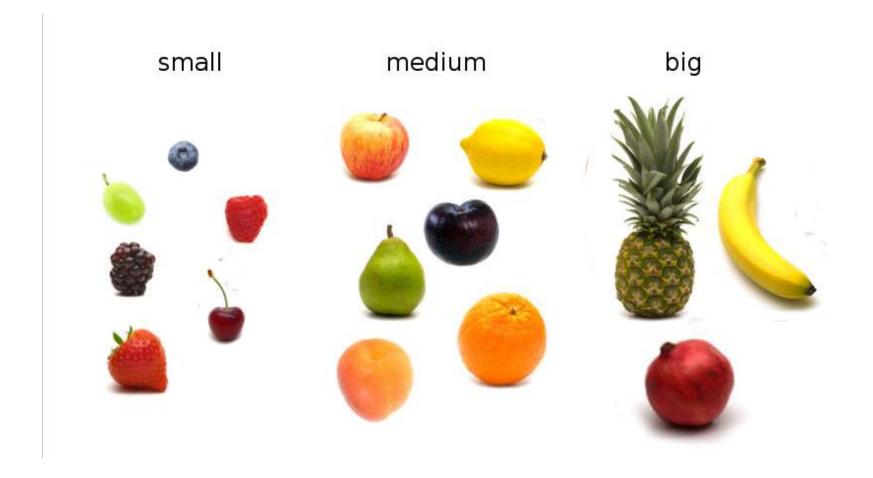
Symplectic classification of semi-toric integrable systems: recent advances and examples

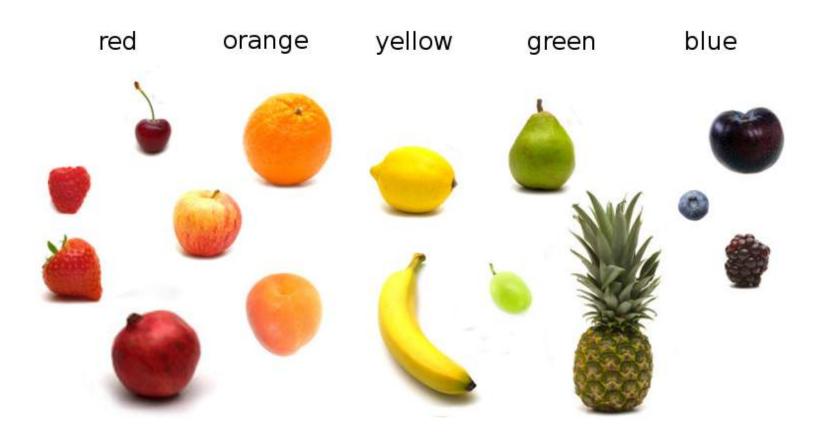
Jaume Alonso

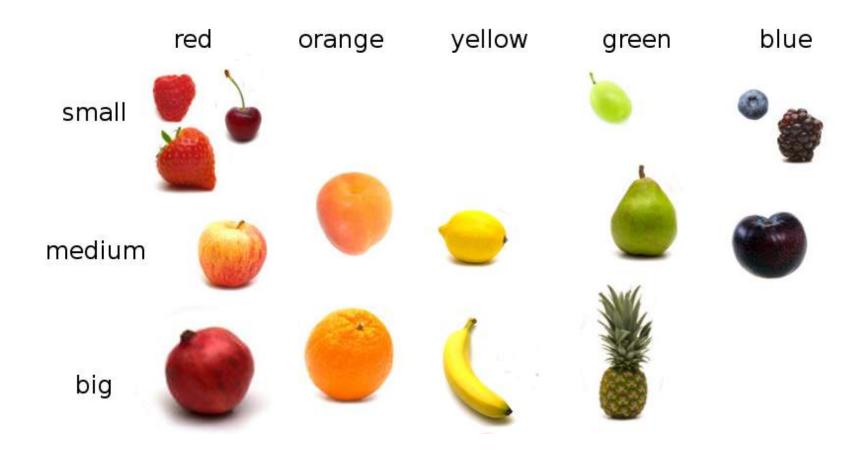
Recent advances in Hamiltonian dynamics and symplectic topology

