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Abstract. We study the graph property for Lagrangian minimizing subman-

ifolds of the geodesic flow of a Riemannian metric in the torus (Tn, g), n > 2.
It is well known that the transitivity of the geodesic flow in a minimizing La-

grangian submanifold implies the graph property. We replace the transitivity

by three kind of assumptions: (1) r-density of the set of recurrent orbits for
some r > 0 depending on g, (2) r-density of the limit set, (3) every point is

nonwandering. Then we show that a Lagrangian, minimizing torus satisfying

one of such assumptions is a graph.

Introduction

The theory of Lagrangian submanifolds that are invariant by a Hamiltonian
flow has two well known statements called Birkhoff Theorems for Lagrangian in-
variant tori. These statements. which are actually open problems with many
partial interesting answers, can be viewed as higher dimensional versions of the cel-
ebrated Birkhoff Theorems for invariant curves of measure preserving twist maps
of the annulus. Let us recall briefly the context that these problems appear. Let
L : TM −→ R be a convex, superlinear Lagrangian (or optic Lagrangian) defined
in the tangent space TM of an n dimensional C∞ manifold M . Let π : TM −→M ,
π(p, v) = p, be the canonical projection.The first statement asserts that each con-
tinuous, Lagrangian torus W ⊂ TTn that is invariant by the Euler-Lagrange flow
of L and that is minimizing, i.e., each orbit in W projects into a global minimizer
of the Lagrangian action of L (see Section 1 for details), is in fact the graph of a
section of the tangent bundle. Namely, the canonical projection restricted to W is
a homeomorphism.

The second statement says that the same property is valid for a continuous,
Lagrangian torus W , invariant by the Euler-Lagrange flow of L and that is homol-
ogous to the zero section. Notice that both problems seek to show that the set
of points in the Lagrangian torus where the canonical projection is not injective
is empty. If we assume in addition that the Lagrangian torus in the statements is
smooth, this is equivalent to show that the set of singular points of the canonical
projection restricted to the Lagrangian torus is empty.

The above statements are conjectures, and the best understood of them is the
second one. Let us make a brief account of the results known up to date, to
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our best knowledge For two dimensional tori, Bialy [8] proved that a Lagrangian
torus homologous to the zero section which is invariant by the geodesic flow of a
reversible Finsler metric and has no periodic orbit is a graph of the canonical pro-
jection. Carneiro-Ruggiero [15] showed the same result for C1 tori dropping the
assumption on the periodic orbits. Thus, a C1 Lagrangian torus homologous to
the zero section invariant by the geodesic flow of a reversible Finsler metric in T 2

is a graph, our second statement is a true theorem in this case. In higher dimen-
sions, Bialy-Polterovich [10], [11], Polterovich [37] showed that a C3 Lagrangian
torus of sufficiently high energy that is invariant by the Euler-Lagrange flow of an
optic Lagrangian is a graph of the canonical projection provided that the torus is
homologous to the zero section and that the flow in the torus is chain recurrent.
The smoothness assumption on the Lagrangian torus is very important, it allows
the application of powerful tools of symplectic topology to study the singular set
of the restriction of the canonical projection to the Lagrangian torus. The proof
in this case relies strongly on a result proved by Viterbo [39] which essentially im-
plies that the Maslov cycle of a C3, Lagrangian, invariant torus homologous to the
zero section is trivial. Without any assumption on the dynamics of the flow in the
Lagrangian torus, using graph selectors Marie Claude Arnaud [1] shows that if the
torus is exact and Hamiltonianly isotopic to the zero section then it is a graph. See
also a generalization of this result, by Bernard and dos Santos, for Lipschitz La-
grangian torus in [7]. For further generalizations using Floer homology by Amorim,
Oh and dos Santos see [4].

For the case of the geodesic flow, In the book [35], the graph property is proven
using a theorem due to Viterbo in [39], under the assumptions that the torus is
homologous to the zero section and the set of nonwandering points of the restriction
of the flow coincides with the whole of the torus.

The first of the above statements is much less explored in the literature. It was
proven for C1 Lagrangian invariant tori of Riemannian metrics in T 2 by Bialy and
Polterovich [9] and Bangert [5] in the early 1980’s; the statements holds even for
continuous invariant tori without closed orbits. It was proved for C1 Lagrangian,
invariant, nonsingular tori in the Mañé critical level of an optic Lagrangian in T 2

by Carneiro and Ruggiero [14] (2004). By the way, in [15] it is given an example
of a continuous, invariant minimizing torus with periodic orbits that is not a graph
of the canonical projection. As far as we know, no further progress has been made
in the subject (even assuming high smoothness of the Lagrangian invariant tori) in
higher dimensions. Although the assumptions in both statements are related, the
variational assumption in the first one is different in nature from the topological
assumption in the second one.

