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Abstract. We propose a theory “à la Conley” for cone fields using a notion of relaxed orbits
based on cone enlargements, in the spirit of space time geometry. We work in the setting of closed (or
equivalently semi-continuous) cone fields with singularities. This setting contains (for questions which
are parametrization independent such as the existence of Lyapounov functions) the case of continuous
vector-fields on manifolds, of differential inclusions, of Lorentzian metrics, and of continuous cone fields.
We generalize to this setting the equivalence between stable causality and the existence of temporal
functions. We also generalize the equivalence between global hyperbolicity and the existence of a steep
temporal functions.

—–

Résumé. On développe une théorie à la Conley pour les champs de cones, qui utilise une notion
d’orbites relaxées basée sur les élargissements de cones dans l’esprit de la géométrie des espaces temps.
On travaille dans le contexte des champs de cones fermés (ou, ce qui est équivalent, semi-continus),
avec des singularités. Ce contexte contient (pour les questions indépendantes de la paramétrisation,
comme l’existence de fonctions de Lyapounov) le cas des champs de vecteurs continus, celui des inclu-
sions différentielles, des métriques Lorentziennes, et des champs de cones continus. On généralise à ce
contexte l’équivalence entre la causalité stable et l’existence d’une fonction temporale. On généralise
aussi l’équivalence entre l’hyperbolicité globale et l’existence d’une fonction temporale uniforme.
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0.1 Introduction

Lyapounov functions play an important role in dynamical systems. Their existence is related to
basic dynamical behaviors such as stability and recurrence. The second aspect was made precise
by Conley, who showed an equivalence between the existence of Lyapounov functions and the
absence of chain recurrence. This result was extended by Hurley, see [18, 19], to non compact
spaces. See also [26] for a different point of view based on Mather-Fathi theory.

On the other hand the causality theory of space times studies (among other things) time
functions on Lorentzian manifold, see [22] for example. The existence of continuous time functions
for smooth stably causal space times was proved in [16] and [17]. The condition of stable causality
of space time is analogous to the absence of chain recurrence in Conley’s theory. Still in the
context of smooth space times. the equivalence between stable causality and the existence of
a smooth temporal function (a regular Lyapounov functions in the terminology of the present
paper) was proved in [3]. Motivated by solutions to the Einstein equations with low regularity
the problem has been revisited in [8], [7] and [27] where continuous metrics are studied. The
existence of smooth time functions for continuous stably causal cone fields (hence in particular
for continuous, stably causal, Lorentzian metrics) was proved in [14] and [15] by methods inspired
from weak-KAM theory.

In the present paper, we propose a theory “à la Conley” for cone fields. Such a program was
already carried out in [23] in the case of Lorentzian metrics, but our approach is different. We use
a notion of relaxed orbits based on cone enlargements, in the spirit of space time geometry. This
notion has the advantage of not resting on the choice of an auxiliary metric and its bypasses some
technical difficulties related to the non continuity of the length. It allows us to work without
difficulty in the very general setting of closed (or equivalently semi-continuous) cone fields with
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singularities. This setting contains (for questions which are parametrization independent such
as the existence of Lyapounov functions) the case of continuous vector-fields on manifolds, of
differential inclusions, of Lorentzian metrics, and of continuous cone fields. One drawback of our
approach is that it requires a manifold structure on the phase space, but the associated advantage
is that we directly deal with smooth Lyapounov (or time) functions. We generalize to this setting
the equivalence between stable causality and the existence of temporal functions. We also prove
that every globally hyperbolic cone field admits a steep Lyapounov function. The term steep
temporal function was introduced in [24], see section 0.2 for the definition and a discussion. We
finally recover classical statements on the relation between Lyapounov functions and asymptotic
stability in their most general setting, as obtained in [11, 28, 29]. Since our original motivation
was to prove the existence of steep temporal functions in a generalized setting, we work with
the usual convention of space time geometry and consider Lyapounov functions which are non
decreasing along orbits.

We work on a complete Riemannian manifold M .
A convex cone of the vector space E is a convex subset C ⊂ E such that tx ∈ C for each

t > 0 and x ∈ C. It is convenient to exclude the case C = {0}, we however include the case
C = ∅. We will also call this cone degenerate. All the other cones are called non degenerate.
Cones may or not contain the origin. We say that the cone C ′ is wider than the cone C, noted
C ≺ C ′ if C ∪ {0} ⊂ C ′ ∪ {0}. A cone is called singular if it contains a straight line. In the case
of an open cone, this implies that C = E. Cones which are not singular are called regular. The
cone C is regular if and only there exists a linear form p on E such that p · v > 0 for each non
zero vector v ∈ C.

A closed cone field on M is a closed subset C of TM such that the set C(x) := {v ∈
TxM, (x, v) ∈ C} is a convex closed cone for each x. It is easy to see that continuous cone fields
as considered for example in [14] are closed, hence our setting is more general. We say that x is
a regular (resp. singular) point of C if C(x) is a regular (resp. singular) cone. The set of singular
points of a closed cone field is closed.

As a first example, we can associate to each continuous vector-field V on M a closed cone
field CV defined by CV (x) = R+ ·V (x) if V (x) 6= 0 and CV (x) = TxM if V (x) = 0. The point x is
singular for CV if and only if it is singular for V (i.e. if V (x) = 0). Already this simple example
shows the usefulness of allowing non continuous and singular closed cone fields. This example
also motivate our terminology for singular points.

An open cone field on M is an open subset E of TM such that the set E(x) := {v ∈
TxM, (x, v) ∈ E} is a convex open cone of TxM for each x ∈M . The set of singular points of an
open cone field (the points x such that E(x) = TxM) is open.

We denote by D(C) the domain of the cone field C, which is the set of non degenerate points
of C. Open cone fields have open domains, and closed cone fields have closed domains. A cone
field is said non degenerate if is has no degenerate point i.e. if D(C) = M .

The cone field C′ is said to be wider than the cone field C if C′(x) is wider than C(x) for each
x. We use the notation C ≺ C′. We say that C′ is an enlargement of C if there exists an open
cone field E such that C ≺ E ≺ C′. An open enlargement of C is just an open cone field wider
than C.

The closure (as a subset of TM) of a cone field E is noted Ē , it is a closed cone field. Note
that E(x) ⊂ Ē(x), but with equality only at continuity points of E .

Given an open cone field E , we say that the curve γ : I −→ M is E-timelike (or just
timelike) if it is piecewise smooth (we shall see later that this regularity can be relaxed) and if
γ̇(t) ∈ E(γ(t)) for all t in I (at nonsmooth points, the inclusion is required to hold for left and
right differentials). The chronological future I+

E (x) of x is the set of points y ∈ M such that
there exists a non constant timelike curve γ : [0, T ] −→ M satisfying γ(0) = x and γ(T ) = y.
The chronological past I−E (x) is the set of points x′ ∈ M such that x ∈ I+

E (x′). Note that
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I−E (x) = I+
−E(x). More generally, for each subset A ⊂ M , we denote by I±E (A) := ∪x∈AI±E (x)

the chronological future and past of A. They are open subsets of M . We have the inclusion
I+
E (y) ⊂ I+

E (x) if y ∈ I+
E (x).

Given a closed cone field C, we say that the curve γ : I −→ M is C-causal (or just causal)
if it is Lipschitz and if the inclusion γ̇(t) ∈ C(γ(t)) holds for almost all t ∈ I. The causal
future J +

C (x) of x is the set of points y ∈M such that there exists a (possibly constant) causal
curve γ : [0, T ] −→ M satisfying γ(0) = x and γ(T ) = y. The causal past J −C (x) is the set of
points x′ ∈ M such that x ∈ J +

C (x′). More generally, for each subset A ⊂ M , we denote by
J ±C (A) := ∪x∈AJ ±C (x) the causal future and past of A. We have the inclusion J +

C (y) ⊂ J +
C (x)

if y ∈ J +
C (x).

The smooth function τ : M −→ R is called a Lyapounov function for the cone field C if
dτx · v > 0 for each (x, v) ∈ C and if, at each regular point x of τ (which means that dτx 6= 0),
we have dτx · v > 0 for each v ∈ C(x)−{0}. When C is the cone field associated to a vector-field
V , a Lyapounov function for C is the same as a Lyapounov function for V .

Note that if the cone field is induced by a time orientable Lorentzian metric a smooth Lya-
pounov function without critical points is a temporal function for the Lorentzian metric. In the
same vein time/temporal function were considered in [14] for continuous cone fields.

Given a closed cone field C, we define

F+
C (x) := {x} ∪

⋂
E�C
I+
E (x)

where the intersection is taken on all open enlargements E of C. We call it the stable future of
x. A point x is said to be stably recurrent (for C) if, for each open enlargement E of C, there
exists a closed E-timelike curve passing through x. We denote by RC the set of stably recurrent
points. Let us state our first result, which will be proved in Section 4.

Theorem 1. Let C be a closed cone field.
The set F+

C (x) is the set of point x′ ∈M such that τ(x′) > τ(x) for each smooth Lyapounov
function τ (it is thus a closed set).

The point x is stably recurrent if and only if all smooth Lyapounov functions τ satisfy dτx = 0
(hence RC is closed).

Two points x and x′ of RC are called stably equivalent if x′ ∈ F+
C (x) and x ∈ F+

C (x′); this is
an equivalence relation on RC . The classes of this equivalence relation are called stable classes.

Following the terminology of general relativity, we call a closed cone field stably causal if it
is without stably recurrent points. The following statement is also proved in Section 4.

Theorem 2. Let C be a closed cone field. There exists a smooth Lyapounov function τ with the
following properties:

• The function τ is regular at each point of D(C)−RC.

• Two points x and x′ of RC belong to the same stable class if and only if τ(x′) = τ(x).

• If x and x′ are two points of M such that x′ ∈ F+
C (x) and x 6∈ F+

C (x′), then τ(x′) > τ(x).