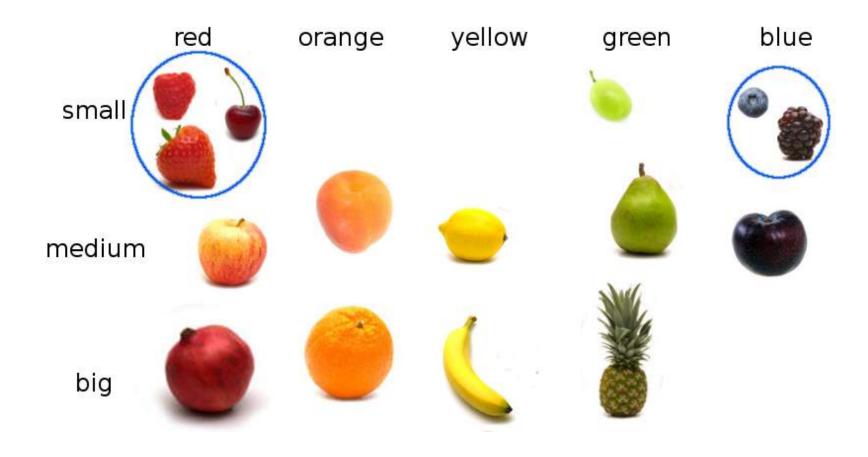
Padova, Feb 15th 2018

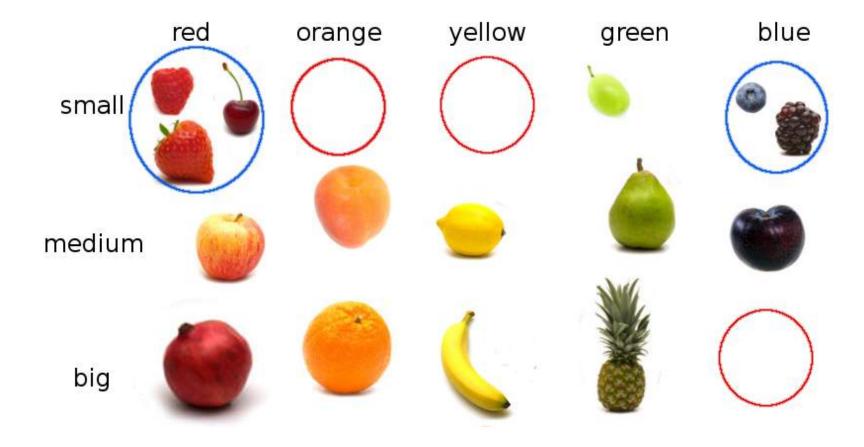
Universiteit Antwerpen











Classification:

► We associate some data to each element of the collection (of topological nature, symplectic nature, diffeomorphic nature...)

Desirable characteristics:

- Given some admissible data, we can construct the corresponding system

- ► A symplectic classification of all completely integrable Hamiltonian systems is desirable but difficult
- ► Toric systems can be classified using certain polygons (Delzant polytopes)
- ► Recently, semi-toric systems have been classified in terms of five symplectic invariants by Pelayo and Vũ Ngọc

Completely integrable systems

Setting

- $ightharpoonup (M,\omega)$ is a 2*n*-dimensional symplectic manifold
- ▶ To each smooth function $H: M \to \mathbb{R}$ (autonomous Hamiltonian) we associate a Hamiltonian vector field X^H by

$$\omega(X^H, \cdot) = dH(\cdot)$$

and a corresponding Hamiltonian flow φ^H

- ▶ The algebra of Hamiltonians $C^\infty(M)$ is endowed with the Poisson bracket: $\{J,F\}:=\omega(X^J,X^F)$
- ▶ The time-evolution of a function F under the flow of X^H is $\dot{F} = \{H, F\}$
- ▶ If F satisfies $\{H, F\} = 0$, we call it a constant of motion / first integral

Completely integrable systems

- ▶ A completely integrable system is a Hamiltonian on (M, ω) system where:
 - $ightharpoonup H, F_2, \ldots, F_n: M \to \mathbb{R}$ constants of motion
 - $ightharpoonup dH, dF_2, \ldots, dF_n$ linearly independent almost everywhere
 - $\{F_i, F_j\} = 0$ for $1 \le i, j \le n$, where $F_1 := H$
- ► The different constants of motion correspond to continuous symmetries of the system (Noether's theorem)
- ▶ The momentum map $\Phi = (F_1, F_2, ..., F_n) : M \to \mathbb{R}^n$. The flows $\varphi^{F_1}, ..., \varphi^{F_n}$ define an \mathbb{R}^n -action on M that fibrates the manifold

Fibration

Understanding the fibration is key to understand the system:

- ▶ A point $p \in M$ is called regular if $D\Phi|_p$ has rank n. Otherwise it is a critical point
- ▶ If $\Phi^{-1}(c)$ has only regular points, it is a regular fibre and $c \in \mathbb{R}^n$ is a regular value
- ▶ If $\Phi^{-1}(c)$ contains critical points, it is a singular fibre and $c \in \mathbb{R}^n$ is a critical value

Regular and singular fibres

Regular fibres are "boring":

- ▶ Assume the vector fields $X^{F_1},...,X^{F_n}$ are complete
- ▶ Then each connected component of a regular fibre is diffeomorphic to $\mathbb{R}^{n-k} \times \mathbb{T}^k$. If compact, then \mathbb{T}^n (*Liouville tori*).