The graph theorem for minimizing tori in dimension 2 follows from a combina-
tion of calculus of variations and the well understood dynamics of nonsingular flows
in the 2-torus. Since the seminal works of Morse and Hedlund it is known that ac-
cumulation properties of globally minimizing geodesics determine their intersection
properties: canonical projections of minimizing recurrent orbits are laminations in
the two-torus.

On the other hand, in higher dimensions, the nonwandering set of a nonsingular
flow in the torus might be extremely more complicated than in dimension two,
giving no clue at all about the accumulation properties of minimizing orbits in
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a Lagrangian invariant torus. It is not difficult to show that a C1, Lagrangian,
invariant torus that is a graph must be minimizing.

So the two categories, minimizing and homologous to the zero section, are closely
connected. We might think that both graph problems could be solved by applying
the same sort of techniques. However, the minimizing assumption does not give
any hint about the triviality of the Maslov cycle.

The first main result of the paper relates the geometry to the dynamics, as a
sufficient condition to have the graph property:

Theorem A: Let (Tn, g) be a C∞ Riemannian metric in the torus, and let
W ⊂ T1T

n be a C2 invariant, Lagrangian torus. There exists r > 0 depending
on the supremum of sectional curvatures of g and the supremum of the seccional
curvatures of W with respect to the Sasaki metric such if W is minimizing and the
limit set of W is r-dense, then the canonical projection π : T1T

n −→ Tn restricted
to W is a diffeomorphism.

Given a metric space (X, d) we say that a subset Y is r-dense in X if the open
ball of radius r around each point of X contains an element of Y . The next main
contribution of the paper is another extension of a well known result in the context
of Lagrangian tori homologous to the zero section.

Theorem B: Let (Tn, g) be a C∞ Riemannian metric in the torus, and let
W ⊂ T1T

n be a C1 minimizing Lagrangian torus such that every point is non-
wandering for the restricted flow. Then W is a graph.

Theorems A and B extend to minimizing tori well known results that are known
for invariant tori which are homologous to the zero section, after the work of
Polterovich [37].

The proofs of Theorems A and B can be extended to Finsler metrics in the
torus, therefore to Euler-Lagrange flows in sufficiently high energy levels of Tonelli
Lagrangians. We would like to point out that the known partial results of Birkhoff’s
theorems do not imply either Theorem A or Theorem B.

Indeed, a Lagrangian invariant tori homologous to the zero section is known to be
a graph if the geodesic flow in W is chain recurrent or if every point is nonwandering
as we mentionned before. Neither the r-density of the recurrent set of W or the
limit set for some r > 0 imply either of the above properties. Moreover, notice
that items (1) and (2) in Theorem A are independent: the limit set might contain
wandering orbits, so the assumption of item (1) does not imply item (2).

The strategy of the proof of Theorem B is different from the strategy of the proof
of Theorem A of course, since the assumptions of both theorems are of different
nature. Moreover, the theory of the Maslov cycle of invariant Lagrangian tori
homologous to the zero section (see Section 2 for details ) cannot be applied to the
case of minimizing tori. The minimizing assumption does not imply a priori that
the torus is homologous to the zero section.

In the proof of Theorem B we apply a general result that is interesting in itself,
a topological description of the singular set of a C1, Lagrangian invariant torus.

Theorem C Let (M, g) be a C∞ compact Riemannian manifold, let φt : T1M −→
T1M be the geodesic flow, and let W ⊂ T1M be a C1 compact, invariant Lagrangian
submanifold. Then the set of points S(W ) where the canonical projection is not
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regular has the following property: for every θ ∈ S(W ) there exists a connected
open neighborhood B(θ) ⊂W such that

(1) B(θ) is a flow box

B(θ) = ∪|t|<εφt(Σ(θ))

where Σ(θ) ⊂ S(W ) contains θ and is a continuous cross section of the
geodesic flow.

(2) S(W )∩B(θ) is the union of a finite number of continuous cross sections of
the geodesic flow.

For the definition of a topological cross section we refer to Section 4.
We would like to thank the geometry group of the University of Avignon and

specially Professor Marie-Claude Arnaud for interesting and fruitful discussions
about the subject while this research work was in progress.

1. Preliminaries

Let us introduce some notations. TM is the tangent bundle of a C∞ manifold
M , TpM is the tangent space of M at a point p, the unit tangent bundle of a
Riemannian manifold (M, g) is T1M , and the canonical projection π : TM −→ M
is the map π(p, v) = p, where (p, v) is a point in TM in canonical coordinates.
We shall always assume that M is complete. The universal covering of M will be
denoted by M̃ .

The geodesic flow of (M, g) in T1M will be denoted by φt : T1M −→ T1M . The
canonical one form of the geodesic flow will be α, the pull back by the Legendre
transform of the Liouville form on T ∗M and the canonical two-form ω = dα. The
two-form ω is symplectic (non-degenerate and closed) and preserved by φt. The
tangent space TθTM is the orthogonal (with respect to the Sasaki metric) sum of the
horizontal subspace Hθ, the kernel of the connection map, and the vertical subspace
Vθ = Ker(Dθπ). The subspace Nθ ∈ TθT1M of vectors which are orthogonal to
the geodesic vector field X(θ) is preserved by Dφt for every t ∈ R, and we have
Nθ = Hθ

⊕
Vθ, where Hθ = Hθ ∩Nθ and Vθ = Vθ ∩Nθ.