This implies that RC is a closed set, as well as the stable components.

We recover the classical fact that a closed cone field is stably causal if and only if it admits
a smooth temporal function (in our terminology, a smooth Lyapounov function without critical
points). This result has a long history and several variants. To our knowledge, the most general
known variant is due to Fathi and Siconolfi in [14], in the context of continuous cone fields. Our
variant is more general, since we allow closed (equivalently : semi-continuous) cone fields with
singularities, and our proof is completely different.

We now present some more specific applications of our methods:
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0.2 Hyperbolic cone fields

Following the terminology of space time geometry, we say that the cone field C on M is globally
hyperbolic if

(GH0) C is closed and non degenerate.

(GH1) C is causal, which means that that all closed Lipschitz C-causal curves are constant and all
points are regular.

(GH2) The set JC(K,K ′) := J +
C (K) ∩ J −C (K ′) is compact for each compact sets K and K ′.

We stress that stable causality is not assumed here, as it is in [14] (it will be indirectly
proved to be a consequence of hyperbolicity). In the classical context of Lorentzian metrics, the
definition was given in a weaker form where (GH2) is replaced by

(GH3) The set JC(x, y) = J +
C (x) ∩ J −C (y) is compact for each x and y in M .

Our definition is equivalent in the Lorentzian case, as follows from:

Proposition 1. If the closed cone field C is wider than a non degenerate open cone field and
satisfies (GH3), then it satisfies (GH2).

Proof. Our assumption is that there exist a non degenerate open cone field E ≺ C. It follows
from Lemma 8 below that E contains a smooth vector-field V (x). This vector-field can be as-
sumed complete by reparametrization, we denote by φt its flow. Let K and K ′ be two compact
sets. We consider a sequence zn ∈ JC(K,K ′), zn ∈ JC(xn, yn) with xn ∈ K and yn ∈ K ′. We
can assume that the sequences xn and yn have limits x and y in K and K ′, respectively. For
each t > 0, x ∈ I+

E (φ−t(x)) ⊂ J +
C (φ−t(x)) and y ∈ I−E (φt(y)) ⊂ J −C (φt(y)). Since I+

E (φ−t(x))
and I−C (φt(y)) are open, xn ∈ I+

E (φ−t(x)) ⊂ J +
C (φ−t(x)) and yn ∈ I−E (φt(y)) ⊂ J −C (φt(y)) when

n is large enough, hence zn ∈ JC(φ−t(x), φt(y)), which is a compact set by (GH3). We can thus
assume by taking a subsequence that zn has a limit z which is contained in JC(φ−t(x), φt(y)) for
each t > 0. By (GH3), the set JC(φ−1(x), z) is compact and it contains φ−t(x) for each t ∈]0, 1[,
hence it contains x. This implies that z ∈ J +

C (x). We prove similarly that z ∈ J −C (y).

The Lyapounov function τ is said to be steep if the inequality

dτx · v > |v|x

holds for each (x, v) ∈ C. Recall that we work with a complete Riemannian metric. The following
statement extends a classical result (see [24], [21]) to our more general setting:

Theorem 3. The non degenerate closed cone field C is globally hyperbolic if and only if it admits
a smooth steep Lyapounov function. Then, the relations JC and FC are identical.

Note that the definition of global hyperbolicity does not involve the metric. We deduce that,
if C is globally hyperbolic and if g̃ is a (not necessarily complete) metric, then there exists a
Lyapounov function which is steep with respect to g̃. This follows from the theorem applied to
the complete metric g + g̃ (where g is a complete metric on M).

At this point a comment on the definition of steep Lyapounov functions is in order. A similar
notion appears in [24] as the sharp criterion for the isometric embeddability of space times into
Minkowski space. There a function τ on the space time (M, gL) is steep if dτ · v ≥

√
|gL(v, v)|

for all future pointing vectors (x, v) ∈ TM . The existence of steep smooth temporal functions
for globally hyperbolic space times is proved in [24] and [21]. Theorem 3 implies the existence
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of steep temporal functions on space times as the Riemannian metric g can be chosen to satisfy
g(v, v) ≥ |gL(v, v)| on all tangent vectors, especially the future pointing ones.

The conclusion of Theorem 3 is false if (GH2) is replaced by (GH3) without assuming that
C has non empty interior. Any vector-field admitting non trivial recurrence provides a counter-
example. We have the following corollaries:

Corollary 2. Each globally hyperbolic cone field admits a globally hyperbolic enlargement.

In particular, hyperbolicity implies stable causality. The splitting theorem, see [2, 3], also
holds in our setting:

Corollary 3. Let (M, C) be globally hyperbolic. Then there exists a manifold N and a diffeo-
morphism ψ : M −→ R×N whose first component is a steep time function on M .

Proof. Let τ be a steep time function. We consider the vector-field V (x) = ∇τ/|∇τ |2, it has
the property that dτx · V (x) = 1. Note that |dτx| > 1 hence |∇τx| > 1 hence |V (x)| 6 1. As a
consequence, the flow ϕt of V is complete. Setting N = τ−1(0), the map (t, x) 7−→ ϕt(x) is a
diffeomorphism from R×N to M . The inverse diffeomorphism ψ is as desired.

As was noticed in [6], if M is moreover assumed contractible, it is then diffeomorphic to a
Euclidean space.

0.3 A Lemma of Sullivan

We start with the definition of complete causal curves, which are the analogs in our setting of
maximal solutions of vector fields.

Definition 4. The causal curve γ is called complete if it is defined on an open (possibly un-
bounded) interval ]a, b[ and if the two following conditions hold:

• Either γ|[s,b[ has infinite length for each s ∈]a, b[ or limt−→b γ(t) is a singular point of C
(we say that γ is forward complete).

• Either γ|]a,s] has infinite length for each s ∈]a, b[ or limt−→a γ(t) is a singular point of C
(we say that γ is backward complete).

We have:

Proposition 5. Let (M, C) be a closed cone field and let F ⊂M be a closed set. Let Z ⊂ F be
the union of all complete causal curves contained in F . Then, there exists a Lyapounov function
τ for C on M which is regular on F − Z.

Proof. We consider the closed cone field CF which is equal to C on F and degenerate outside of
F . Each curve which is causal and complete for CF is causal and complete for C. The proposition
follows from Theorem 2 and the observation that R(CF ) ⊂ Z, which follows from Corollary 19
below, applied to CF .

In the case where C is the cone field generated by a continuous vector field X, where F is
compact, and where Z is empty, we recover a famous Lemma of Sullivan, [31]:

If X is a continuous vector field on M , and if K is a compact set which does not contain
any full orbit of X, then there exists a Lyapounov function for X which is regular on K, i.e.
dτx ·X(x) > 0 for each x ∈ K.

The proof of Sullivan in [31] was based on Hahn-Banach Theorem, a more elementary proof
was given in [20]. Proposition 5 extends this result to the non compact case, and also to the case
where some full orbits exist.
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0.4 Asymptotic stability

We consider a closed cone field C. A compact set Y ⊂ M is called asymptotically stable if, for
each neighborhood U of Y , there exists a neighborhood V ⊂ U of Y such that J +

C (V ) ⊂ U
and if each forward complete causal curve starting in V converges to Y (which means that the
distance to Y converges to zero). If Y = {y} is a point, then this requires that y be singular (or
degenerate).

We can recover in our setting the following restatement of several known results on con-
verse Lyapounov theory for differential inclusions, see [11] for the case where Y is a singular
point, and [28, 29] for the general case. Our setting in terms of cone fields is parametrization-
invariant, in contrast to the formulation in terms of differential inclusions used in these papers.
Since both properties of being asymptotically stable and of admitting a Lyapounov function
are parametrization invariant, these settings are equivalent. Note that our sign convention for
Lyapounov functions is non standard: they increase along orbits.

Proposition 6. Let Y ⊂ M be a compact set and let C be a closed cone field which is non
degenerate in a neighborhood of Y . The following properties are equivalent:

1. Y is asymptotically stable.

2. J +
C (Y ) = Y and there exists a neighborhood U of Y such that each backward complete

causal curve γ contained in U is contained in Y .

3. F+
C (Y ) = Y and there exists a neighborhood U of Y such that RC ∩ U ⊂ Y .

4. There exists a smooth Lyapounov function τ which is non positive, null on Y , and regular
on U − Y , where U is a neighborhood of Y .

Proof. 1 ⇒ 2. The asymptotic stability implies that J +
C (Y ) ⊂ U for each neighborhood U of

Y , hence J +
C (Y ) ⊂ Y . Let U0 be a compact neighborhood of Y which has the property that

all forward complete curves contained in U0 converge to Y . Let us suppose that there exists a
backward complete causal curve γ :]−T, 0] −→ U0 such that γ(0) does not belong to Y . Let U1 be
a compact neighborhood of Y which does not contain γ(0). There exists an open neighborhood
V1 of Y such that J +

C (V1) ⊂ U1, which implies that γ does not enter V1 on ] − T, 0]. Since
U0 − V1 does not contain singular points of C, the curve γ has infinite length, we parametrize it
by arclength, γ : (−∞, 0] −→ M . By Ascoli Theorem, there exists a sequence tn −→ −∞ such
that the curves t 7−→ γ(t − tn) converge, uniformly on compact intervals, to a Lipschitz curve
η : R −→ U0− V1. By Lemma 18, the curve η is causal and forward complete. This implies that
η converges to Y , which is a contradiction since η(R) ⊂ U0 − V1.

2 ⇒ 3. Let U be the neighborhood with property 2, and W be a compact neighborhood
of Y contained in U . If F+

C (Y ) was not contained in W , then there would exists a backward
complete causal curve contained in W but not in Y , by Corollary 20. This contradiction implies
that F+

C (Y ) ⊂W , and, since this holds for each compact neighborhood W of Y contained in U ,
that F+

C (Y ) ⊂ Y . The part of the statement concerning RC follows immediately from Corollary
19.

