentrate on viscosity
solutions of the evolutionary Hamilton-Jacobi equation

∂u

∂t
(t, x) + H

(
x ,
∂u

∂x
(t, x)

)
= 0.

We will mainly address the problem of uniqueness of the solution
on [0,T [×M for a given initial condition on {0} ×M.



Some facts about viscosity solutions

We enumerate a first facts facts about viscosity subsolutions,
supersolutons, and solutions.

I A C1 function is a viscosity subsolution of the Hamilton-Jacobi
equation if and only if it is a classical solution.

I If the viscosity subsolution u (resp. supersolution, solution) of
the Hamilton-Jacobi equation H(x , dxu) = c is differentiable
at x0, then H(x , dx0u) ≤ c (resp. H(x , dx0u) ≥ c ,
H(x , dx0u) = c).

I (Stability) Suppose that vn : M → R is a sequence of
continuous functions converging uniformly on compact subsets
to v : M → R. If, for each n, the function vn is a viscosity
subsolution (resp. supersolution, solution) of H(x , dxu) = 0,
then v is a viscosity subsolution (resp. supersolution, solution)
of H(x , dxu) = 0.



I If H(x , p) in convex in the momentum variable, then a locally
Lipschitz function u is a viscosity subsolution of
H(x , dxu) = c if and only if H(x , dxu) ≤ c almost everywhere.

I If H(x , p) in convex in the momentum variable and the two
locally Lipschitz function u1, u2 : O → R are viscosity
subsolutions of H(x , dxu) = c , on the open subset O ⊂ M,
then so is min(u1, u2).

I If H(x , p) in convex in the momentum variable, and
u : O → R is a locally Lipschitz viscosity subsolution of
H(x , dxu) = c, defined on the open subset O ⊂ M, then for
any ε > 0 we can find a C∞ function v : O → R which is a
viscosity subsolution of H(x , dxv) = c + ε on O and such that
supx∈O |v(x)− u(x)| ≤ ε.



To give further properties we need to introduce:

Definition 1 (Coercive)

A continuous function H : T ∗M → R is said to be coercive above
every compact subset, if for each compact subset K ⊂ M and each
c ∈ R the set {(x , p) ∈ T ∗M | x ∈ K ,H(x , p) ≤ c} is compact.

It is not difficult to see that H is coercive if and only if for each
compact subset K ⊂ M, we have lim‖p‖x→∞H(x , p) = +∞, the
limit being uniform in x ∈ K .

Theorem 2

Suppose that H : T ∗M → R is coercive above every compact
subset, and c ∈ R. Then a viscosity subsolution of H(x , dxu) = c
is necessarily locally Lipschitz, and therefore satisfies
H(x , dxu) ≤ c almost everywhere.



Note however that the Hamiltonian

Ĥ(t, x , s, p) = s + H(x , p),

which give rise to the evolutionary Hamilton-Jacobi equation is
never coercive even if H is coercive, since s can → −∞.
Therefore, it is difficult to assume (or obtain) a priori that a
viscosity subsolution of the evolutionary Hamilton-Jacobi equation
is locally Lipschitz.
In fact, if U is a viscosity subsolution of

∂U

∂t
(t, x) + H

(
U,

∂u

∂x
(t, x)

)
= 0,

and ρ : [0,+∞[→ R which is continuous and non-increasing, then
V (x , s) = U(x , s) + ρ(s) is a viscosity subsolution of the same
equation.
At this point, it is useful to note that the Hamiltonian

H̃(t, x , s, p) = |s|+ H(x , p),

is coercive, if H is.



The main ingredient to prove uniqueness properties for viscosity
solutions is the following one:

Theorem 3

Let H : T ∗M → R be any continuous Hamiltonian on the manifold
M. Suppose that u : M → R is a viscosity subsolution of
H(x , dxu) = c1, and v : M → R is a viscosity supersolution of
H(x , dxv) = c2. Assume further that either u or v is locally
Lipschitz on M. If u − v has a local maximum, then necessarily
c2 ≤ c1.

Note that, if at x0 the difference u − v vanishes, then x0 is a local
maximum of u − v if and only if v ≥ u in a neighborhood of x0.