Many forthcoming definitions and results have natural generalizations to Tonelli
Lagrangians: a Ck, k ≥ 3 Lagrangian L : TM → R is a Tonelli Lagrangian if it is

strictly convex and superlinear (i.e., lim‖v‖→+∞
L(p,v)
‖v‖ = +∞ for every v ∈ TpM ,

for every p ∈M) when restricted to each tangent space TpM , p ∈M . A Lagrangian

L defined in TM has a natural lift in TM̃ that we shall denote by L̃.

1.1. Lagrangian submanifolds. Suppose that the dimension of M is n. A sub-
space Lθ of TθTM is called Lagrangian if its dimension is n and the restriction of
ω to Lθ is vanishes. In the notation of symplectic geometry, Lθ is Lagrangian for ω
if it is an isotropic subspace (i.e., ω vanishes in Lθ × Lθ) with maximal dimension
(n). A continuous vector subbundle L of TM is called invariant if it is is invariant
by the action of dφt for every t ∈ R.

A smooth submanifold W ⊂ TM is called Lagrangian if it is isotropic of di-
mension n, that is canonical symplectic the two-form ω in TpW vanishes for every
p ∈ W . A smooth Lagrangian submanifold W is called a graph if the canonical
projection π restricted to W is a diffeomorphism. Let us denote by S, the singular
set, the set of points θ ∈ W where the canonical projection is singular, namely,
where TθW ∩ Vθ is a nontrivial subspace.
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1.2. Jacobi fields and conjugate points. Invariant Lagrangian subspaces can
be described in terms of Jacobi fields and symmetric operators with very special
properties, let us recall briefly this description for geodesic flows.

Let γθ be a geodesic of (M, g). Taking a parallel frame {ei(t)}, i = 1, 2, .., n− 1
of vector fields along the geodesic γθ(t) = π(ϕt(θ)), which are orthogonal to γ′θ(t),
the subspace of perpendicular Jacobi fields along γθ is obtained as the image of a
one parameter family of linear operators J (t) given by (n − 1) × (n − 1) matrix
solutions of the Jacobi equation

J ′′(t) +K(t)J (t) = 0

where the derivatives are covariant derivatives of (M, g) along γθ(t), and K(t) is
the matrix of sectional curvatures

Kij(t) = g(R(γ′θ(t), ei(t))γ
′
θ(t), ej(t)),

R(X,Y )Z the curvature tensor of (M, g).
When J (t) is invertible, the matrix J ′(t)J−1(t) gives a solution of the matrix

Riccati equation

U ′(t) + U2(t) +K(t) = 0.

Now, if W (t) is a Lagrangian invariant subbundle, then L(t) = W (t) ∩Nϕt(θ) is
a subbundle defined along the orbit ϕt(θ) and there exist n−1 linearly independent
Jacobi fields Ji along the geodesic γθ such that L(t) is generated by (Ji(t), J

′
i(t)),

i = 1, ..., n−1, for every t ∈ R. Such Jacobi fields are perpendicular to γ′θ(t) for every
t, so there exists a matrix solution of the Jacobi equation associated to this basis
and hence, whenever this solution is invertible it defines a solution of the Riccati
equation U(t) associated to a Lagrangian bundle W (t) At these points, the subspace
L(t) is the graph of U(t) viewed as a linear operator U(t) : Hϕt(θ) −→ Vϕt(θ). The
graph representation of W (t) fails whenever W (t) intersects Vϕt(θ) nontrivially.
Equivalently, when there exists a nontrivial linear combination J(t) of the Ji(t)’s
in γθ such that J(t0) = 0 for some t0. The Riccati equation is a well known tool to
study conjugate points along geodesics.

Definition 1.1. Let γθ be a geodesic of (M, g). Two points γθ(t), γθ(s), t < s are
conjugate along γθ if there exists a nontrivial Jacobi field J(r) of γ which vanishes
at r = t and r = s. The geodesic γθ : (a, b) −→ M is said to have no conjugate
points if every Jacobi field of γθ has at most one zero in (a, b). Equivalently,
γθ : (a, b) −→M has no conjugate points if for each η = φt(θ), where t ∈ (a, b), the
intersection of Dηφr |Vη with the vertical bundle Vφt(θ) occurs only at r = 0.

The next two results are considered classical in the theory of geodesics without
conjugate points. The first one is a straightforward consequence of the work of
Green ([25] pages 1, 2).