Singular fibres might be more "interesting":

- \blacktriangleright If we have n integrals, we will (almost) always have singularities.
- ► They correspond to fixed points and relative equilibria subsets, so they describe the dynamics of the system.

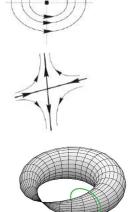
Singularities

Local normal form (Eliasson¹, Miranda & Zung²):

Integrable systems are linearisable around (non-degenerate) critical points $p \in M$, i.e. $\exists (x_1,...,x_n,\xi_1,...,\xi_n)$ local symplectic coordinates and functions $q_1,...,q_n$ with $\{q_i,F_j\}=0 \ \forall i,j$ where the q_i can be:

- ▶ Elliptic component: $q_j = (x_j^2 + \xi_j^2)/2$
- Hyperbolic component: $q_j = x_j \xi_j$
- ► Focus-focus component: they come in pairs

$$\begin{cases} q_{j-1} = x_{j-1}\xi_j - x_j\xi_{j-1} \\ q_j = x_{j-1}\xi_{j-1} + x_j\xi_j \end{cases}$$



Moreover, if no hyperbolic components, then the equations $\{F_i,q_j\}=0$ can be replaced by

$$(\Phi - \Phi(p)) \circ \varphi = g \circ (q_1, ..., q_n)$$

where $\varphi = (x_1,...,x_n,\xi_1,...,\xi_n)^{-1}$ and g is a diffeomorphism.

¹ L. Eliasson, Hamiltonian systems with Poisson commuting integrals, PhD Thesis, (1984)

²E. Miranda, N. T. Zung, *A note on equivariant normal forms of Poisson structures*, Math. Res. Lett., (2006)

Semi-toric systems

Singularities

Setting:

- $lackbox{}(M,\omega)$ 4-dimensional connected symplectic manifold
- $\blacktriangleright \ \Phi = (L,H): M \to \mathbb{R}^2$ momentum map of a completely integrable system
- ▶ $p \in M$ critical point, with $D\Phi|_p < 2$

Definition:

▶ p is a non-degenerate critical point if the Hessians $D^2L|_p$, $D^2H|_p$ are linearly independent and if there is a linear combination of them having 4 distinct eigenvalues.

Semi-toric systems

Definition (Pelayo & Vũ Ngọc)³:

A semi-toric system is a 4-dimensional completely integrable system $(L,H):(M,\omega)\to\mathbb{R}^2$ such that:

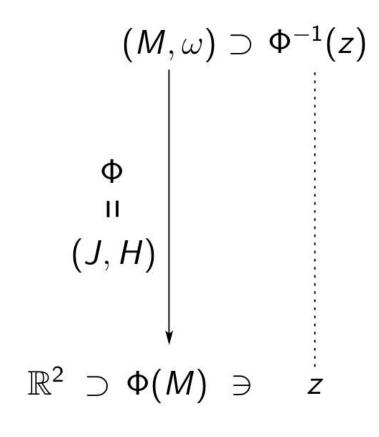
- ightharpoonup L is proper
- ▶ L induces an effective Hamiltonian S^1 -action
- ► All singularities are non-degenerate
- ► There are no hyperbolic components

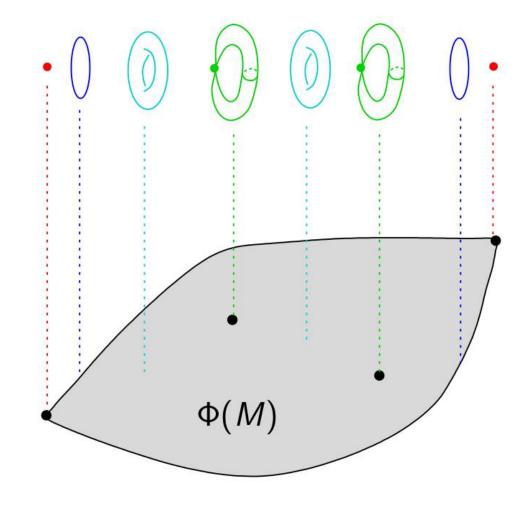
Conclusion: Possible singularities in dim=4:

- ► focus-focus (rank=0)
- ► elliptic-elliptic (rank=0)
- ► elliptic-regular (rank=1)

³Á. Pelayo, S. Vũ Ngọc, *Semitoric integrable systems on symplectic 4-manifolds*, Invent. Math., (2009)