Because this Theorem 3 needs at least one of the functions to be
Lipschitz, to apply it to the evolution case, we will need to
approximate subsolutions by subsolutions which are Lipschitz.



Lax-Oleinik and Viscosity

We now explain the relationship between the Lax-Oleinik
semi-group and viscosity solutions.

Theorem 4

Assume L : TM → R is a Tonelli Lagrangian, and H is its
associated Hamiltonian.
If u : M → R is continuous, and U(t, x) = T−t u(x) is finite on
]0, τ [×M, for some τ ∈]0,+∞], where T−t is the Lax-Oleinik
semi-group obtained from L.
Then U is a (continuous) viscosity solution of

∂U

∂t
(t, x) + H(x ,

∂U

∂x
(t, x)) = 0,

on the open subset ]0, τ [×M.



Proof

We first note that we know from the first lecture that U is
continuous on ]0, τ [×M.
We then show the so-called domination inequality

U(b, γ(b))− U(a, γ(a)) ≤
∫ b

a
L(γ(s), γ̇(s)) ds, (1)

for every curve γ : [a, b]→ M.

In fact, by the definition and the semi-group property of T−t , we
have

U(b, γ(b))− U(a, γ(a)) = T−b u(γ(b))− T−a u(γ(a))

= T−b−a[T−a u](γ(b))− T−a u(γ(a))

≤
∫ b

a
L(γ(s), γ̇(s)) ds.



Next, we prove that U(t, x) = T−t u(x) is a viscosity subsolution.
Suppose φ ≥ U, with φ of class C1 and φ(t0, x0) = U(t0, x0),
where t0 > 0.
Fix v ∈ Tx0M, and pick a C1 curve γ : [0, t0]→ M such that
(γ(t0), γ̇(t0)) = (x0, v).
If 0 ≤ t ≤ t0, by the domination inequality (1), we have

U(t0, γ(t0))− U(t, γ(t)) ≤
∫ t0

t
L(γ(s), γ̇(s)) ds,

for all t ∈ [0, t0].
Since φ ≥ U, with equality at (t0, x0) = (t0, γ(t0)), we obtain

φ(t0, γ(t0))− φ(t, γ(t)) ≤
∫ t0

t
L(γ(s), γ̇(s)) ds,

for all t ∈ [0, t0].



Dividing both sides of this last inequality

φ(t0, γ(t0))− φ(t, γ(t)) ≤
∫ t0

t
L(γ(s), γ̇(s)) ds,

by t0 − t > 0, and letting t → t0, we get

∂φ

∂t
(t0, x0) +

∂φ

∂x
(t0, x0)(v) ≤ L(x0, v).

Since this is true for all v ∈ Tx0M, and

H(x0,
∂φ

∂x
(t0, x0)) = sup

v∈Tx0M

∂φ

∂x
(t0, x0)(v)− L(x0, v),

we obtain
∂φ

∂t
(t0, x0) + H(x0,

∂φ

∂x
(t0, x0)) ≤ 0.

This finishes to show that U(t, x) = T−t u(x) is a viscosity
subsolution.



To prove that U(t, x) = T−t u(x) is a supersolution, we consider
ψ ≤ U, with ψ of class C1.
Suppose U(t0, x0) = ψ(t0, x0), with t0 > 0.
As we saw in lecture 1, we can find a y ∈ M such that
U(t0, x0) = T−t0

u(x0) = u(y) + ht0(y , x0). By Tonelli’s theorem, we
can find a curve γ : [0, t0]→ M, with γ(t0) = x0, γ(0) = y , and
whose action is precisely ht0(y , x0).
Therefore

U(t0, x0) = T−t0
u(x0) = u(γ(0)) +

∫ t0

0
L(γ(s), γ̇(s)) ds.

Since U(0, γ(0)) = u(γ(0)), this can be rewritten as

U(t0, x0)− U(0, γ(0)) =

∫ t0

0
L(γ(s), γ̇(s)) ds.



We have thus obtained

U(t0, x0)− U(0, γ(0)) =

∫ t0

0
L(γ(s), γ̇(s)) ds. (2)

Applying twice the domination inequality (1)