Theorem 1.2. Let (M, g) be a complete C∞ Riemannian manifold . A geodesic
γθ : (a, b) −→ M has no conjugate points if and only if there exists a matrix
solution of the Jacobi equation J(t) along γ that is invertible for every t ∈ (a, b).
Equivalently, γθ : (a, b) −→ M has no conjugate points if there exists a solution of
the Riccati equation U(t) along γ that is defined for every t ∈ (a, b).

The second result is due to Eberlein ([22], Lemma 2.8) for Riemannian metrics
( see Contreras-Iturriaga [20] for a Hamiltonian version).
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Theorem 1.3. Let (M, g) be a compact, C∞ Riemannian manifold, Let k0 > 0 be
a constant such that all sectional curvatures of (M, g) are bounded below by −k0.
Let γ : I −→M be a unit speed geodesic where I = (a, b) is an open interval. Then,
any matrix solution U(t) of the Riccati equation U ′(t) + U2(t) + K(t) = 0 that is
defined for every t ∈ I satisfies

−k0coth(k0(b− t)) ≤ g(U(t)X,X) ≤ k0coth(k0(t− a)).

In particular,

(1) For any ε > 0 that is smaller than the length of I = (a, b), there exists
C(ε, k0) > 0 such that

| g(U(t)X,X) |≤ C(ε, k0)

for every t > a+ ε.
(2) if U(t) is defined for every t ∈ R we have that

supt∈R | g(U(t)X,X) |≤ k0.

1.3. Global minimizers and conjugate points. We recall the definition of min-
imizing Lagrangian submanifold.

The action of the Lagrangian L in an absolutely continuous curve c : I → M
is AL(c) =

∫
I
L(c(t), c′(t))dt. By Tonelli’s Theorem, local minimizers of the action

are the solutions of the Euler-Lagrange equation of L, in particular when L(p, v) =
1
2gp(v, v) such local minimizers are the geodesics of (M, g).

In order to define the notion of minimizing submanifold, let us consider the
abelian covering Ma of a manifold M that is the quotient of the universal covering
by the subgroup of π1(M) generated by commutators xyx−1y−1. The abelian
covering projection πa : Ma −→M is a local homeomorphism and the first integer
homology group has a natural representation in the set of automorphisms of Ma.
Any Lagrangian L : TM −→ R lifts to a Lagrangian La : TMa −→ R in a natural
way. In particular, if (M, g) is a Riemannian manifold, the metric g lifts to a metric
ga in Ma that is locally isometric to g. As in the case of the universal covering, the
first homology group acts a discrete subgroup of isometries of (Ma, ga). Of course,

if the fundamental group is abelian (as in the torus case), Ma coincides with M̃ .
We say that an absolutely continuous curve γ : R −→M is a global minimizer

if for every a < b ∈ R, and any lift γ̃ of γ inMa, given an absolutely continuous curve
δ : [a, b] −→ Ma with δ(a) = γ̃(a), δ(b) = γ̃(b), we have that the action ALa(δ) =∫ b
a
La(δ(t), δ′(t))dt is at least the action in γ̃: ALa(δ) ≥

∫ b
a
La(γ̃(t), γ̃′(t))dt.

Definition 1.4. An invariant submanifold W is called minimizing if any lift to
the abelian cover of the canonical projection of every trajectory in W is a global
minimizer.

Following a notation given by Morse in [34], we say that an absolutely continuous
curve γ : R −→ M is a type A minimizer if for every a < b ∈ R, and any lift γ̃
of γ in M̃ , given an absolutely continuous curve δ : [a, b] −→ M̃ with δ(a) = γ̃(a),

δ(b) = γ̃(b), we have that the action AL̃(δ) =
∫ b
a
L̃(δ(t), δ′(t))dt is at least the action

in γ̃: AL̃(δ) ≥
∫ b
a
L̃(γ̃(t), γ̃′(t))dt. For Riemannian Lagrangians , type A minimizers

of the Lagrangian action are globally minimizing geodesics in the universal covering
(M̃, g̃). It is easy to show that global minimizers are type A minimizers, the converse
is not true in general. This implies that global minimizers have no conjugate points.
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In particular, every trajectory in W projects onto a geodesic that has no conjugate
points.

2. Recurrence and regularity of the canonical projection
restricted to a Lagrangian minimizing torus

The purpose of this section is to show that nontrivial dynamics in an invari-
ant Lagrangian torus combined with minimizing properties imply regularity of the
canonical projection. We start by recalling what happens at recurrent points of
tori which are homologous to the zero section. Based on the results in this case we
shall look at the limit set of Lagrangian minimizing tori and extend such results by
different methods.

Recall that a point θ ∈ T1M is forward (resp. backward) recurrent for the
geodesic flow if given any open neighborhood B of θ there exists tB > 1 (resp.
tB < −1) such that φtB (θ) ∈ B. A point θ is recurrent if it is positively and
negatively recurrent. We shall analyze the problem in each of the assumptions of
the main Theorem.