3⇒ 4. It is a direct consequence of Proposition 35.
4 ⇒ 1 Let U be a compact neighborhood of Y such that τ is regular on U − Y . For each

neighborhood W of Y contained in U , we set a = max∂W τ (by compactness, a < 0) and
V := {x ∈ W, τ(x) > a/2}. We have J +

C (V ) ⊂ V ⊂ U . Let γ : [0, T [−→ V be a complete
causal curve parametrized by arclength. The function τ ◦ γ is increasing, hence is converges
to b ∈]a/2, 0]. We have to prove that b = 0. The set V b := {x ∈ V, τ(x) 6 b} is compact.
If b < 0, then τ is regular on V b, hence there exists δ > 0 such that dτx · v > δ|v| for each
(x, v) ∈ C, x ∈ V b. This implies that τ ◦ γ(t) > τ ◦ γ(0) + δt, hence that T 6 (b− a)/δ is finite.
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The complete causal curve γ has finite length, hence it converges to a limit x ∈ V b which is a
singular point of C hence a critical point of τ , a contradiction.

1 Preliminaries

1.1 On cone fields

We state here useful results on cone fields.

Lemma 7. If C is a closed cone field and E an open cone field, then the set of point x ∈M such
that C(x) ≺ E(x) is open.

Proof. It is the projection on M of the open set E − C.

A standard partition of the unity argument implies:

Lemma 8. Let E be a non degenerate open cone field (E(x) 6= ∅ for each x). Then there exists
a smooth vector-field V such that V (x) ∈ E(x) for each x. Moreover, given (x, v) ∈ E, the
vector field V can be chosen such that V (x) = v. In particular, there exists a smooth curve
γ(t) : R −→ U which is E-timelike and such that (γ(0), γ̇(0)) = (x, v).

Note that V (x) 6= 0 if x is a regular point of E . This implies that a non degenerate open
cone field on a manifold must admit singular points if the Euler characteristic is not zero.

A smooth function τ defined near x is called a local time function at x if dτx 6= 0 and dτx ·v > 0
for each non zero vector v ∈ C(x). This property then holds in a neighborhood of x. Local time
functions at x exist if and only if x is a regular point of C. The cone C(x) is the set of vectors
v ∈ TxM such that dτx · v > 0 for each local time function τ at x.

Let C be a closed cone and Ω � C be an open cone. Then there exists an open cone Ω′ such
that C ≺ Ω′ ≺ Ω̄′ ≺ Ω. Given a diffeomorphism onto its image φ : N −→ U ⊂ M and a cone
field C on M , we denote by φ∗C := (Tφ)−1(C) the preimage of the cone field C, where Tφ is the
tangent map (x, v) 7−→ (φ(x), dφx · v). We define similarly the forward image φ∗C := Tφ(C) of a
cone field on N , this is a cone field on U = φ(N). We denote by Qs, s > 0 the standard open
cone

Qs := {(y, z) ∈ Rd−1 × R : z > s|y|} ⊂ Rd.

The following Lemma on the local structure of open cone fields is obvious, but very useful:

Lemma 9. Let E be open cone field and let x0 be a point which is non degenerate for E and
regular for Ē. There exists a chart φ : Bd−1×]− 1, 1[−→M at x0 such that

Q1 ≺ φ∗E(y, z) ≺ φ∗Ē(y, z) ≺ Q0

for each (x, y) ∈ Bd−1×]− 1, 1[.

Proof. Let τ be a local regular Lyapounov function for Ē such that τ(x0) = 0. Let V be a
vector contained in E(x0) and ψ : M −→ Rd−1 be a smooth local map sending x0 to 0 and such
that the kernel of dψx0 is RV . For each a > 0, the map Ψ := (aτ, ψ) is a local diffeomorphism,
such that dΨx0 · V = (adτx0 · V, 0) and Ψ∗Ē(0, 0) ≺ Q0. If a > 0 is small enough, we have
Q1/2 ≺ Ψ∗Ē(0, 0). As a consequence, there exists s > 0 such that

Q1 ≺ Ψ∗E ≺ Ψ∗Ē ≺ Q0

on Bd−1(s)×]− s, s[. The inverse map φ of Ψ/s then satisfies the conclusions of the statement.
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Lemma 10. Let E1 and E be two open cone fields such that E ≺ Ē ≺ E1. For each A ⊂ M , we
have

I+
E (Ā) ⊂ I+

E1(A).

Proof. It is enough to prove that I+
E (x) ⊂ I+

E1(A) for each x ∈ Ā. Considering an E-timelike
curve γ(t) satisfying γ(0) = x, it is enough to prove that γ(t) ∈ I+

E1(A) for t > 0 small enough.
Working in a chart at x, we can assume that M = Rd and x = 0. We consider an open cone Ω
such that E(0) ≺ Ω ≺ Ω̄ ≺ E1(0). The inclusions E(y) ≺ Ω ≺ Ω̄ ≺ E1(y) then also hold for all y
in an open ball U centered at 0. Since 0 is in the closure of A, we deduce that Ω ∩ U ⊂ I+

E1(A).
On the other hand, we have γ(t) ∈ Ω for t > 0 small enough, hence γ(t) ∈ I+

E1(A).

In the sequel we will need the notion of sums of convex cones or cone fields. The sum of a
family of convex cones is defined as the convex envelop of their union. The sum of cone fields is
defined pointwise.

Lemma 11. The sum E =
∑

α Eα of an arbitrary family of open cone fields is an open cone field.

Proof. Let (x, v) be a point of E . We can assume that M = Rd by working in a chart at
x. The vector v belongs to the convex closure of the union ∪αEα(x), hence it is a finite sum
of elements of this union: There exists a finite set J of indices such that v =

∑
i∈J vi with

vi ∈ Ei(x). Let Bi ⊂ Ei(x) be a compact neighborhood of vi in Rd. For each i ∈ J , there
exists a neighborhood of x on which Bi ⊂ Ei(y). As a consequence, there exists a neighborhood
U of x such that Bi ⊂ Ei(y) for each y ∈ U and each i ∈ J . We conclude that (

∑
iBi)×U ⊂ E .

The sum of two nonempty closed cones C and C ′ is equal to {v + v′, v ∈ Ω, v′ ∈ Ω′}.
It is not always true that the sum of two closed cones is closed. This is however true in the

case where there exists an open half plane Q containing both.

Lemma 12. Let Ω be an open cone and let Ci be finitely many closed cones such that Ci ≺ Ω.
Then there exists an open cone Ω′ such that

∑
Ci ≺ Ω′ ≺ Ω̄′ ≺ Ω.

Proof. In the case where Ω = Rd, we can take Ω′ = Ω. Otherwise we can assume that Ω ≺ Q0

(the open upper half space). Each of the closed cones Ci then satisfies Ci ≺ Qsi for some si > 0.
We can take Ω′ = Qs with s = min si.

Lemma 13. If E is an open enlargement of the closed cone field C, then there exists an open
cone field E ′ such that

C ≺ E ′ ≺ Ē ′ ≺ E .

Proof. For each x0 ∈M , there exists a chart φ : Bd−1×]− 1, 1[−→M at x0 and an open cone
Ω ⊂ Rd such that φ∗C(y, z) ≺ Ω ≺ Ω̄ ≺ φ∗E(y, z) for each (y, z) ∈ Bd−1×]−1, 1[−→M . We take
a locally finite covering of M by open sets Ui which are of the form φi(B

d−1(1/2)×]− 1/2, 1/2[)
for such charts, and denote by Ωi the corresponding open cones. We consider the open cone
fields Ei which are equal to φ∗Ωi on Ui and which are empty outside of Ui. The closure Ēi is the
cone field equal to φ∗Ω̄i on Ūi and empty outside of Ūi. Then we consider the open cone field
E ′ =

∑
i Ei. For each x ∈M , there exists i such that x ∈ Ui, hence C(x) ≺ Ei(x) ≺ E ′(x).

Let us now prove that Ē ′(x) ≺ E(x) for each x ∈ M . Let J(x) be the finite set of indices
such that x belongs to the closure of Ui. For each i ∈ J(x), Ēi(x) ≺ E(x). Lemma 12 implies the
existence of a convex open cone Ω′ ⊂ TxM such that

Ēi(x) ≺ Ω′ ≺ Ω̄′ ≺ E(x)
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for each i ∈ J(x). Extending locally Ω′ to a continuous open cone field , we obtain that

Ēi(y) ≺ Ω′(y) ≺ Ω̄′(y) ≺ E(y)

for each i ∈ J(x) and for y close to x. This implies that Ē ′(x) ≺ Ω̄′ ≺ E(x).

Lemma 14. There exists a sequence En of open cone fields which is strictly decreasing to C,
which means that Ēn+1 ≺ En for each n and that C = ∩En. Such a sequence has the property
that, for each open enlargement E of C and each compact set K ⊂ M , there exists n such that
En(x) ≺ E(x) for each x ∈ K.

Proof. For each point (x, v) ∈ TM−C, there exists an open enlargement E of C which is disjoint
from a neighborhood U of (x, v). We can cover the complement of C in TM by a sequence Ui of
open sets such that, for each i, there exists an open enlargement E ′i of C disjoint from Ui. We
define inductively the open cone field En as an enlargement of C satisfying

Ēn ≺ E ′n ∩ En−1.

It is obvious from the construction that C = ∩En. Finally, let K ⊂ M be compact and E be an
open enlargement of C. For each x ∈ K, there exists nx such that Ēnx(x) ≺ Enx−1(x) ≺ E(x).
Then the inclusion Ēnx(y) ≺ E(y) holds on an open neighborhood of x. We can cover K by
finitely many such open sets, hence En(y) ≺ E(y) for each y ∈ K when n is large enough.