U(b, γ(b))− U(a, γ(a)) ≤
∫ b

a
L(γ(s), γ̇(s)) ds,

which is valid for every a, b ∈ [0, t0], we obtain for every t ∈ [0, t0]

U(t0, x0)− U(t, γ(t)) ≤
∫ t0

t
L(γ(s), γ̇(s)) ds

U(t, γ(t))− U(0, γ(0)) ≤
∫ t

0
L(γ(s), γ̇(s)) ds.

Adding these two inequalities, we get in fact the equality (2).
Therefore both inequalities must be equalities. Hence

∀t ∈ [0, t0],U(t0, γ(t0))− U(t, γ(t)) =

∫ t0

t
L(γ(s), γ̇(s)) ds.



Since ψ ≤ U, with equality at (t0, x0), from this last equality

∀t ∈ [0, t0],U(t0, γ(t0))− U(t, γ(t)) =

∫ t0

t
L(γ(s), γ̇(s)) ds

we obtain

ψ(t0, γ(t0))−ψ(t, γ(t)) ≥
∫ t0

t
L(γ(s), γ̇(s)) ds, for every t ∈ [0, t0].

Dividing by t0 − t > 0, and letting t → t0, we get

∂ψ

∂t
(t0, x0) +

∂ψ

∂x
(t0, x0)(γ̇(t0)) ≥ L(x0, γ̇(t0)).

By definition of L, we have

L(x0, γ̇(t0)) ≥ ∂ψ

∂x
(t0, x0)(γ̇(t0))− H(x0,

∂ψ

∂x
(t0, x0)).

It follows that

∂ψ

∂t
(t0, x0)+

∂ψ

∂x
(t0, x0)(γ̇(t0)) ≥ ∂ψ

∂x
(t0, x0)(γ̇(t0))−H(x0,

∂ψ

∂x
(t0, x0)).

Therefore
∂ψ

∂t
(t0, x0) + H(x0,

∂ψ

∂x
(t0, x0)) ≥ 0.



Approximation by Lipschitz subsolutions

As we said, we will mainly address the problem of uniqueness of
the solution on [0,T [×M for a given initial condition on {0} ×M.
For this we will need to local approximate by Lipschitz functions.
Under a coercivity condition on H, we now show how to locally
approximate viscosity subsolutions of the evolutionary
Hamilton-Jacobi equation

∂U

∂t
(t, x) + H(x ,

∂U

∂x
(t, x)) = 0,

with U defined on an open subset of R×M, by Lipschitz viscosity
subsolutions.
These results are well-known when M is the Euclidean space, see
for example:
Hitoshi Ishii, A Short Introduction to Viscosity Solutions and the
Large Time Behavior of Solutions of Hamilton-Jacobi Equations in
Y. Achdou et al., Hamilton-Jacobi Equations: Approximations,
Numerical Analysis and Applications, Springer LNM 2074, (2013).



Sup-convolution in one variable

The usefulness of sup-convolution to improve regularity of viscosity
subsolutions is already well established. Our treatment follows
closely the work of Hitoshi Ishii cited above, which deals with the
case of the Euclidean space.
Assume u : V → R, is a continuous function, where V is an open
subset of R×M.
Assume K ⊂ V is compact subset. By continuity of u and
compactness of K , we can find an open subset O1 ⊃ K whose
closure Ō1is compact and contained in V and set

m = sup
Ō1

|u| < +∞.

Again by compactness of K , we can find δ > 0 and an open
neighborhood O2 ⊂ O1 of K , with compact closure Ō2 ⊂ O1 such
that

[t − δ, t + δ]× {x} ⊂ O1, for every (t, x) ∈ Ō2.



Since

[t − δ, t + δ]× {x} ⊂ O1, for every (t, x) ∈ Ō2,

and u is defined on O1, for ε > 0, we can define uε : O2 → R by

uε(t, x) = max
s∈[−δ,+δ]

u(t + s, x)− s2

ε
(3)

Note that uε is continuous by continuity of u and compactness of
[−δ,+δ]. We summarize the properties of uε in the following
proposition.



Proposition 5

(1) For every ε > 0, we have uε ≥ u.

(2) For every 0 < ε < ε′, we have uε < uε′ .