2.1. The Maslov cycle. One of the classical approaches to study the points of a
Lagrangian invariant submanifold where the canonical projection is not regular is
the theory of the Maslov cycle.

Recall that Λ(n) = U(n)
O(n) , the set of all Lagrangian subspaces in a symplectic

space is called the Lagrangian Grassmann manifold.
For a symplectic manifold (N,ω) we can construct the Lagrangian Grassmann

bundle Π : Λ(N)→ N , the bundle over N whose fibers consist of all the Lagrangian
subspaces. That is, for each point x ∈ N we consider all Lagrangian subspaces of
TxN . Let Σ ⊂ N be a 2n − 1 connected submanifold. Let Λ(Σ) be the induced
bundle π−1(Σ). For a fixed section E, the Maslov cycle is the subbundle of Λ(Σ)
whose fiber over a point x consists of all Lagrangian subspaces which intersects the
fiber Eθ non trivially.

In our case, the symplectic form on TM induced by the Legendre transform de-
fined the Riemannian metric. Let us consider the Lagrangian Grassmannn Λ(TM)
and the subbundle Λ(T1M) over the unit tangent bundle.

Definition 2.1. The Maslov cycle ΛV of T1M is defined by

ΛV =
⋃

k∈[1,n−1]

Λk(T1M)

where Λk(T1M) is the bundle of Lagrangian subspaces of N whose intersection with
the vertical subspace has dimension k.

The Maslov cycle ΛV is a subset of the Grassmannian G of Lagrangian sub-
spaces of the fiber bundle N . Each of the sets Λk(TM) is a smooth submanifold of

codimension k(k+1)
2 , so Λ is a stratified manifold.

There is a natural lift of the geodesic flow φt to the Grassmannian G. Namely, if
(θ,E) ∈ G, where θ ∈ T1M , E ⊂ Nθ is Lagrangian, then φGt (θ,E) = (φt(θ), Dθφt(E))
defines a flow in G. This flow commutes with the projection P : G −→ T1M given
by P (θ,E) = θ: P ◦φGt = φt ◦P . A Ck invariant Lagrangian submanifold Σ ⊂ T1M
lifts to a Ck−1, φGt -invariant submanifold Σ̄ of the same dimension. The next result
pointed out by Polterovich [37] is an important application of the work of Viterbo
[39]:
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Theorem 2.2. Let W be a C2 Lagrangian torus invariant by the geodesic flow of
(Tn, g). If W is homologous to the zero section then recurrent orbits of the lifted
flow φGt restricted to the lift W̄ of W in the Grassmannian do not meet the Maslov
cycle.

A brief sketch of the proof of Theorem 2.2 is the following: Viterbo shows that
the Maslov cycle of a Lagrangian invariant torus homologous to the zero section
is trivial. From this fact it is possible to deduce that the tangent space along
compact, ”almost closed” pieces of recurrent orbits of a C2 Lagrangian invariant
torus homologous to the zero section cannot cross the vertical subbundle. Therefore,
such orbits are regular for the canonical projection.

2.2. Lagrangian, invariant, minimizing tori. Now, let us consider a C2 La-
grangian minimizing torus. Viterbo’s result might not apply in this case since we
know nothing about the triviality of the Maslov cycle of the torus. Instead, we
have the following Arnold’s generalization to Lagrangian invariant subspaces of the
Sturm-Liouville theorem for second order, ordinary differential equations, that de-
scribes the intersections of a Lagrangian invariant subspace with the Maslov cycle.
We state the result as quoted in [18].

Theorem 2.3. Let H = e be a regular energy level of a Tonelli Hamiltonian
H : T ∗M −→ R defined in a compact, n-dimensional manifold M , and let λθ
and λ′θ be two Lagrangian subspaces. Let φGt be the lift of the geodesic flow in the
Grassmannian. If t 7→ dφGt (λθ) has n + 1 points of intersection with the Maslov
cycle (counted with multiplicity) in an interval [t1, t2] then t 7→ dφGt (λ′θ) has at least
one point of intersection with the Maslov cycle in the same interval.

Corollary 2.4. Let (M, g) be a compact Riemannian manifold. Let l > 0 be such
that every geodesic γ : (a, b) −→M has no conjugate points whenever 0 < b−a ≤ l.
Then, for every θ ∈ T1M , and any Lagrangian subspace Lθ ⊂ TθT1M , the number
of times ti in (a, b) where dθφti(Lθ) ∩ Vφti (θ) is not zero is bounded above by n.

In particular, if W is a C1 minimizing, Lagrangian torus invariant by the geodesic
flow of (Tn, g), we have that for every θ ∈W , the number of times where Tφt(θ)W
meets the vertical subspace is at most n.

Proof. Recall briefly that the existence of l > 0 is a consequence of Rauch compar-
ison Theorem.