Singularities





Example: the coupled spin-oscillator

Coupled spin-oscillator

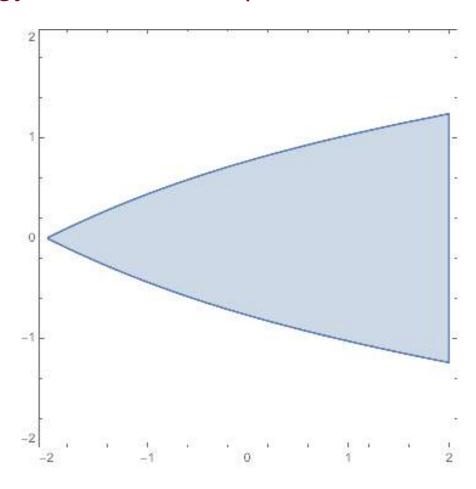
- ► The coupled spin-oscillator is a 4-dimensional integrable Hamiltonian system with 2 degrees of freedom
- It consists of the "coupling" of a classical spin on \mathbb{S}^2 and a classical harmonic oscillator on \mathbb{R}^2
- ► It appears in quantum mechanics (cold atoms in non-equilibrium / Jaynes-Cummings model) and there are also classical and semi-classical studies⁴
- ▶ Let $\lambda, \mu > 0$ be positive constants. Let $(x, y, z) \in \mathbb{S}^2$ and $(u, v) \in \mathbb{R}^2$ be coordinates of the space $\mathbb{S}^2 \times \mathbb{R}^2$. Then we define

$$L := \mu \frac{u^2 + v^2}{2} + \lambda(z - 1) \qquad H := \frac{1}{2}(ux + vy)$$

⁴O. Babelon, L. Cantini, B. Douçot, *A semi-classical study of the Jaynes-Cummings model*, J. Stat. Mech. Theory Exp., (2009)

Coupled spin-oscillator

L induces an \mathbb{S}^1 -action. None of the functions are bounded, so the image of the energy-momentum map looks like:



Example: the coupled angular momenta

- ► The coupled angular momenta is a 4-dimensional integrable Hamiltonian system with 2 degrees of freedom
- It consists of a non-trivial "coupling" of two spin angular momenta, $S=(S_x,S_y,S_z)$ and $N=(N_x,N_y,N_z)$.
- ► It appears in quantum mechanics⁵ and there are also classical and semi-classical studies
- ► The classical phase space is thus $\mathbb{S}^2 \times \mathbb{S}^2$ with symplectic form $\omega = -(R_1\omega_{\mathbb{S}^2} \oplus R_2\omega_{\mathbb{S}^2})$. We define

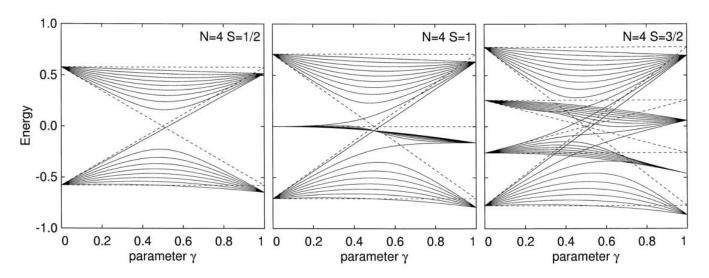
$$L := R_1 z_1 + R_2 z_2$$
 $H := (1 - t) \frac{S_z}{|S|} + t \frac{S \cdot N}{|S||N|}$

⁵D. A. Sadovskií, B. I. Zhilinskií, *Monodromy, diabolic points, and angular momentum coupling*, Phys. Lett. A, (1999)

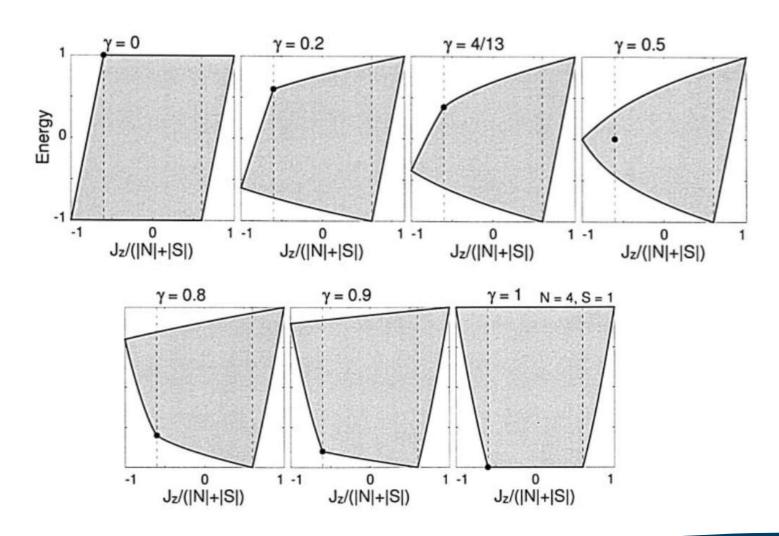
▶ We have

$$L := R_1 z_1 + R_2 z_2$$
 $H := (1 - t) \frac{S_z}{|S|} + t \frac{S \cdot N}{|S||N|}$