1.2 Clarke differential, causal and timelike curves

We will use the notion of Clarke differential of curves and functions, see [10] for example.
The Clarke differential of a Lipschitz function f : R −→ R at a given point x is the compact

interval

∂f(x) =

[
lim inf

y2→x,y1→x,y2>y1

f(y2)− f(y1)

y2 − y1
, lim sup
y2→x,y1→x,y2>y1

f(y2)− f(y1)

y2 − y1

]
.

The interval ∂f(x) = [p−, p+] can be characterized in the following way: for p < p−, the function
t 7−→ f(t) − pt is increasing near t = x, it is decreasing for p > p+, and it is not monotone in
any neighborhood of x for p ∈]p−, p+[.

The Clarke differential of a Lipschitz curve γ : R −→ M at a given time t is the compact
convex subset ∂γ(t) ⊂ Tγ(t)M defined as the convex hull of limit points of sequences of the form
(γ(tn), γ̇(tn)) in TM , where tn is a sequence of differentiability points of γ, see [10]. It satisfies
the equality

dfγ(t) · ∂γ(t) = ∂(f ◦ γ)(t)

for each smooth function f , and this characterizes ∂γ(t). In other words, v ∈ ∂γ(t) if and only
if dfγ(t) · v ∈ ∂(f ◦ γ)(t) for each smooth function f .

Lemma 15. Given a closed cone field C on M , the following statements are equivalent for a
locally Lipschitz curve γ : I −→M :

• γ̇(t) ∈ C(γ(t)) for almost every t ∈ I.

• ∂γ(t) ⊂ C(γ(t)) for each t ∈ I.

• For each t ∈ I and each local time function τ at γ(t), the function τ ◦ γ is non decreasing
in a neighborhood of t.
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We call the corresponding Lipschitz curves C-causal.
Proof. The second point implies the first one since γ′(s) exists almost everywhere, and then is
contained in ∂γ(s).

Assume the first point. For each t ∈ I and each local time function τ at γ(t), we consider a
neighborhood of γ(t) such that τ is a regular Lyapounov function on U . We have γ(s) ∈ U for
s close to t. Then, for almost every point s in a neighborhood of t, the derivative (τ ◦ γ)′(s) =
dτγ(s) · γ′(s) exists and it is non negative. This implies that the Lipschitz function τ ◦ γ is non
decreasing near t.

If the second point does not hold at some time t, then there exists w ∈ ∂γ(t) and a local
time function τ at γ(t) such that dτγ(t) ·w < 0. This implies that ∂(τ ◦ γ)(t) contains a negative
value, hence that τ ◦ γ is not non decreasing near t.

If γ is a Lipschitz curve and g a Lipschitz function, then we have the chain rule (see [10],
Theorem 2.3.9 )

∂(g ◦ γ)(t0) ⊂ [inf
p,v
p · v, sup

p,v
p · v]

where the sup and inf are taken on p ∈ ∂g(γ(t0)), v ∈ ∂γ(t0). This inclusion is an equality if γ
or g are smooth, but may be strict in general.

1.3 Limit curve Lemma

Let us consider a sequence En of open cone fields strictly decreasing to C.

Lemma 16. Let γn : I −→M be an equi-Lipschitz sequence of En-timelike curves converging to
γ : I −→M uniformly on compact subintervals of I, then γ is C-causal.

Proof. Note first that γ is Lipschitz. Let t ∈ I be given, and let τ be a local time function at
γ(t). In view of Lemma 15, it is enough to prove that τ ◦ γ is non decreasing near t.

Let U be a compact neighborhood of γ(t) such that τ is a non degenerate Lyapounov function
on U . Then τ is still a non degenerate Lyapounov function on U for the closed cone field Ēn for
n > n0. There exists a neighborhood J of t and n1 > n0 such that γn(s) ∈ U for each s ∈ J ,
n > n1. These properties imply that τ ◦γn is non decreasing on J provided n > n1. At the limit,
we deduce that τ ◦ γ is non decreasing on J .

It is useful to control the length of the limit curve:

Lemma 17. Let C be a closed cone field and γ : [0, 1] −→M be a C-causal curve which does not
contain any singular point of C. There exists L > 0 such that:

For each T ∈]0, 1[, there exists ε > 0 and an open enlargement E of C such that each E-
timelike curve η : [0, T ] −→ M satisfying d(γ(t), η(t)) 6 ε for each t ∈ [0, T ] has a length less
than L.

Proof. Let En be a sequence of open cone fields strictly decreasing to C, and let γ be as in the
statement. We denote by `(γ) the length of a curve.

We cover the image of γ by finitely many bounded open sets U1, . . . , Uk each of which has the
property that there exists a time function τi on an open neighborhood Vi of Ūi, which satisfies
|v|x/2δi > d(τi)x · v > 2δi|v|x for some δi > 0, and for each v ∈ C(x), x ∈ Ui. We set δ := min δi
and prove the statement with L = (1 + `(γ)/δ)/δ. We consider a sequence ηn : [0, 1[−→ M of
En-timelike curves converging, uniformly on compact subsets of [0, 1[, to γ. We have to prove
that `(ηn|[0,T ]) 6 L for n large enough.
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Given T ∈]0, 1[, there exists a finite increasing sequence of times 0 = t0 < t1 < · · · < tN = T
such that γ[tj ,tj+1]] is contained in one of the open sets Ui for each j. Then for n large enough,
this is also true for ηn|[tj ,tj+1] and |τi(η(t))− τi(γ(t))| ≤ 1

2N . We obtain, for n large enough :

δ`(ηn|[tj ,tj+1]) 6 τi(ηn(tj+1))− τi(ηn(tj)) 6 τi(γ(tj+1))− τi(γ(tj)) + 1/N

6 1/N + `(γ|[tj ,tj+1])/δ.

Taking the sum, we obtain that the inequality

δ`(ηn|[0,T ]) 6 1 + `(γ)/δ

holds for n large enough, which ends the proof.

Proposition 18. Let γn : [0, an[−→ M be a sequence of En-timelike curves parametrized by
arclength, such that γn(0) is bounded and an −→ ∞. Then along a subsequence, the sequence
γn converges, uniformly on compact intervals of [0,∞), to a limit γ : [0,∞) −→ M which is
C-causal and complete.

Proof. Since the curves γn are 1-Lipschitz, Ascoli Arzela’s Theorem gives, for each T > 0, the
existence of a subsequence along which γn converge uniformly on [0, T ]. By a diagonal extraction,
we get a subsequence along which γn converge uniformly on compact intervals. By Lemma 16,
the limit γ is C-causal. Let us prove that this limit is complete. If it was not complete, it would
have finite length and a regular limit y at infinity. Since the set of regular points is open, there
would exit T > 0 such that γ([T,∞]) contains only regular points. We could reparameterize γ
on [T,∞) to a curve γ̃ = γ ◦ λ : [0, 1[−→ M , and extend γ̃ to a causal curve γ̃ : [0, 1] −→ M .
Lemma 17, applied to the causal curve γ̃ and the sequence γ̃n = γn ◦ λ, gives L > 0 such that,
for each S ∈]0, 1[, the curve γ̃n|[0,S] has length less than L for n large enough. Observing that
`(γ̃n|[0,S]) = λ(S)− T , this would imply that λ(S) 6 T + L for each S ∈]0, 1[. This is a contra-
diction since λ maps [0, 1[ onto [T,∞).

Corollary 19. For each x ∈ RC, there exists a complete causal curve γ passing through x.

Proof. Let En be a sequence of open cone fields strictly decreasing to C. For each n, there
exists a closed En-timelike curve passing through x, that we see as a periodic En-timelike curve
γn : R −→ M satisfying γn(0) = x. The curve γn is periodic and not constant, hence it has
infinite length. At the limit, we obtain a complete causal curve passing through x.

The same method also yields:

Corollary 20. Let Y ⊂ K be two compact sets. If J +
C (Y ) is contained in the interior of K, and

F+
C (Y ) is not contained inK, then there exists a backward complete causal curve γ :]−T, 0] −→M

contained in K and such that γ(0) ∈ ∂K.

Proof. For each n, there exists an En-timelike curve γn :]− Tn, 0] −→ K such that γn(0) ∈ ∂K
and γn(−Tn) ∈ Y , parametrized by arclength. If the sequence Tn was bounded, then at the limit
we would obtain a C-causal curve joining a point of Y to a point of ∂K, which contradicts the
hypothesis that J +

C (Y ) is contained in the interior of K. We deduce that Tn is unbounded, and
at the limit we obtain the desired backward complete causal curve.
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2 Direct Lyapounov theory

We consider a closed cone field C and explain how to deduce information about stable causality
from the existence of appropriate smooth Lyapounov functions. More precisely we prove the
following parts of Theorem 1, and some variations:

• If there exists a smooth Lyapounov function τ such that τ(x′) < τ(x), then x′ /∈ F+
C (x).

• If there exists a smooth Lyapounov function τ such that dτx 6= 0, then x /∈ RC .

We say that the open set A is a trapping domain for the open cone field E if I+
E (A) ⊂ A. We

say that A is a trapping domain for the closed cone field C if it is a trapping domain for some
open enlargement E of C.

Lemma 21. If A is a trapping domain for C, then there exists an enlargement E of C such that
I+
E (Ā) ⊂ A, in particular, F+

C (Ā) ⊂ A.

Proof. Let E be an open enlargement of C such that I+
E (A) ⊂ A and let E1 be an open cone

field such that C ≺ E1 ≺ Ē1 ≺ E . By Lemma 10, I+
E1(Ā) ⊂ I+

E (A) ⊂ A.

Lemma 22. Let f be a C1 function, and a ∈ R. If the inequality dfx · v > 0 holds for each
x ∈ f−1(a) and v ∈ C(x)− {0}, then {f > a} is a trapping domain.

In particular, if a is a regular value of the smooth Lyapounov function τ , then {τ > a} is a
trapping domain.