According to Theorem 2.3, if Tφt(θ)W = DθφtTθW meets non trivially the ver-
tical bundle more than n + 1 times ti in an interval (a, b), then the subspaces
Dθφt(Vθ) will meet the vertical bundle at least twice in the same interval (a, b).
This contradicts the absence of conjugate points in the geodesic γθ(t). �

Corollary 2.5. Let W be a C1 minimizing, Lagrangian torus invariant by the
geodesic flow of (Tn, g). There exists α > 0 with the following property: given
θ ∈ W there exists bθ ∈ R such that the angle subtended by the vertical subspace
Vφt(θ) and Tφt(θ)W is at least α for every t > bθ + 1.

Proof. Let θ ∈ W . By Corollary 2.4 there exists a compact interval [aθ, bθ] which
contains all the intersections of Tφt(θ)W with the vertical bundle. Let us suppose
that bθ is the maximum of the values of t where Tφt(θ)W meets the vertical bundle.
Let U(t) be the solution of the Riccati equation associated to W defined along
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φt(θ). By Eberlein’s Theorem 1.3, if −k0 < 0 is a lower bound for the sectional

curvatures of (Tn, g), we have that Ũ(t) = U(bθ + t) satisfies

| g(Ũ(t)X,X) |≤ k0coth(k0t)

for every t > 0, and every unit vector X ∈ Tγ(bθ+t)M perpendicular to γ′(t). Since
the subspace Tφt(θ)W ∩Nγ(t) is the graph of U(t), which is a bounded operator for
t > 1, elementary linear algebra implies that there exists α > 0 such that for every
t > 1 we have that the angle between the vertical bundle and Tφt(θ)W is at least
α,for every t > bθ + 1. �

Lemma 2.6. Let W be a C1 minimizing, Lagrangian torus invariant by the geodesic
flow of (Tn, g). Then every recurrent orbit is regular for the canonical projection.
Moreover, if α > 0 is the number defined in Corollary 2.5, the angle from Tφt(θ)W
and Vφt(θ) is at least α for every t ∈ R.

Proof. Let θ ∈ W be a forward recurrent point. Since every point of its orbit is
recurrent, then every point is accumulated by positive iterates of φt(θ) for t > 0
arbitrarily large. According to Corollary 2.5, for t > bθ + 1 the angle subtended
by Tφt(θ)W and Vφt(θ) is at least α > 0. Therefore, there is no t0 such that
Tφt0 (θ)W ∩ Vφt0 (θ) 6= {0}, for otherwise, there would be a sequence tn → ∞, with

φtn(θ)→ φt0(θ), where Tφtn (θ)W tends to a Lagrangian subspace that is transversal
to Vφt0 (θ). Since TW is a continuous bundle, the subspaces Tφtn (θ)W tend to
Tφt0 (θ)W and therefore, the latter subspace must be transversal to the vertical
bundle. The argument extends easily to backward recurrent points. �

3. Graph property of Lagrangian minimizing tori in a neighborhood
of the limit set

Combining the results of the previous section we get,

Proposition 3.1. Let (Tn, g) be a C∞ Riemannian metric in the torus and let W
be a C1 Lagrangian invariant torus. Suppose that W is either homologous to the
zero section or minimizing. Then

(1) The Riccati solution Uθ(t) associated to a recurrent orbit φt(θ) is well de-
fined for every t ∈ R.

(2) There exists r > 0 such that the r-tubular neighborhood Br ⊂ W of the
closure of the set of recurrent orbits of W is regular.

Proof. Theorems 1.2, 1.3 together with Theorem 2.2 and Lemma 2.6 imply that
recurrent points of W are regular and the underlying geodesics have no conjugate
points. Moreover, the tangent space of W never meets the vertical bundle along
recurrent orbits and there is a positive lower bound α for the angle subtended by
TW and the vertical bundle along recurrent orbits. Since W is C1 and compact,
this implies that there exists an open neighborhood of radius r > 0 of the closure of
the set of recurrent points of W where TW is transversal to the vertical fibration.
Therefore, the canonical projection restricted to the r-tubular neighborhood Br of
recurrent points is regular. �

Next, let us extend the above result to the limit set of a Lagrangian minimizing
torus.

Recall that the limit set L(W ) is the union of the forward or ω-limit set and
the backward or α-limit set of W by the action of the geodesic flow. The ω-limit
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set of W , ω(W ), is the union of the ω-limit sets of points, namely, given θ ∈ W ,
the ω-limit set of θ, ω(θ), is the set of points η such that there exists a sequence
of numbers tn → +∞ with η = limn→+∞ φtn(θ). The α-limit set α(W ) is defined
analogously replacing tn → +∞ by tn → −∞.

Lemma 3.2. Let (Tn, g) be a C∞ Riemannian metric in the torus and let W be a
C1 Lagrangian invariant minimizing torus. Then

(1) The Riccati solution Uθ(t) associated to an orbit φt(θ) in the limit set of
W is well defined for every t ∈ R.

(2) There exists r > 0 such that the r-tubular neighborhood Br ⊂ W of the
closure of the limit set L(W ) of W is regular.