- For t=0 we have only one angular spin momentum. N is free so it "generates" the degeneracy
- For t=1 we have a simple angular momenta addition. We get a "multiplet" structure
- ► In between we have a "diabolic point"



L induces an \mathbb{S}^1 -action. We can see the evolution of the image of the momentum map as we move the parameter t:



More mathematically:

▶ We have $M = \mathbb{S}^2 \times \mathbb{S}^2$. In Cartesian coordinates $(x_1, y_1, z_1, x_2, y_2, z_2)$:

$$\begin{cases}
L := R_1(z_1 - 1) + R_2(z_2 + 1) \\
H := (1 - t)z_1 + t(x_1x_2 + y_1y_2 + z_1z_2) + 2t - 1.
\end{cases}$$

- ▶ The system has four critical points: $N \times N$, $N \times S$, $S \times N$ and $S \times S$.
- ▶ 3 of them are always elliptic-elliptic. But $N \times S$ is of focus-focus type for $t \in (t^-, t^+)$, where

$$t^{\pm} = \frac{R_2}{2R_2 + R_1 \mp 2\sqrt{R_1 R_2}}$$

▶ In particular, $t^- < 1/2 < t^+$.

The symplectic classification of semi-toric systems

Pelayo and Vũ Ngọc have achieved⁶⁷ a complete 'generic' classification of semi-toric systems in terms of five symplectic invariants:

- 1. The number of focus-focus critical points invariant
- 2. The polygon invariant
- 3. The height invariant
- 4. The twisting-index invariant
- 5. The Taylor-series invariant

These invariants completely determine the integrable system up to global isomorphism of semi-toric systems.

⁶Á. Pelayo, S. Vũ Ngọc, *Semitoric integrable systems on symplectic 4-manifolds*, Invent. Math., (2009)

⁷ Á. Pelayo, S. Vũ Ngoc, *Constructing integrable systems of semitoric type*, Acta Math., (2011)

The number of focus-focus critical points invariant

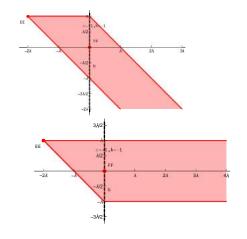
The number $m_f \in \mathbb{N} \cup \{0\}$ of singularities of focus-focus type that the system has.

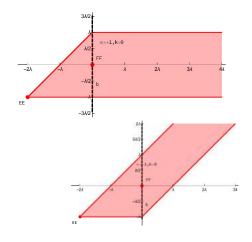
- ▶ The coupled spin-oscillator has $m_f = 1$, corresponding to the point $N \times \{0\}$.
- ▶ The singularity on $S \times \{0\}$ is of elliptic-elliptic type.

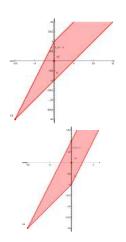
The polygon invariant

We associate a family of simple, rational, convex polygons to a semi-toric system. There is a way to go from one polygon to the other (group action), so the invariant is the orbit of this action.

- ► They are a family of polygons (so more than one)
- ► Here we can see some of the polygons of the coupled spin-oscillator



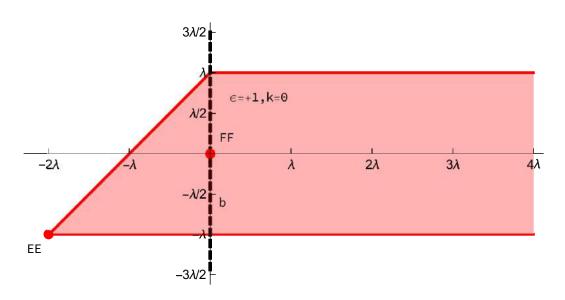




The height invariant

Also called volume invariant, it measures the height of each focus-focus point in the polygons of the polygon invariant.

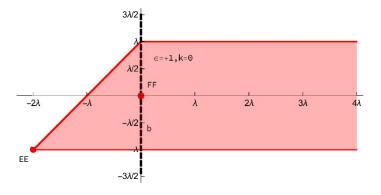
► The height invariant of the coupled spin-oscillator is 1.