Proof. Let us consider the open cone field E defined by E(x) = TxM if f(x) 6= a and
E(x) = {v ∈ TxM : dfx · v > 0} if f(x) = a. Our hypothesis on f is that E in an enlarge-
ment of C. If γ(t) is an E-timelike curve, then f ◦ γ is increasing near each time t such that
γ(t) = a. As a consequence, if f ◦ γ(t) > a, then f ◦ γ(s) > a for each s > t. This implies that
{f > a} is a trapping domain.

Corollary 23. Let τ be a Lyapounov function. If τ(x′) < τ(x), then x′ 6∈ F+
C (x).

Proof. Let a ∈]τ(x′), τ(x)[ be a regular value (there exists one by Sard’s theorem). We have
F+
C (x) ⊂ F+

C ({τ > a}) ⊂ {τ > a}.

Lemma 24. Let τ be a smooth Lyapounov function and x a regular point of τ . Then there exists
a smooth Lyapounov function τ̃ which has the same critical set as τ , and such that τ̃(x) is a
regular value of τ̃ . This implies that x is not stably recurrent.

Proof. Given a neighborhood U of x on which τ is regular, let f be a smooth function sup-
ported in U and such that f(x) = 1. For δ > 0 small enough, the function τ + sf is a smooth
Lyapounov function, which is regular on U for each s ∈]− δ, δ[. The interval ]τ(x)− δ, τ(x) + δ[
contains a regular value a of τ . The function τ̃ := τ + (a − τ(x))f is a smooth Lyapounov
function which is regular on U . The number a := τ̃(x) is a regular value of τ̃ : If τ̃(y) = a, then
either y ∈ U and then dτ̃y 6= 0 or y does not belong to the support of f , and then dτ̃y = dτy 6= 0
since a is a regular value of τ .
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3 Smoothing

The goal of the present section is to prove the following regularization statement, which is one
of our main technical tools to prove the existence of Lyapounov functions. We work with a fixed
cone field C on the manifold M .

Proposition 25. Let A0 be a trapping domain, let Fi be a closed set contained in A0, let Fe be
a closed set disjoint from Ā0, and let θ0 be a point in the boundary of A0.

Then there exists a smooth (near D(C)) trapping domain A′0 which contains Fi, whose bound-
ary contains θ0, and whose closure is disjoint from Fe.

3.1 Local properties of trapping domains

We say that the closed cone field C is strictly entering A at x ∈ ∂A if there exists an open
cone field E which contains {x} × C(x) and such that I+

E (A) ⊂ A. The cone field E may have
degenerate points. Given an open neighborhood U of x, then C is strictly entering A at x if and
only if it is strictly entering U ∩A at x.

Lemma 26. The open set A is a trapping domain for C if and only if C is strictly entering A at
each point x ∈ ∂A.

Proof. If A is a trapping domain, then there exists an open enlargement E of C such that
I+
E (A) ⊂ A. This implies that C is strictly entering A at each point of ∂A.

Let us now prove the converse. For each point x ∈ ∂A, there exists an open cone field Ex
such that C(x) ⊂ Ex(x) and I+

Ex(A) ⊂ A. The inclusion C(y) ⊂ Ex(y) then holds for all y in
an open neighborhood Ux of x in ∂A. We consider a sequence xi such that the open sets Uxi
form a locally finite covering of ∂A. For each x ∈ ∂A, we denote by J(x) the finite set of indices
such that x ∈ Ūxi . Since the covering is locally finite, there exists a neighborhood V of x in
∂A which is disjoint from Uxi for each i /∈ J(x). We define, for each x ∈ ∂A, the open cone
E(x) :=

⋂
i∈J(x) Exi(x). For x /∈ ∂A, we set E(x) = TxM . We claim that E :=

⋃
x∈M{x} × E(x)

is an open cone field. Indeed, for each x ∈ A, the intersection
⋂
i∈J(x) Exi is an open cone field

which is contained in E in a neighborhood of x, and equal to E at x.
By construction, E is an enlargement of C. Let us verify that I+

E (A) ⊂ A. If not, there exists
a E-timelike curve γ such that γ(t) ∈ A on [0, T [ and γ(T ) ∈ ∂A. We have γ̇(T ) ∈ E(γ(T )) ⊂
Exi(T )) for some i (any i such that γ(T ) ∈ Uxi). For this fixed i, the curve t 7→ γ(t) is then
Exi-timelike on [S, T [ for some S < T . This contradicts the inclusion I+

Exi
(A) ⊂ A.

Let E be an open cone field, and A be a trapping domain for Ē . Then Ēx is regular for all
x ∈ ∂A. Thus at each point x ∈ ∂A, there exists a chart φ : Bd−1(2)×]−2, 2[−→M which sends
(0, 0) to x and has the property that

Q1 ≺ φ∗Ē(y, z) ≺ Q0

for all (y, z) ∈ Bd−1(2)×]− 2, 2[. We recall that Bd(r) is the open ball of radius r centered at 0
in Rd and that Qs, s > 0 is the open cone Qs = {(y, z) ∈ Rd−1 × R : z > s|y|} ⊂ Rd.

Lemma 27. There exists a 1-Lipschitz function g : Bd−1(2) −→]− 2, 2[ such that φ−1(A) is the
open epigraph {z > g(y)}, hence φ−1(∂A) is the graph of g. Note that g(0) = 0.

Proof. Let us define the function g(y) = inf{z ∈] − 2, 2[: φi(y, z) ∈ A} (we decide to set
g(y) = 2 if the infimum is taken on the empty set). Then φ(y, g(y)) ∈ Ā for each y ∈ Bd−1(2).
The curve t 7−→ φ(y, z + t) is Ē-causal hence the set {(y, z) : z < g(y) < 2} is contained in A.
Furthermore, since Q1 ≺ φ∗Ē , the curve φi(y+ tv, g(y) + t) is Ē-causal for each y ∈ Bd−1(1) and
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v ∈ B̄d−1(1). This implies that g is 1-Lipschitz.

Let C be a closed cone field on Rd−1×R, and let A ⊂ Rd−1×R be a trapping domain which
is the open epigraph of the Lipschitz function g : Rd−1 −→ R. For each point x = (y, g(y)) in
the boundary of A, we denote by C◦(x) the open subset of (Rd−1)∗ formed by linear forms p such
that p · vy < vz for each (vy, vz) ∈ C(x)− {0}. The set C◦ := {(y, p) : p ∈ C◦(y, g(y))} is open in
Rd−1 × (Rd−1)∗.

Lemma 28. For each point x = (y, g(y)) of ∂A, the following statements are equivalent:

• The cone field C is strictly entering A at x,

• The Clarke differential ∂g(y) is contained in C◦(x).

Proof. If ∂g(y) is not contained in C◦(x), then there exists p ∈ ∂g(y) and (vy, vz) ∈ C(x)−{0}
such that p · vy > vz. Then for each open cone field E containing {x} × C(x), there exists a
smooth timelike curve γ = (γy, γz) such that γ̇z(0) < p · γ̇y(0). This implies that the function
g ◦ γy(t)− γz(t) is increasing near t = 0, hence I+

E (A) is not contained in A. We conclude that
the cone C is not strictly entering at x.

Conversely, if ∂g(y) ⊂ C◦(x), then we consider the cone Ω = {(vy, vz) : vz > p·vy,∀p ∈ ∂g(y)}.
Since ∂g(y) is compact, this is an open cone. We consider an open cone Ω1 such that

C(x) ≺ Ω1 ≺ Ω̄1 ≺ Ω.

In view of the semi-continuity of the Clarke differential, there exists an open neighborhood U of
y in Rd−1 such that the inequality vz > supp∈∂g(y′) p · vy holds for each (vy, vz) ∈ Ω1 and each
y′ ∈ U . We consider the open cone field E which is equal to Ω1 on U ×R and empty outside, and
prove that I+

E (A) ⊂ A. Otherwise, there exists a smooth curve γ = (γy, γz), which is timelike
for E , and such that γz(T ) = g(γy(T )) and γz(t) > g(γy(t)) for each t ∈ [0, T [. Then, we have
γy(T ) ∈ U and (γ̇y(T ), γ̇z(T )) ∈ Ω1 hence γ̇z(T ) > supp∈∂g(γy(T )) p · γ̇y(T ). This implies that the
function γz(t)− g(γy(t)) is increasing near t = T , a contradiction.

3.2 De Rham Smoothing

Proposition 29. For each Lipschitz function g : Rd −→ R, there exists a family gs, s > 0 of
Lipschitz functions on Rd which converge uniformly to g as s −→ 0 and such that :

• gs is smooth on Bd(1) for each s > 0, and moreover gs is smooth on any open subset
O ⊂ Rd where g is already smooth.

• lim sups−→0(Lip gs) 6 Lip g.

• If V ⊂ Rd × (Rd)∗ is an open set containing the graph ∂g of the Clarke differential of g,
then V contains the graph of ∂gs for s small enough.

If y1, . . . , yN are finitely many points in Bd(1), then we can assume in addition that gs(yi) = g(yi)
for each i = 1, . . . , N and each s > 0.

Proof. We use De Rham smoothing procedure. We follow the notations of [5], Lemma A.1.
There exists a smooth action a(y, x) of Rd on itself (meaning that a(y, a(y′, x)) = a(y + y′, x))
such that :

• a(y, x) = x for each y ∈ Rd and x ∈ Rd −Bd(1)
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• The action of Rd onBd(1) is conjugated to the standard action of Rd on itself by translations
(there exists a diffeomorphism ϕ : Bd(1) −→ Rd such that a(y, ϕ(x)) = y + ϕ(x)).

• The diffeomorphisms ay converge to the identity C1-uniformly for y −→ 0.

Given a Lipschitz function g : Rd −→ R, we define

gs(x) :=

∫
Rd

s−dg(a(y, x))ρ(−y/s)dy

where ρ is a mollification kernel supported in Bd(1). The two first points of the Proposition are
proved, for example, in [5], Lemma A.1. Let us now prove the last point.