(3) If (t, x) ∈ O2, and sε ∈ [−δ,+δ] is such that
uε(t, x) = u(t + sε, x)− (sε)

2/ε, then |sε| ≤
√

2εm.

(4) uε → u uniformly on O2, when ε→ 0.

(5) If (t, x), (t ′, x) ∈ O2, with |t − t ′| < δ −
√

2εm, then

|uε(t ′, x)− uε(t, x)| ≤ 2
√

2εm + |t − t ′|
ε

|t − t ′|.

In particular, we have

|uε(t ′, x)− uε(t, x)| ≤
√

2εm + δ

ε
|t − t ′|.

Moreover, for every x ∈ X , the map t 7→ uε(t, x) is Lipschitz
on every connected component of O2 ∩ {x} ×R with Lipschitz
constant ≤ 2

√
2m/ε.



Proof

Part (1) uε ≥ u and (2) uε < uε′ , for 0 < ε < ε′, are obvious from
the definition of uε.
For part (3) |sε| ≤

√
2εm, if uε(t, x) = u(t + sε, x)− (sε)

2/ε, we
notice that

uε(t, x) = u(t + sε, x)− (sε)
2

ε
≥ u(t, x).

Therefore

(sε)
2

ε
≤ u(t + sε, x)− u(t, x) ≤ 2 sup

O1

|u| = 2m.

For part (4) uε → u uniformly on O2, when ε→ 0, note that by
part (3), we have

sup
(x ,t)∈O2

|uε(t, x)− u(t, x)| ≤ sup
(t,x)∈Ō2,|s|≤

√
2εm

|u(t + s, x)− u(t, x)|.

By compactness of Ō2 and continuity of u, the right hand side of
the inequality above tends to 0 as ε→ 0.



To prove part (5) namely:
If (t, x), (t ′, x) ∈ O2, with |t − t ′| < δ −

√
2εm, then

|uε(t ′, x)− uε(t, x)| ≤ 2
√

2εm + |t − t ′|
ε

|t − t ′|,

we choose sε such that uε(t, x) = u(t + sε, x)− (sε)
2/ε. v By part

(3), we have |sε| ≤
√

2εm. Therefore, we get

|sε + t − t ′| ≤ |sε|+ |t − t ′| ≤
√

2εm + δ −
√

2εm = δ.

Hence, by the definition of uε, we obtain

uε(t
′, x) ≥ u(t ′ + (sε + t − t ′), x)− (sε + t − t ′)2

ε

= u(t + sε, x)− (sε + t − t ′)2

ε
.



Subtracting this last inequality from the equality
uε(t, x) = u(t + sε, x)− (sε)

2/ε yields

uε(t, x)− uε(t
′, x) ≤ (sε + t − t ′)2

ε
− (sε)

2

ε

=
(2sε + t − t ′)(t − t ′)

ε

≤ 2|sε|+ |t − t ′|
ε

|t − t ′|

≤ 2
√

2εm + |t − t ′|
ε

|t − t ′|,

where we used |sε| ≤
√

2εm, for the last inequality. By symmetry,
we obtain

|uε(t ′, x)− uε(t, x)| ≤
√

2εm + |t − t ′|
ε

|t − t ′|. (4)



To finish the proof of part (5), we must show that,for t, t ′, x with
[t, t ′]× {x} ⊂ O2, we have

|uε(t ′, x)− uε(t, x)| ≤ 2
√

2εm

ε
|t − t ′|.

For η < δ −
√

2εm, pick t = t0 < t1 < · · · < tn = t ′, with
|ti+1 − ti | ≤ η. By applying (4) for ti , ti+1 instead of t, t ′, we get

|uε(ti+1, x)− uε(ti , x)| ≤ 2
√

2εm + |ti+1 − tti |
ε

|ti+1 − ti , |

≤ 2
√

2εm + η

ε
|ti+1 − ti , |.

Adding the inequalities, we obtain

|uε(t ′, x)− uε(t, x)| ≤ 2
√

2εm + η

ε
|t − t ′|.

We can then let η → 0, to conclude that

|uε(t ′, x)− uε(t, x)| ≤ 2
√

2εm

ε
|t − t ′| = 2

√
2m

ε
|t − t ′|.