The twisting-index invariant

It is an equivalence class of integer m_f -tuples. It quantifies the dynamical complexity of the system at a global level, involving all focus-focus points at the same time.

- ► For systems with one focus-focus singularity it does not carry a lot of meaning.
- ► For the couple spin-oscillator, this polygon carries the value 0.



Taylor series invariant

It consists of m_f Taylor-series $(S_i)^{\infty}$, one per focus-focus singularity. It is a semi-global invariant of the fibration induced by (J, H). We associate an analytic function S_i that measures how the behaviour along the critical fibre differs from "perfect logarithmic" dynamics. Its Taylor-series is the invariant.

- Non-trivial to calculate. Until recently only linear terms were known.
- ► For the spin-oscillator is:

$$S(j,l) = (5\log 2 + \log \lambda)j + \frac{\pi}{2}l + \frac{1}{4\lambda}jl - \frac{1}{768\lambda^2}j(34j^2 + 39l^2) + \frac{1}{1536\lambda^3}lj(34j^2 + 23l^2) - \frac{1}{2621440\lambda^4}j(10727j^4 + 30620j^2l^2 + 13505l^4) + \dots$$

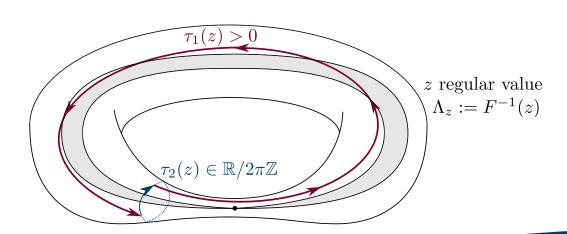
The Taylor-series invariant

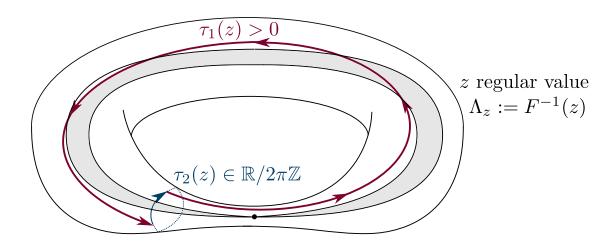
- $lackbox{}(M,\omega,\Phi)$ semi-toric system, $\Phi=(L,H)$ that generates foliation $\mathcal{F}.$
- ▶ m focus-focus critical point, $\Phi(m) = 0$, $\Phi^{-1}(0)$ critical fibre.
- ► Thm. Eliasson/Miranda-Zung: $\exists (x_1, y_1, x_2, y_2)$ local symplectic coordinates around m:
 - ▶ The foliation \mathcal{F} is given by connected components of $q := (q_1, q_2)$.

$$\begin{cases} q_1(x_1, y_1, x_2, y_2) = x_1 x_2 + y_1 y_2 \\ q_2(x_1, y_1, x_2, y_2) = x_1 y_2 - y_1 x_2 \end{cases}$$

- ▶ Near m, q_2 -orbits are 2π -periodic.
- q_1 is hyperbolic, local stable manifold is (x_2, y_2) -plane, local unstable manifold is (x_1, y_1) -plane.
- $ightharpoonup q_1$ is radial, i.e. it tends towards 0 without spiraling in the unstable manifold.

- ▶ $\exists \phi$ local diffeomorphism of \mathbb{R}^2 such that $q = \phi \circ \Phi$.
- ▶ We can extend to a global momentum map: $F := \phi \circ \Phi$. Locally agrees with q. We write $F := (F_1, F_2)$.
- ▶ Close to the critical point, the F_2 -orbits must be periodic, because $F_2 = q_2$.
- ▶ Define fibres $\Lambda_z := F^{-1}(z)$ with $z := z_1 + iz_2$ close to 0. In particular, $F^{-1}(0)$ singular fibre.
- ▶ Take $a \in \Lambda_z$. Follow the flows on the regular fibre: $\tau_1(z)$ along φ^{F_1} and $\tau_2(z) \in \mathbb{R}/2\pi\mathbb{Z}$ along φ^{F_2}



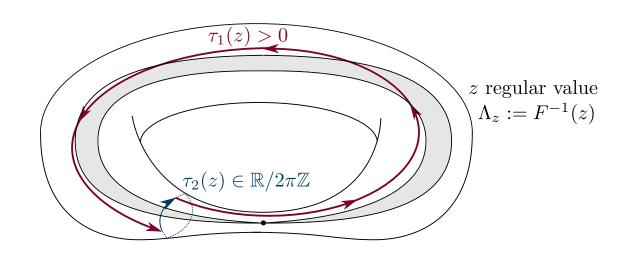


▶ Define

$$\begin{cases} \sigma_1(z) := \tau_1(z) + \mathsf{Re}(\ln z) \\ \sigma_2(z) := \tau_2(z) - \mathsf{Im}(\ln z) \end{cases}$$