We cover the compact set B̄d(1) by finitely many balls Bi each of which has the following
property: There exists convex open sets Wi and Vi in (Rd)∗ such that ∂g(x) ⊂Wi ⊂ W̄i ⊂ Vi ⊂
V (x) for each x ∈ 2Bi (the ball of same center and double radius).

For each i, we define ni(v) := supp∈Wi
p · v and mi(v) = supp∈Vi p · v which are convex

and positively one-homogeneous (hence subadditive) functions. There exists δ > 0 such that
mi(v) > ni(v) + δ|v|. Note that Vi (resp. Wi) is precisely the set of linear forms p satisfying
p · v 6 mi(v) (resp. ni(v)) for each v . The function g is ni-Lipschitz on 2Bi, which means that

g(x′)− g(x) 6 ni(x
′ − x)

for each x and x′ in 2Bi. Since the diffeomorphisms ay converge to the identity C1-uniformly as
y −→ 0, we have∣∣a(y, x′)− a(y, x)− x′ + x

∣∣ =

∣∣∣∣∫ 1

0
(∂xa(y, x+ t(x′ − x))− Id) · (x′ − x)dt

∣∣∣∣ 6 δ(|y|)|x′ − x|

with a function δ converging to 0 at 0. For s small enough, we have a(y, x) ∈ 2Bi for each x ∈ Bi
and |y| 6 s, and δ(s) < δ. We then obtain, for x and x′ in Bi,

|gs(x′)− gs(x)| 6
∫
s−d
∣∣g ◦ ay(x′)− g ◦ ay(x)

∣∣ρ(−y/s)dy

6
∫
s−dni

(
ay(x

′)− ay(x)
)
ρ(−y/s)dy

6
∫
s−dmi(x

′ − x)ρ(−y/s)dy = mi(x
′ − x).

This implies that dgs(x) · v 6 mi(v) for each v, hence that ∂gs(x) ∈ Vi ⊂ V (x) for each x ∈ Bi.
Since the covering Bi is finite, this inclusion holds for all x ∈ Rd provided s is small enough.

The function gs constructed so far does not necessarily satisfy the additional conditions
gs(yi) = g(yi). We thus consider the modified function

g̃s(x) = gs(x) +

N∑
i=1

(g(yi)− gs(yi))hi(x),

where hi, 1 6 i 6 N are non negative smooth function supported on Bd(1) and satisfying
hi(yi) = 1 and hi(yj) = 0 for j 6= i. This modified family of functions satisfies the three points
of the statements since gs(yi) −→ g(yi) for each i, and

∂g̃s(x) = ∂gs(x) +
∑
i

(g(yi)− gs(yi))dhx

for each x.
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3.3 Proof of Proposition 25

We first give the proof under the assumption that D(C) = M . Since A0 is also a trapping domain
for some open enlargement E of C, we can assume without loss of generality that C is the closure
of a non degenerate open cone field.

We consider a locally finite covering of ∂A0 by domains

Uk(1) = φk(B
d−1(1)×]− 1, 1[)

associated to charts φk : Bd−1(2)×]− 2, 2[−→M,k > 1 which have the property that

Q1 ≺ φ∗kC(y, z) ≺ Q0

for all (y, z) ∈ Bd−1(2)×]−2, 2[. Locally finite means that each point x ∈M has a neighborhood
which intersects only finitely many of the sets Uk(1). We denote by xk the points φk(0), k > 1
and set x0 = θ0. We moreover assume that the open sets Uk(2) := φk(B

d−1(2)×]− 2, 2[) are all
disjoint from Fi and Fe.

By Lemma 27, the open set φ−1
1 (A) is the epigraph of a 1-Lipschitz function f1 : Bd−1(2) −→

]− 2, 2[ such that f1(0) = 0. The bounded set U1(1) contains finitely many of the points xi. We
denote by y1, . . . , yN the first component of the preimages of these points. So those of the points
xi which are contained in U1(1) are φ1(y1, f1(y1)), . . . , φ1(yN , f1(yN )).

As in Lemma 28, we define C◦ ⊂ Bd−1(2)× (Rd−1)∗ by

C◦ := {(y, p) : p ∈ C◦(y, f1(y))}.

Since A0 is a trapping domain for C, the set C◦ contains the graph ∂f1 of the Clarke differential
of f1, by Lemma 28.

By Proposition 29, there exists a function g1 : Bd−1(2) −→ R which is 1-Lipschitz, smooth on
Bd−1(1), and satisfies ∂g1(y) ⊂ C0(y) for each y ∈ Bd−1(2), and g1(yj) = f1(yj) for j = 1, . . . , N .
In particular, g1(0) = 0, hence g1 takes vales in ]− 2, 2[.

Let A1 be the open set such that A1 ∩ (M − U1(1)) = A0 ∩ (M − U1(1)) and such that
φ−1

1 (A1) is the open epigraph of g1. The cone field C is strictly entering A1 at each point x of the
boundary ∂A1. Indeed, such a point x either belongs to ∂A0 ∩ (M − Ū1(1)), and then A1 = A0

near x, or it is of the form φ1(y, g1(y)) for some y ∈ Bd−1(2). In this second case, the conclusion
follows from the inclusion ∂g1(y) ⊂ C0(y), by Lemma 28. We deduce by Lemma 26 that A1 is a
trapping domain for C.

By the same method, we build inductively a sequence Am,m > 0 of trapping domains which
have the following properties:

• ∂Am contains all the points xk (hence the point θ0), Fi is contained in Am and Fe is disjoint
from Ām.

• The boundary ∂Am is contained in
⋃
k>1 Uk(1), and its intersection with

⋃
m>k>1 Uk(1) is

a smooth hypersurface.

• The symmetric difference between Am and Am−1 is contained in Um(1).

We denote by A′0 := lim inf Am the set of points x which belong to all but finitely many of
the sets Am. We claim that A′0 satisfies the conclusions of Proposition 25.

Since the covering Uk(1) is locally finite, the intersection Am ∩ K stabilizes to A′0 ∩ K for
each compact K, i. e. K ∩Am = K ∩A′0 for all m large enough.

This implies that A′0 is open, and that ∂(A′0) = lim inf ∂(Am). This boundary is smooth,
contains all the points xk, and is contained in U .
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To prove that A′0 is a trapping domain, it is enough to observe that the cone field C is strictly
entering A′0 at each point x ∈ ∂A′0. Since the sequence Ak stabilizes in a neighborhood of x, this
follows from the fact that each of the open sets Ak is attracting.

This ends the proof of Proposition 25 under the assumption that D(C) = M .
If we do not make this assumption we consider an enlargement E of C such that A0 is a trap-

ping domain for Ē . We can apply the result just proved on the manifold D(E), to the cone field Ē .
We deduce the existence of a smooth trapping region A′0 for Ē in D(E) which contains Fi∩D(E),
is disjoint from Fe∩D(E), and whose boundary contains θ0. Let O be an open subset ofM which
contains Fi and whose closure is disjoint from Fe, and let Z ⊂ D(E) be a closed neighborhood
of D(C) inM . The open set A′0∪((M−Z)∩O) then satisfies the conclusions of Proposition 25.

4 Existence of Lyapounov functions

We consider in this section a closed cone field C and prove several existence results for Lyapounov
functions, in particular Theorems 1, 2 and 3.

4.1 Smooth trapping domains and Lyapounov functions

We associate smooth Lyapounov functions to smooth trapping domains:

Proposition 30. Let A be smooth trapping domain, then there exists a smooth Lyapounov func-
tion τ such that A = {τ > 0} and 0 is a regular value of A (hence ∂A = {τ = 0}).

If Fi and Fe are closed sets contained in A and disjoint from Ā, respectively, we can moreover
impose that τ = 1 on Fi and τ = −1 on Fe.

Proof. We consider a collar of ∂A in the manifold M − (Fe ∪ Fi), that is a smooth embedding
ψ : H × R −→ M − (Fe ∪ Fi) such that ψ(H × {0}) = ∂A and ψ−1(A) = H×]0,∞). We will
prove the existence of a Lyapounov function τ̃ on H × R for the cone field ψ∗C, which has the
following properties:

• τ̃ = 0 on H × {0} and 0 is a regular value of τ̃ .

• τ̃ = 1 on H × [1,∞) and τ̃ = −1 on H × (−∞,−1].

Assuming the existence of the function τ̃ , we obtain the Lyapounov function τ on M as follows:
τ = τ̃ ◦ ψ−1 on U = ψ(H × R), τ = 1 on A− U , and τ = −1 on M − (A ∪ U).

Let us now prove the existence of the Lyapounov function τ̃ on H × R. We denote by (y, z)
the points of H × R. The cone field

C̃(y, z) = ψ∗C(y, z) = (dψ−1
(y,z) · C(ψ(y, z)))

is a closed cone field on H ×R. The cones C̃(y, 0) satisfy vz > 0 for each (vy, vz) ⊂ C̃(y, 0)−{0}.
Fixing a Riemannian metric on H, there exists a smooth positive function δ(y) on M such that

C̃(y, 0) ⊂ {(vy, vz) : vz > 3δ(y)‖vy‖}

for each y ∈ H. Then, there exists a smooth positive function ε(y) such that

C̃(y, z) ⊂ {(vy, vz) : vy > 2δ(y)‖vy‖}

provided |z| 6 ε(y). Let f : H −→ R be a smooth positive function such that ‖dfy‖ 6 δ(y) and
f(y) 6 ε(y) for all y ∈M . Finally, let us set

τ̃(y, z) = φ(z/f(y)),
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where φ : R −→ [−1, 1] is a smooth nondecreasing function which has positive derivative on
] − 1, 1[ and is equal to 1 on [1,∞) and to −1 on (−∞,−1]. The set of regular points of the
function τ̃ is H×]− 1, 1[. At such a point (y, z), we compute

dτ̃(y,z) · (vx, vz) =
φ′(z/f(y))

f(y)

(
vz −

z

f(y)
dfy · vy

)
>
φ′(z/f(y))

2f(y)
vz

for (vy, vz) ∈ C̃(y, z) since

|(z/f(y))dfy · vy| 6 δ(y)‖vy‖ 6 vz/2.