This finishes the proof of (5), and also of the Proposition.



Proposition 6

Let H : T ∗M → R be a continuous Hamiltonian. If u : V → R is a
continuous function, defined on the open subset V ⊂ R×M,
which is a viscosity subsolution on V of

∂u

∂t
(t, x) + H

(
x ,
∂u

∂x
(t, x)

)
= 0. (5)

Then for every compact subset K ⊂ V , we can find a sequence of
continuous functions un : K → R, such that un → u uniformly on
K , and for every n, the function un is a viscosity subsolution on the
interior K̊ of K , not only of the same evolutionary Hamilton-Jacobi
equation (5), but also of

|∂tun(t, x)|+ H(x , ∂xun(t, x)) = C
√
n,

for some C < +∞.
In particular if H is coercive above each compact subset of M,
then the un’s are locally Lipschitz on K̊ .



Proof
As was done above, we choose an open subset O1 ⊃ K whose
closure Ō1 is compact and contained in V and we set

m = sup
Ō1

|u| < +∞,

then we find δ > 0 and an open neighborhood O2 ⊂ O1 of K , with
compact closure Ō2 ⊂ O1 such that

[t − δ, t + δ]× {x} ⊂ O1, for every (t, x) ∈ Ō2.

We then set ûn = u1/n : O2 → R, where u1/n is defined, for by (3)
with ε = 1/n, for 1/n < δ, namely

ûn(t, x) = max
s∈[−δ,+δ]

u(x ,+s)− ns2.

By part (4) of Proposition 5, we indeed get the uniform
convergence of ûn to u.
We will now check the fact that ûn is a viscosity subsolution of
both Hamilton-Jacobi equations on O2.



Assume (t0, x0) ∈ O2, and that ϕ : V → R is C1 is such that
ûn ≤ ϕ with equality at (t0, x0). By (5) Proposition 5, we know
that t 7→ ûn(x , t) is locally Lipschitz with local Lipschitz constant
≤ 2
√

2mn. This implies

|∂tϕ(t0, x0)| ≤ 2
√

2mn. (6)

We now choose sn ∈ [−δ,+δ] such that

u(t0 + sn, x0)− ns2
n = ûn(t0, x0) = ϕ(t0, x0).

Since (t0, x0) ∈ O2, we can find η > 0, such that (t0 + s, x0) ∈ O2,
for |s| < η. By the definition of ûn, for (t, x) ∈ O2, we have

ûn(t, x) = max
s∈[−δ,+δ]

u(x , t + s)− ns2,

Therefore, for |s| < η, we get

u(t0 + s + sn, x0)− ns2
n ≤ ûn(t0 + s, x0) ≤ ϕ(t0 + s, x0).

Subtracting from this inequality the equality
u(t0 + sn, x0)− ns2

n = ϕ(t0, x0), we obtain

u(y , t0+s+sn)−u(t0+sn, x0) ≤ ϕ(t0+s, y)−ϕ(t0, x0), for |s| < η.



The last inequality, for |s| < η, can be rewritten as

u(y , t0 + s + sn) ≤ ϕ(t0 + s, y)− ϕ(t0, x0) + u(t0 + sn, x0).

Since this inequality is an equality at s = 0 and u is a viscosity
subsolution of

∂u

∂t
(t, x) + H

(
x ,
∂u

∂x
(t, x)

)
= 0,

we must have

∂tϕ(t0, x0) + H(x0, ∂xϕ(t0, x0)) ≤ 0. (7)

Therefore ûn is a viscosity subsolution of

∂ûn
∂t

(t, x) + H
(
x ,
∂ûn
∂x

(t, x)
)

= 0.



Using using the already established inequalities (6)

|∂tϕ(t0, x0)| ≤ 2
√

2mn

and (7)
∂tϕ(t0, x0) + H(x0, ∂xϕ(t0, x0)) ≤ 0,

we also obtain

|∂tϕ(t0, x0)|+ H(x0, ∂xϕ(t0, x0)) ≤ 4
√

2mn.

Therefore un is a viscosity solution of∣∣∣∣∂ûn∂t (t, x)

∣∣∣∣+ H
(
x ,
∂ûn
∂x

(t, x)
)

= C
√
n,

with C = 4
√

2m.