- ▶ Then σ_1 , σ_2 extend to smooth (single-valued) functions around 0
- ▶ The 1-form $\sigma := \sigma_1 dz_1 + \sigma_2 dz_2$ is closed⁸ (Vũ Ngọc)
- ▶ Let S be the only function satisfying $dS = \sigma$, S(0) = 0
- ightharpoonup Taylor series invariant = Taylor expansion of S around 0

⁸S. Vũ Ngọc, *On semi-global invariants for focus-focus singularities*, Topology, (2003)



The function S is related to the reduced action I(z) of the system

- ▶ Take ϖ semi-global primitive of ω and γ_z our closed trajectory on the regular fibre
- \blacktriangleright Then the reduced action is $I(z):=\frac{1}{2\pi}\oint_{\gamma_z}\varpi$
- ▶ It satisfies $2\pi dI(z) = \tau_1(z)dz_1 + \tau_2(z)dz_2$
- ► Therefore the invariant is

$$S(z) = 2\pi I(z) - 2\pi I(0) + \text{Re}(z \ln z - z)$$

Recent advances

Recent advances

Recent advances:

- ► Calculation of the Taylor series invariant and the twisting index invariant of the coupled spin-oscillator⁹ (A., Dullin, Hohloch)
- ► Calculation of the Taylor series invariant and the twisting index invariant of the coupled angular momenta depending on the different parameters¹⁰ (A., Dullin, Hohloch)
- Description of a system with two focus-focus points¹¹ (Hohloch, Palmer)

⁹J. A., H. R. Dullin, S. Hohloch, *Taylor series and twisting-index invariants of coupled spin-oscillators*, arXiv:1712.06402 (2017).

¹⁰ J. A., H. R. Dullin, S. Hohloch, *Taylor-series symplectic invariant of the coupled angular momenta*, (in progress).

¹¹ S. Hohloch, J. Palmer, *A family of compact semitoric systems with two focus-focus singularities*, arXiv:1710.05746 (2017).

Coupled spin-oscillator

- ▶ We had $M=\mathbb{S}^2 \times \mathbb{R}^2$ with symplectic form $\omega=\lambda\,\omega_{\mathbb{S}^2}\oplus \mu\,\omega_{\mathbb{R}^2}$
- ► Functions:

$$L := \mu \frac{u^2 + v^2}{2} + \lambda(z - 1) \qquad H := \frac{1}{2}(ux + vy)$$

► After some transformations, the system can be rewritten as

$$L = p_1$$
 $H = \sqrt{\frac{-p_2(p_2 - p_1)(p_2 - p_1 - 2\lambda)}{2\lambda^2\mu}}\cos q_2$

with symplectic coordinates (q_1, p_1, q_2, p_2) and symplectic form

$$\omega = dq_1 \wedge dp_1 \oplus dq_2 \wedge dp_2$$

43

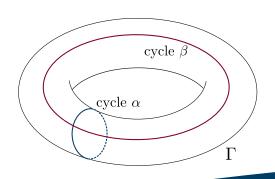
Coupled spin-oscillator

- ► Typical way to define action integral: $I(z) = \frac{1}{2\pi} \oint p \, dq$
- ▶ But requires solving a cubic equation. Better $I(z) = \frac{1}{2\pi} \oint q \, dp$
- ► If we integrate by parts, we get an elliptic integral

$$I(l,h) = \frac{1}{2\pi} \oint_{\beta} -h \left(3 + \frac{l}{p_2 - l} + \frac{l + 2\lambda}{p_2 - l - 2\lambda} \right) \frac{dp_2}{w}$$

defined on

$$\Gamma_{l,h} := \{(p_2, w) : w^2 = P(p_2)\}, \quad P(p_2) = -\frac{2}{\lambda^2 \mu} p_2(p_2 - l)(p_2 - l - 2\lambda) - 4h^2$$



Coupled spin-oscillator

▶ When expanding elliptic integrals, the integral along the vanishing α cycle appears in front of the logarithm. We call it imaginary action:

$$J(l,h) := \frac{1}{2\pi i} \oint_{\alpha} -h \left(3 + \frac{l}{p_2 - l} + \frac{l + 2\lambda}{p_2 - l - 2\lambda} \right) \frac{dp_2}{w}$$

▶ Since the α cycle vanishes as we approach the singularity m, we can use the residue theorem to expand it around m:

$$\frac{1}{\sqrt{\lambda\mu}}J(l,h) = -2h + \frac{1}{4\lambda}lh - \frac{1}{128\lambda^2}h(9l^2 + 20\lambda\mu h^2) + \dots$$

We can invert this series to obtain a "sort of" Birkhoff normal form h = B(j, l) and get everything in terms of (j, l) instead of (l, h). The (j, l) actually correspond to the (z_1, z_2) where $z := z_1 + iz_2$.