We will also need a variant of the above result. We say that the open set A is smooth near
the set X if there exists an open set U containing X such that U ∩∂A is a smooth hypersurface.

Corollary 31. Let A be a trapping domain which is smooth near D(C). Then there exists a
smooth Lyapounov function τ such that A = {τ > 0} and such that τ is regular at each point of
τ−1(0) ∩ D(C).

If Fi and Fe are closed sets contained in A and disjoint from Ā, respectively, we can moreover
impose that τ = 1 on Fi and τ = −1 on Fe.

Proof. Let U be an open neighborhood of D(C) such that ∂A ∩ U is smooth. Let V be the
complement of D(C). Let T be a smooth Lyapounov function of C on U such that 0 is a regular
value of T and A ∩ U = {T > 0}. We obtain such a function by applying the Proposition to U .
Let f be a smooth function on M such that f = 1 on Fi, f > 0 on A, f < 0 outside of Ā, and
f = −1 on Fe. Let g, h be a partition of the unity associated to the open covering (U, V ) of M .
We set τ = gT + hf .

4.2 Conley Theory for closed cone fields

We prove Theorem 1 and 2.

Proposition 32. If x is not chain recurrent, then there exists a Lyapounov function τ such that
τ(x) is a regular value of τ (in particular, τ is regular at x).

Proof. There are two cases. Either C(x) is degenerate, or there exists an enlargement E of C
such that x 6∈ I+

E (x) and such that E(x) 6= ∅. In each of these cases, we will prove the existence
of a Lyapounov function regular at x, Lemma 24 then implies the proposition.

In the first case each function τ which is supported in the open set M −D(C) is a Lyapouov
function for C. Since x ∈M −D(C) there exists such a function satisfying dτx 6= 0.

In the second case, the set A0 := I+
E (x) is a trapping domain for C whose boundary contains

x. Proposition 25 gives the existence of a smooth trapping domain whose boundary contains
x. Corollary 31 then implies the existence of a smooth Lyapounov function τ such that dτx 6= 0.

Proposition 33. Let x and x′ be two points such that x′ does not belong to F+
C (x). Then there

exists a Lyapounov function τ such that τ(x′) < τ(x). If the point x does not belong to RC then
the function τ can be chosen such that τ(x) is a regular value of τ , similarly for x′.

Proof. To prove the first statement, we consider two cases. Either C(x) = ∅ or there exists an
an enlargement E of C such that x′ /∈ I+

E (x) ∪ {x} and E(x) 6= ∅.
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In the first case, we take a smooth function τ supported in a small neighborhood of x and
satisfying τ(x) > 0 = τ(x′) and dτx 6= 0.

In the second case, the set A0 := I+
E (x) is a trapping domain containing x in its closure and

not containing x′. Proposition 25 then implies the existence of a smooth (near D(C)) trapping
domain containing x in its closure and not containing x′. Proposition 30 implies the existence of
a smooth Lyapounov function τ such that τ(x′) 6 0 and τ(x) > 0 and 0 is a regular value of τ .
If τ(x) = 0, then dτx 6= 0 hence the Lyapounov function τ can be slightly modified near x to a
Lyapounov function τ̃ such that τ̃(x) > 0 and τ̃(x′) = τ(x′) 6 0.

We have proved, in each case, the existence of a smooth Lyapounov function τ such that
τ(x′) < τ(x). If x is not stably recurrent and is a critical point of τ , we consider a smooth
Lyapounov function f regular at x. By composing on the left with a non decreasing function,
the function f can be made arbitrarily C0-small. Then the Lyapounov function τ1 = τ + f
is regular at x and satisfies τ1(x′) < τ1(x). If, in addition, x′ is not stably recurrent and is a
singular point of τ + f then we consider a Lyapounov function g regular at x′, C0-small, and
such that dg(x) is small. The Lyapounov function τ2 = τ + f + g then satisfies τ2(x′) < τ2(x),
dτ2(x) 6= 0 and dτ2(x′) 6= 0.

Finally, in the case where dτ2(x) 6= 0, we use Lemma 24, to obtain a Lyapounov function
τ3, which has the same critical set as τ2, and such that τ3(x) is a regular value of τ3. The
proof of Lemma 24 shows that the function τ3 can be chosen arbitrarily C0 close to τ2, hence
τ3(x′) < τ3(x). A last application of Lemma 24 gives a Lyapounov function τ4 such that τ4(x′)
and τ4(x) are regular values of τ4, and τ4(x′) < τ4(x).

Theorem 1 obviously follows from the two propositions above. Let us prove Theorem 2.
Proof of Theorem 2. Let us consider the set L of smooth Lyapounov functions which

have the property that they take values in [0, 1] and have only two singular values 0 and 1. We
endow L with the topology of C1 convergence on compact sets. It is a separable metric space.
We consider a dense sequence τi in L. There exists a positive sequence ai such that τ =

∑
aiτi

converges in Ck for each k on each compact set. We can moreover assume that ai+1 6 ai/5. We
claim that the sum τ then satisfies all the conclusions of Theorem 2.

For each point x which is not chain recurrent, there exists a Lyapounov function f ∈ L such
that dfx 6= 0 (just take any Lyapounov function regular at x and compose it on the left with
an appropriate non decreasing function). As a consequence, there exists i such that dτi(x) 6= 0.
If C(x) contains a nonzero vector v, then all terms of the sum dτx · v =

∑
i aidτi(x) · v are non

negative, and one of them is positive, hence the sum is positive. We deduce that x is a regular
point of τ .

If x and x′ are two chain recurrent points which do not belong to the same stable class, there
exists a Lyapounov function f ∈ L such that f(x) 6= f(x′) (once again, we just consider any
Lyapounov function g such that g(x′) 6= g(x), and compose it on the left by a non decreasing
function). Then, there exists i such that τi(x) 6= τi(x

′), and we consider the first index j with
this property. Since x and x′ are chain recurrent, the values of τj on x and x′ are 0 and 1, and
we assume (by possibly renaming x and x′) that τj(x) = 0 and τj(x′) = 1. Then

τ(x′)− τ(x) =
∑
i

ai(τi(x
′)− τi(x)) > aj −

∑
i>j

ai > 3aj/4 > 0

since ai 6 aj5
i−j for each i > j. We conclude that τ(x′) 6= τ(x).

Finally, let us consider two points x 6= x′ in M such that x′ ∈ F+(x) and x /∈ F+(x′).
The first point implies that τ(x′) > τ(x) for each Lyapounov function τ . The second point
implies that there exists a Lyapounov function τ such that τ(x′) > τ(x). By composition with
a non increasing function, we can assume that τ ∈ L. Then, by density, there exists j such that
τj(x

′) > τj(x). The difference τ(x′) − τ(x) is thus the sum of non negative terms one of which
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is positive.

4.3 More existence results of Lyapounov functions

We will use the following easy Lemma in our next result:

Lemma 34. Let τi, 1 6 i 6 k, be finitely many smooth non negative Lyapounov functions, then
the product τ = τ1τ2 · · · τk is a non negative smooth Lyapounov function. If all the τi are regular
at some point x0, then so is τ .

Proof. By recurrence, it is enough to prove the statement for k = 2. The expression

dτ(x) = τ1(x)dτ2(x) + τ2(x)dτ1(x)

implies that dτx · v > 0 for each (x, v) ∈ C. Assume now that there exists (x, v) ∈ C, v 6= 0,
such that dτx · v = 0. Then each of the terms τ1(x)dτ2(x) · v and τ2(x)dτ1(x) · v vanish, which
implies that each of the linear forms τ1(x)dτ2(x) and τ2(x)dτ1(x) vanish, hence that dτ(x) = 0.
We have proved that τ is a smooth Lyapounov function. If the τ1 and τ2 are regular at x0, then
τi(x0) > 0 and we see that dτ(x0) 6= 0.

Proposition 35. Let K ⊂ M be a compact set. Then there exists a smooth non negative
Lyapounov function τ+ such that τ+ = 0 on K (hence on F−C (K)) and τ+ > 0 outside of F−C (K).
This implies in particular that F−C (K) is closed. The function τ+ can be chosen regular on
D(C)−

(
F−C (K) ∪RC

)
.

There also exists a non positive smooth Lyapounov function τ− such that τ− = 0 on K (hence
on F+

C (K)) and τ− < 0 outside of F+
C (K). This implies that F+

C (K) is closed. The function τ−
can be chosen regular on D(C)−

(
F+
C (K) ∪RC

)
.

Proof. The second part of the statement is a consequence of the first part applied to the
reversed cone −C. More precisely, we have τ−(C) = −τ+(−C).

To prove the first part, we fix a point x0 ∈ M − F−C (K). For each y ∈ K, there exists a
smooth Lyapounov function f such that f(y) < f(x0). If moreover x0 6∈ RC , then the function
f can be chosen regular at x0. By composing f on the left with a non decreasing function, we
deduce the existence of a Lyapounov function τy such that τy > 0, τy = 0 in a neighborhood Uy
of y, and τy(x0) > 0. If x0 6∈ RC , then in addition τy is regular at x0.

Since K is compact, there exist finitely many points y1, . . . , yk such that the corresponding
open sets Uyi cover K. The product τ0 := τy1τy2 · · · τyk is a smooth non negative Lyapounov
function such that τ0(x0) > 0, and, if x0 6∈ RC , dτ0(x0) 6= 0.