Corollary 7

Let H : T ∗M → R be a continuous Hamiltonian, which is coercive
above each compact subset of M and convex in the momentum p.
Let u : V → R be a continuous functions defined on the open
subset V ⊂ R×M which is viscosity subsolution of the
evolutionary Hamilton-Jacobi equation

∂tu(t, x) + H(x , ∂xu(t, x)) = 0.

For every open set V ′ ⊂ V whose closure V̄ ′ is compact and
contained in V , we can approximate uniformly u on V ′ by a C∞

solution of the same evolutionary Hamilton-Jacobi equation.

Proof By Proposition 6 above, we can make a first approximation
by a viscosity solution u1 : V ′ → R of

∂tu(t, x) + H(x , ∂xu(t, x)) = 0,

which is locally Lipschitz on V ′.



Therefore the function u2 : V ′ → R, (t, x)→ u1(t, x)− εt is a
locally Lipschitz viscosity subsolution of

∂tu + H(x , ∂xu) = −ε.

Note also that the variable t is bounded on the compact subset V̄ ′

of R×M.
Hence by choosing appropriately ε, we can assume u2 uniformly as
close to u1 as we wish. We can now consider the Hamiltonian
Ĥ : T ∗(R×M) defined by

Ĥ(t, s, x , p) = s + H(x , p),

where we use the identification
T ∗(R×M) = T ∗R× T ∗M = R× R× T ∗M.



With this identification, we get that the function u2 is a locally
Lipschitz viscosity subsolution of

Ĥ(t, x ,Du(t, x)) = −ε.

Since the Hamiltonian Ĥ(t, s, x , p) is convex in the momentum
(s, p), we can now invoque one of the properties of viscosity
subsolutions we mentioned, and approximate uniformly u2 on V ′

by a C∞ viscosity subsolution u3 : V ′ → R of

Ĥ(t, x ,Du(t, x)) = 0.

This means that u3 is a uniform approximation of u, which is a
viscosity subsolution of the evolutionary Hamilton-Jacobi equation

∂tu(t, x) + H(x , ∂xu(t, x)) = 0.



Corollary 8

Let H : T ∗M → R be a continuous Hamiltonian, which is coercive
above each compact subset of M and convex in the momentum p.
If u1 : V → R and u2 : V → R are continuous functions defined on
the open subset V ⊂ R×M, which are both viscosity subsolutions
of

∂tu + H(x , ∂xu) = 0, (8)

then min(u1, u2) is also a viscosity subsolution on V of the same
equation.

Proof Since H is convex, from of the general properties that we
recalled, the corollary is well known when u1 and u2 are locally
Lipschitz.The result follows from this case and the stability of
viscosity solutions using the approximation result obtained in
Proposition 6.



Maximum principle

Theorem 9

Let H : T ∗M → R be a continuous Hamiltonian, which is coercive
above each compact subset of M and convex in the momentum p.
Suppose a < b ∈ R. and K ⊂ M is a compact subset.
If the continuous functions u, v : [a, b]× K → R are respectively a
subsolution and a supersolution, on ]a, b[×K̊ , of the evolutionary
Hamilton-Jacobi equation

∂tu(t, x) + H(x , ∂xu(t, x)) = 0,

then the maximum of u − v on [a, b]× K is achieved on
[a, b]× ∂K ∪ {a} × K .



Proof

It is not difficult to realize that, by the approximation result of
Proposition 6, we can assume that the viscosity subsolution u is
locally Lipschitz in K̊×]a, b[.
As usual in proofs of that form of the maximum principle, for
ε, δ > 0, we introduce the function uε,δ : [a, b[×K → R defined by

uε,δ(t, x) = u(t, x)− ε(t − a)− δ

b − t
.

Note that uε,δ(t, x)→ −∞, as t → b, and uε,δ ≤ u.
Moreover, since t 7→ −ε(t − a)− δ/(b − t) is C1, with derivative
t 7→ −ε− δ/(b − t)2 ≤ −ε, the function uε,δ is, on ]a, b[×K̊ , a
viscosity subsolution of

∂tuε,δ + H(x , ∂xuε,δ) = −ε.