Coupled spin oscillator

And now we have all the ingredients we need:

► We expand the action integral (we get rational functions)

$$2\pi I(l,h) = 2\lambda \pi + \frac{\pi}{2} + l \arctan\left(\frac{l}{2\sqrt{\lambda\mu}h}\right) + J(l,h) \log\left(\frac{32\lambda}{\sqrt{l^2 + 4\lambda\mu h^2}}\right) - 2\sqrt{\lambda\mu}h$$
$$-\frac{\sqrt{\lambda\mu}}{2\lambda}lh + \frac{\sqrt{\lambda\mu}}{384\lambda^2(l^2 + 4\lambda\mu h^2)}h(63l^4 + 412\lambda\mu l^2h^2 + 544\lambda^2\mu^2h^4) + \dots$$

► And now we substitute h = B(j, l)

$$2\pi I(j,l) = 2\lambda \pi - j \log|z| + j + l \arg(z)$$

$$+ (5 \log 2 + \log \lambda)j + \frac{\pi}{2}l + \frac{1}{4\lambda}jl - \frac{1}{768\lambda^2}j(34j^2 + 39l^2) + \dots$$

so all rational functions transform into a well-defined Taylor-series, which is what "theory predicted".

Coupled angular momenta

- ► A similar argument works for the coupled angular momenta but calculations are too complex
- Another approach: reduced period and rotation number

$$T := 2\pi \frac{\partial I}{\partial h}, \qquad W = -\frac{\partial I}{\partial l}$$

We define imaginary reduced period and imaginary rotation number

$$T^{\alpha} := 2\pi \frac{\partial J}{\partial h}, \qquad W^{\alpha} = -\frac{\partial J}{\partial l}$$

► Then the derivatives of the invariant are (A., Dullin, Hohloch):

$$\frac{\partial S}{\partial j} = 2\pi \frac{T}{T^{\alpha}} + \ln|z|, \quad \frac{\partial S}{\partial l} = 2\pi \left(W^{\alpha} \frac{T}{T^{\alpha}} - W\right) - \arg(z)$$

System with two FF

System with two focus-focus singularities:

- Generalisation of the coupled angular momenta
- ▶ Defined on $M=\mathbb{S}^2 \times \mathbb{S}^2$ with $\omega=-(R_1\omega_{\mathbb{S}^2}\oplus R_2\omega_{\mathbb{S}^2})$, where $0< R_1 < R_2$
- ▶ The system depends on four parameters $t := (t_1, t_2, t_3, t_4)$

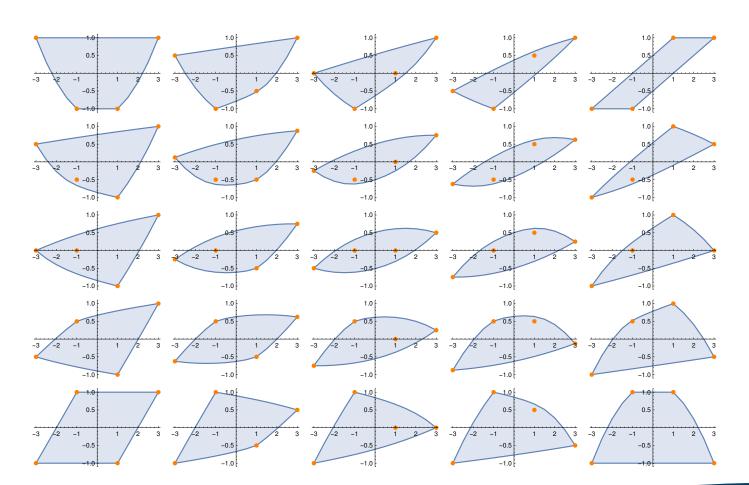
$$\begin{cases}
L = R_1 z_1 + R_2 z_2 \\
H = t_1 z_1 + t_2 z_2 + t_3 (x_1 x_2 + y_1 y_2) + t_4 z_1 z_2
\end{cases}$$

and it is semi-toric with two focus-focus singularities for some values of t.

System with two FF

Special parameter choices with $s_1, s_2 \in [0, 1]$:

$$t_1 = s_1(1 - s_2)$$
 $t_2 = s_2(1 - s_1)$
 $t_3 = (1 - s_1)(1 - s_2) + s_1s_2$ $t_4 = (1 - s_1)(1 - s_2) - s_1s_2$



Grazie per l'attenzione!