Proof. So let θ ∈ L(W )∩S(W ), and let η ∈W such that the orbit of η accumulates
θ, namely, there is a sequence tn →∞ such that limn→∞ φtn(η) = θ.

By Corollary 2.4 the subspaces Dηφt(Vη) just meet the vertical bundle at a finite
number of tk, 0 ≤ k ≤ n. So there exists tP > 0 such that

Dηφt(Vη) ∩ Vφt(η) = {0}

for every t ≥ tP . Since tn → ∞ there exists tn0
> tP such that tn − tn0

> 1
for every n > n0. Therefore, by Theorem 1.3 there exists C(1, k0) > 0 such that
the norm of the Riccati operator U(φtn0+t(η)) representing Tφtn0

(η)W is bounded

above by C(1, k0) for every t > tn0
. Hence, by the the continuity of the tangent

bundle of W we conclude that the same happens with the Riccati operator of W at
θ. Since every point of the orbit of θ is in the limit set, the same happens at every
point of the orbit. So the solution of the Riccati equation Uθ(t) is well defined for
every t ∈ R and hence (by Corollary 2.5) the tangent space of W at θ forms an
angle greater than α with the vertical bundle, where α > 0 is given in Corollary 2.5.
By the compactness and the smoothness of W , the transversality of the tangent
space of W with respect to the vertical fibres extends to the closure of L(W ). Since
the closure of the limit set is compact, there exists r > 0 such that in an open
neighborhood of radius r > 0 of the closure every point is regular for the canonical
projection. �

3.1. On the geometry of Lagrangian minimizing tori at the limit set. In
this subsection we look at the following problem: in what extent the geometry of
a Lagrangian invariant torus as an isometrically embedded submanifold of T1T

n

depends on the geometry of its canonical projection? The question is natural and
motivated by the fact that the Riccati operator associated to the Lagrangian torus
is related to sectional curvatures of (Tn, g) at places where the torus is a graph.
Let us explain in detail.

Lemma 3.3. Let (M, g) be a compact C∞ Riemannian manifold of dimension n
and let k0 > 0 be such that −k0 is a lower bound for the sectional curvatures of
(M, g). Then, given C > 0 there exists a constant KC = KC(k0) > 0 such that
every C3 Lagrangian minimizing submanifold W ⊂ T1M whose C3 norm is bounded
above by C has the following property:

Suppose that θ ∈ W is a point in the limit set. Then the supremum of the
absolute values of sectional curvatures of W at θ with respect to the Sasaki metric
is bounded by KC .



ON THE GRAPH THEOREM FOR LAGRANGIAN MINIMIZING TORI 11

Proof. By assumption, there exists an open neighborhood U ⊂ W of θ where
the canonical projection is a diffeomorphism. So we have a local solution of the
Hamilton-Jacobi equation H(q, dqf) = 1 where dqf = αq is the canonical projection
of the canonical one form of the geodesic flow restricted to W . The canonical
projection π(U) of U is an open subset of M where the form α is exact, its Reeb
flow is a unit flow by geodesics, the projections of the orbits of U . Let X be the
unit vector field in π(U) tangent to the Reeb flow, then the levels f = c are co-
dimension one C3 submanifolds that are perpendicular to X and invariant by the
Reeb flow in the following sense: if ψt = π(φt) is the Reeb flow (the projection of
the restriction of φt to U) then for p ∈ π(U) we have ψt(f

−1(p)) = f−1(ψt(p)) as
long as ψt(p) belongs to π(U).

Claim: The matrix of the second fundamental form of a level f−1(c) at a point
x = π(x, v), (x, v) ∈ U , is the matrix solution of the Riccati equation associated to
the geodesic γ(x,v).

This is perhaps well known by specialists, but we recall briefly the proof of this
fact. The unit vector field X is the unit normal field of f−1(c), and the geometry
of the family of levels is quite similar to the geometry of horospheres in manifolds
without conjugate points (where the role of the function f is played by a Busemann
function). Pesin in [36], Theorem 6.1, shows that the matrix solution U(t) of the
Riccati equation of a geodesic γ(p,v)(t) in the universal covering is the matrix of
the normal curvatures of the horosphere of γ(p,v)(t), namely, the matrix of the

second fundamental form of the immersion f−1(c) where f a Busemann function.
The same proof extends without changes to our case since the picture of the levels
f−1(c) and the Reeb flow is totally analogous.