.



We now recall Theorem (3) in the form that will apply here

Theorem 10

Suppose that u :]a, b[×K̊ → R is a viscosity subsolution of

∂tu + H(x , ∂xu) = c1,

and v :]a, b[×K̊ → R is a viscosity supersolution of

∂tv + H(x , ∂xv) = c2.

Assume further that either u or v is locally Lipschitz on ]a, b[×K̊ .
If u − v has a local maximum, then necessarily c2 ≤ c1.



The function uε,δ is locally Lipschitz on ]a, b[×K̊ and a viscosity
subsolution of

∂tuε,δ + H(x , ∂xuε,δ) = −ε,
The function v is a viscosity supersolution on ]a, b[×K̊ of

∂tu(t, x) + H(x , ∂xu(t, x)) = 0,

Since −ε < 0, by the Theorem above, we conclude that uε,δ − v

cannot have a local maximum in ]a, b[×K̊ .
Since uε,δ(t, x)→ −∞, as t → b, the function uε,δ − v attains its
maximum at a point in [a, b[×∂K ∪ {a} × K . Using that uε,δ ≤ u,
we obtain

uε,δ − v ≤ max
[a,b[×∂K∪{a}×K

uε,δ − v ≤ max
[a,b]×∂K∪{a}×K

u − v ,

everywhere on K × [a, b[. Letting δ, ε→ 0, we obtain

u − v ≤ max
[a,b]×∂K∪{a}×K

u − v ,

on K × [a, b[. Continuity of both u and v yields

max
K×[a,b]

u − v ≤ max
[a,b]×∂K∪{a}×K

u − v .



Recall that our goal is to give the conditions under which we have
uniqueness of viscosity solution with the same initial condition.
Therefore, we have to remove in the previous theorem the
possibility that u − v achieves on [a, b]× ∂K its maximum on
[a, b]× K
This will be done in the next theorem, which is a generalization of
Proposition A.2, page 80 in

Naoyuki Ichihara & Hitoshi Ishii, Asymptotic Solutions of
Hamilton-Jacobi Equations with Semi-Periodic Hamiltonians,
Communications in Partial Differential Equations, 33 (2008)
784–807.

Note, however, that Proposition A.2, page 80 is established, in the
paper above, under a uniform continuity of the Hamiltonian
(condition (A1)). This is not really necessary as can be seen from
their proof.



Theorem 11

Let H : T ∗M → R be a continuous Hamiltonian, which is coercive
above each compact subset of M and convex in the momentum p.
For a < b ∈ R, assume the continuous functions
u, v : [a, b]×M → R are respectively a viscosity subsolution and a
viscosity supersolution of

∂U

∂t
(t, x) + H(x ,

∂U

∂x
(t, x)) = 0,

on ]a, b[×M. If there exists a continuous function
ϕ : [a, b]×M → R which is a viscosity subsolution of the same
equation such that

v(t, x)− ϕ(t, x)→ +∞,

as (t, x) leaves every compact subset of M × [a, b], then

sup
[a,b]×M

u − v ≤ sup
{a}×M

u − v .



Proof

We adapt to our context a argument that can be found in the
proof of Proposition A.2 of the work Naoyuki Ichihara & Hitoshi
Ishii cited above.
If supM×{a} u − v = +∞, there is nothing to prove. If not
subtracting supM×{a} u − v from u, we see that we can assume
u ≤ v on M × {a}. We will show that

min(u,A + ϕ) ≤ v , or every A < +∞. (9)

If we let A→ +∞, then min(u,A + ϕ)→ u pointwise. Therefore,
it will follow from the inequality (9) above that we indeed have
u ≤ v everywhere.



It remains to prove inequality (9)

min(u,A + ϕ) ≤ v , or every A < +∞.

Fix (t0, x0) ∈ M × [a, b] and A ∈ R.

Since v(t, x)− ϕ(t, x)→ +∞ as (t, x) leaves every compact
subset of M × [a, b], we can find a compact subset K ∈ M such
that x0 ∈ K and v − ϕ ≥ A outside K̊ × [a, b].

In particular, we get min(u,A + ϕ)− v ≤ A + ϕ− v ≤ 0 on
∂K × [a, b].