For each x0 ∈M − F−C (K), we have proved the existence of an open neighborhood V0 of x0

and of a smooth non negative Lyapounov function τ which is null on K and positive on V0. We
can cover the separable metric space M − F−C (K) by a sequence Vi of open sets such that, for
each i, there exists a smooth non negative Lyapounov function τi which is null on K and positive
on Vi. Then there exists a positive sequence ai such that τ :=

∑
i aiτi is a smooth non negative

function which is positive on M −F−C (K).
By exactly the same method we can also obtain a smooth non negative Lyapounov function

τ which is null on K and which has the property that dτx ·v > 0 for each x ∈M− (F−C (K)∪RC)
and v ∈ C(x)− {0}.

By adding the functions τ+ and τ−, we obtain:
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Corollary 36. Given a compact K ⊂M , there exists a Lyapounov function which is null on K
and regular on D(C)−

(
FC(K,K) ∪RC

)
.

Let us also state the following :

Proposition 37. Let A ⊂ M be a trapping domain. There exists a non negative Lyapounov
function τ such that τ > 0 on A and τ < 0 outside of Ā. The function τ can be chosen regular
on D(C)− (RC ∪ ∂A).

Proof. We consider an enlargement E of C such that A is a trapping domain for Ē .
We first fix a point x0 ∈ A and prove the existence of a smooth Lyapounov function which

is non negative, null outside of A, positive at x0 and, if x0 is not stably recurrent, regular at x0.
We consider a point x1 ∈ A ∩ I−E (x0). Then the set A1 := I+

E (x1) is open, it contains
Fi := F+

C (x0), and its closure is contained in F+
Ē (x1), hence in A. In other words, the closure

of A1 is disjoint from the Fe := M − A. By Proposition 25, there exists a smooth (near D(C))
trapping domain A′1 which contains Fi and whose closure is disjoint from Fe. By Proposition
30, there exists a smooth Lyapounov function τ : M −→ [−1, 1] (for C) which is equal to 1 on
Fi and to −1 on Fe. The non negative Lyapounov function 1 + τ is then null outside of A and
positive at x0.

In the case where x0 is not stably recurrent and non degenerate, we can take E in such a
way that x0 6∈ A2 := I+

E (x0), hence x0 belongs to the boundary of this trapping domain. The
closure of A2 is disjoint from the complement Fe of A. By Propositions 25 and 30, we find a non
negative Lyapounov function τ which is regular (hence positive) at x0 and null outside of A.

By considering a convex combination of countably many of the Lyapounov functions we just
built, we obtain a non negative Lyapounov function τi which is positive on A and regular on
(A ∩ D(C))−RC .

We can apply the same result to the cone −C and the trapping domain M − Ā, and get
a Lyapounov function τe (for C) which is non positive, negative outside of Ā, and regular on
(D(C)− Ā)−RC .

The sum τ := τi + τe then satisfies the conclusions of the proposition.

4.4 Globally hyperbolic cone fields

We prove Theorem 3. We start with an easy observation:

Lemma 38. If the closed cone field C satisfies (GH2), then J ±C (x) is closed for all x ∈M .

Proof. Let yn ∈ J +
C (x) be a convergent sequence with limit y ∈M . Let Y be the compact set

Y := {y, y1, y2, . . .}. The set JC(x, Y ) is compact and it contains yn for each n, hence it contains
the limit y.

Let us denote by CK the cone field which is equal to C on K and degenerate outside of K. If
C is a closed cone field and K is a closed set, then CK is a closed cone field. If C is causal, then
so is CK .

Lemma 39. Let C be a causal closed cone field and K be a compact set. Then there exists an
open enlargement E of CK and a real number L > 0 such that all E-timelike curves have length
less than L.

Proof. Let En be a decreasing sequence of open cone fields converging to CK . We can assume
that Un := D(En) is bounded for each n. If the conclusion of the Lemma does not hold, there
exists a sequence γn : [−ln, ln] −→ M of En-timelike curves parametrized by arclength with ln
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unbounded. By Proposition 18, there exists a complete CK-causal curve γ : R −→M . Since CK
has no singular point, this curve has infinite length in the forward direction. Let ω be a limit
point of γ at +∞. For each s > t ∈ R, we have γ(s) ∈ J +

C (γ(t)). Since this set is closed (Lemma
38), we deduce that ω ∈ J +

C (γ(t)), or in other words that γ(t) ∈ J −C (ω), and this holds for all
t. Since ω is not singular, there exists a local time function, and this implies that γ has another
limit point ω′. Since J −C (ω) is closed, we obtain that ω′ ∈ J −C (ω), and similarly ω ∈ J −C (ω′).
This is in contradiction with C being causal.

Corollary 40. Let C be a globally hyperbolic closed cone field and K be a compact set. The
stably recurrent set R(CK) is empty.

Proof. If R(CK) is not empty, then it contains a complete causal curve γ (Definition 4). Since
CK has no singular point, this curve has infinite length, which contradicts Lemma 39.

Corollary 41. Let C be a globally hyperbolic closed cone field, and K1,K2 be two compact sets.
Let K be a compact set containing JC(K1,K2). Then

FCK (K1,K2) = JCK (K1,K2) = JC(K1,K2).

Proof. The second equality is clear. To prove the first equality, we consider a sequence En of
open enlargements of CK decreasing to CK . By Lemma 39, we can assume that each E1-timelike
curve has length less than L > 0. This is then true for all En. Given x ∈ FCK (K1,K2), there
exists a sequence γn : [0, 1] −→ M of En-timelike curves connecting K1 to K2, parametrized
proportionally to arclength, and passing through x. Since the curves γn have bounded length,
they are equi-Lipschitz. Up to a subsequence, they converge uniformly to a Lipschitz curve
γ : [0, 1] −→ M which is CK-causal by Lemma 17, passes through x, and connects K1 to K2.
This implies that x ∈ JCK (K1,K2).

We are now ready to prove the existence of a steep Lyapounov function. Let Ki, i > 1 be a
sequence of compact sets such that JC(Ki,Ki) is contained in the interior of Ki+1 and such that
M = ∪iKi.

For each i > 1, we apply Corollary 36 to the cone field CKi+2 and the compact set Ki. Since
FCKi+2

(Ki,Ki) = JC(Ki,Ki) ⊂ K̊i+1 and since R(CKi+2) is empty, we obtain a smooth function
τi : M −→ R with the following properties:

• τi is a Lyapounov function on Ki+2, which means that dτi(x) · v > 0 for each x ∈ Ki+2

such that dτi(x) 6= 0 and each v ∈ C(x)− {0}.

• τi is regular on Ki+2 − K̊i+1, which means that dτi(x) 6= 0 for each x ∈ Ki+2 − K̊i+1.

• τi is null on Ki.

We also let τ0 be a smooth function on M which is a Lyapounov function on K2.
We now prove the existence of a sequence ai of positive numbers such that the sum τ :=∑
i>0 aiτi is a steep Lyapounov function. Note that this sum is locally finite.
We build the sequence ai by induction, in such a way that the partial sum

∑k
i=0 aiτi is a

steep Lyapounov function on Kk+2 for each k.
The function τ0 is a Lyapounvov function on the compact set K2, hence there exists a0 > 0

such that a0τ0 is steep on K2. The function τ1 is Lyapounov on K3 and regular on K3 − K̊2.
Then there exists a1 > 0 such that a0τ0 + a1τ1 is a steep Lyapounvov function on K3 − K̊2,
hence on K3. Assuming that a0, . . . , ak have been constructed, observe that the function τk+1 is
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Lyapounov on Kk+2 and non degenerate on Kk+2 − K̊k+1. On the other hand the partial sum∑k
i=0 aiτi is a smooth function on M which is a steep Lyapounvov function on Kk+1. There

exists ak+1 > 0 such that
∑k+1

i=0 aiτi is a steep Lyapounvov function on Kk+2 − K̊k+1, hence on
Kk+2. This ends the proof of the existence of a steep Lyapounvov function.

Conversely, let us assume the existence of a steep Lyapounvov function τ . It is clear that C
is causal. Let us prove that F±C (x) = J ±C (x) for each x. We consider a decreasing sequence En
of enlargements of C, which have the property that dτy · v > |v|y/2 for each (y, v) ∈ En. Given
z ∈ F+

C (x), there exists a sequence γn : [0, 1] −→ M of smooth En-timelike curves such that
γn(0) = x and γn(1) = z. We can assume that γn is parametrized proportionally to arclength,
hence is Ln-Lipschitz, where Ln is the length of γn. The hypothesis made on En implies that
Ln 6 2(τ(z)−τ(x)) is bounded. At the limit, we obtain a Lipschitz causal curve γ : [0, 1] −→M
connecting x to z. We have proved that F+

C (x) ⊂ J +
C (x), hence these sets are equal.

We finally prove (GH2). The set JC(K,K ′) = FC(K,K ′) is closed. If γ is a causal curve
joining K to K ′, then the length of γ is bounded by maxK′ τ −minK τ . This means that γ is
contained in a bounded set, hence that JC(K,K ′) is bounded. Being closed and bounded in the
complete Riemannian manifold M , the set JC(K,K ′) is compact.

5 Semi-continuity of the chain recurrent set

Assume that the chain recurrent set RC of the closed cone field C is compact.

Proposition 42. For every neighborhood U of RC there exists a closed enlargement CU of C such
that RCU ⊂ U .

Proof. We assume, without loss of generality, that U is bounded, hence ∂U is compact. It is
enough to prove the existence of an enlargement E of C such that RĒ is disjoint from ∂U .

Let us fix a point z ∈ ∂U . By Lemma 24, there exists a Lyapounov function τ z for C such
that a := τ z(z) is a regular value of τ z. Then, there exists a closed enlargement Cz of C such
that τ z is a regular Lyapounov function for Cz in a neighborhood of {τ z = a}. This implies, by
Lemma 22, that {τ z > a} is a trapping region for Cz, hence that z 6∈ RCz .

The open sets M −RCz , z ∈ ∂U thus cover the compact set ∂U , hence finitely many of them
cover ∂U . By taking the intersection of the corresponding cone fields Cz, we obtain a closed
enlargement of C whose stably recurrent set is disjoint from ∂U , as was claimed.
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