Since, we also have min(u,A + ϕ)− v ≤ u − v ≤ 0 on K × {a},
we conclude from the last Theorem 9 that

min(u,A + ϕ)(t0, x0)− v(t0, x0) ≤ max
K×[a,b]

[min(u,A + ϕ)− v ]

≤ max
[a,b]×∂K∪{a}×K

[min(u,A + ϕ)− v ]

≤ 0.



Case of the Hamiltonian associated to a Tonelli Lagrangian

In fact, the Hamiltonian H associated to a Lagrangian on the
Riemannian manifold M satisfies the following (Tonelli) conditions:

(1*) The function H is C2.

(2*) (C2 strict convexity in the fibers) For every (x , p) ∈ T ∗M,
the second derivative along the fibers ∂2H/∂p2(x , p) is
positive strictly definite.

(3*) (Uniform superlinearity) For every K ≥ 0, we have

C ∗(K ) = sup
(x ,p)∈T∗M

H(x , p)− K‖p‖x <∞.

(4*) (Uniform boundedness in the fibers) For every R ≥ 0, we have

A∗(R) = sup{H(x , p) | ‖p‖ ≤ R} < +∞.

We note that the uniform superlinearity implies that such a
Hamiltonian is coercive.



Lemma 12

Let H be the Hamiltonian associated to a Tonelli Lagrangian L on
M. Suppose ϕ : [0, t]×M → R is a (globally) Lipschitz function
whose Lipschitz constant is ≤ λ.
Fix x0 ∈ M, and ε > 0, the function Φ : [0, t]×M → R defined by

Φ(x , s) = ϕ(x , s)− (A∗(λ+ ε) + λ)s − εd(x0, x)

is a viscosity subsolution of

∂tΦ + H(x , ∂xΦ) = 0, (10)

on ]0, t[×M.
Moreover, we have ϕ(x , s)− Φ(x , s)→ +∞ as (x , s) leaves every
compact subset of [0, t]×M.



Proof
The map Φ is Lipschitz, with Lipschitz constant ≤ λ+ ε in x .
Hence, almost everywhere, we have ‖∂xΦ(s, x)‖x ≤ λ+ ε. By the
definition of A∗, we get

H(x , ∂xΦ) ≤ A∗(λ+ ε) a.e.

We also have almost everywhere ∂tΦ = ∂tϕ− A∗(λ+ ε)− λ.
Since ϕ has Lipschitz constant ≤ λ, we obtain

∂tΦ ≤ −A∗(λ+ ε) a.e.

Therefore
∂tΦ + H(x , ∂xΦ) ≤ 0 a.e.

Since H is convex in p, this implies that Φ is a viscosity
subsolution.
The last part follows from the inequality

Φ(s, x)− ϕ(s, x) ≤ ‖A∗(λ+ ε)‖t − εd(x0, x).



Last Lemma 12 together with Theorem 11 clearly imply the
following corollary

Corollary 13 (Uniqueness)

Assume that H is the Hamiltonian associated to a Tonelli
Lagrangian L on M .
If u, v : [0, t]×M → R are both continuous functions which are
bounded below by Lipschitz functions and are both viscosity
solutions of

∂tU + H(x , ∂xU) = 0

on ]0, t[×M, then sup[0,t]×M u − v = supM×{0} u − v .
Moreover, if u = v on M × {0}, then u = v everywhere.



Theorem 14

Assume that H is the Hamiltonian associated to a Tonelli
Lagrangian L on M .
Suppose u : M → R is continuous function which is bounded
below by a Lipschitz function. Define U : [0,+∞[×M → R by

U(t, x) = T−t u(x).

For every t > 0, this Lax-Oleinik evolution is the only continuous
function V : [0, t]×M → R, bounded below by a Lipschitz
function, which is a viscosity solution of

∂tU + H(x , ∂xU) = 0

on ]0, t[×M, with V (x , 0) = u(x), for every x ∈ M.

Proof In the last lecture we showed that U is continuous and
bounded below by a Lipschitz function.
We also showed at the beginning of this lecture that it was a
viscosity solution.
Therefore this is a consequence of the Uniqueness Corollary 13.