The sets π−1(f−1(c)) define a C2 foliation of U ⊂ W by codimension one sub-
manifolds. Since the canonical projection is a Riemannian submersion from T1M
endowed with the Sasaki metric to (M, g), we can apply the curvature formulae of
Riemannian submersions (see Kowalsky [28]) to estimate the sectional curvatures of
π−1(f−1(c)) at θ with respect to the Sasaki metric. These sectional curvatures de-
pend on the sectional curvatures of f−1(c) and its first derivatives. By the bounds
on the Riccati operator given in Theorem 1.3, the fact that f−1(c) is C3 and the
compactness of π(L(W )) we conclude the statement. �

Corollary 3.4. Let (Tn, g) be a compact C∞ Riemannian manifold and let KC =
KC(k0, C) > 0 be given in Lemma 3.3. Then given a C3 Lagrangian minimizing
torus, the number r > 0 given in Lemma 3.2 depends only on KC .

3.2. Proof of Theorem A. We now conclude the proof of Theorem A:
Proposition 3.1, Corollary 3.4 and the assumption in Theorem A yield that W

is regular for the canonical projection. Hence, it is a covering map. The following
well known result due to Arnold [26] implies that W is a Lagrangian graph.

Theorem 3.5. Let S ⊂ T1T
n be a closed C2 Lagrangian submanifold such that the

restriction of the canonical projection to S is a covering map. Then the restriction
of the canonical projection to S is a diffeomorphism.
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4. On the structure of the singular set

Now let us proceed to prove Theorem C. As we mentioned before, we already
know that the singular set of the canonical projection restricted to a Lagrangian
invariant submanifold of T1M can be represented by the intersections of the orbits
of the lifted geodesic flow in the Grassmannian of Lagrangian subspaces with the
Maslov cycle. The Maslov cycle is not a manifold in general as in the case of
surfaces, so it is not clear that the Maslov cycle provides a cross section of the
lifted geodesic flow.

We shall suppose through the section that W is a C1 Lagrangian invariant sub-
manifold for the geodesic flow of (M, g) where M is a compact C∞ manifold with
dimension n.

A topological cross section C ⊂ W for the geodesic flow is a C0, n − 1-
dimensional submanifold of W with the following properties:

(1) Given θ ∈ C there exists an open neighborhood B(θ) ⊂ W and numbers
δ > 0, ε > 0 such that B(θ) ⊂ φ[−δ,δ]C or the orbit of every η ∈ B(θ)
intersects C for some time t with | t |< δ.

(2) φ[−ε,ε](θ) ∩ C = {θ}
We say that a subset S ⊂ N of a smooth manifold N is a C0 k-dimensional sub-
manifold if S is a Hausdorff topological space endowed with the relative topology
and if there exists an atlas of S whose local parametrizations are homeomorphisms
defined in open subsets of Rk.

Let us denote by singular set S(W ) the set of points of W where the canonical
projection is not regular. The first simple remark about the singular set is

Lemma 4.1. The singular set S(W ) is compact.

Proof. The Gauss map θ ∈W 7→ TθW is continuous, therefore S(W ), the pre-image
of the Maslov cycle, is closed.

�

Theorem 1.3 gives us an estimate for the geometry of solutions of the Ric-
cati equation associated to invariant Lagrangian subspaces that meet the vertical
subbundle. It tells us that the geometry of certain reference functions (namely,
fa(t) =

√
k0coth(k0(a − t))) ”tames” the behavior of the solution of the Riccati

equation in neighborhoods of singularities.

Lemma 4.2. Let (M, g) be a C∞ compact Riemannian manifold. Let θ ∈ T1M , let
Lθ ∈ Hθ⊕Vθ be Lagrangian subspace and let U(t) be the Riccati operator associated
to dφt(Lθ) (wherever it is defined). Suppose that for two numbers b < c we have
consecutives intersections of dφt(Lθ) with the vertical bundle, namely,

dφb(Lθ) ∩ Vφb(θ) 6= {0}, dφc(Lθ) ∩ Vφc(θ) 6= {0},

and dφb(Lθ) ∩ Vφb(θ) = {0} for t ∈ (b, c). Then given 0 < ε < c−b
8 there exists

C(b, c, ε) > 0 such that

‖ U(t) ‖≤ C(b, c, ε)

for every t ∈ [b+ ε, c− ε].

Proof. The proof is straigthforward from Theorem 1.3 but is important for the
sequel. Let
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C+
b,c,ε = maxt∈(b+ε,c−ε)

√
k0coth(k0(t− b))

and
C−b,c,ε = mint∈(b+ε,c−ε)

√
k0coth(k0(t− c)).

Since the function f(t)+
√
k0coth(k0(t− b)) is strictly decreasing for every t 6= b,

it is positive if t > b and negative if t < b, then we have

C+
b,c,ε =

√
k0coth(k0(ε))

C−b,c,ε =
√
k0coth(k0(−ε))

for every ε < b−c
8 . Since the function f(t) is odd we get C(b, c, ε) =

√
k0coth(k0(ε)).

The dependence on b, c is implicit because ε depends on b, c.
�

Lemma 4.3. Let (M, g) be a compact Riemannian manifold and let W ⊂ T1M
be a compact C1 Lagrangian invariant submanifold. Given θ ∈ S(W ) there exist
ε > 0, a local cross section Σθ for the geodesic flow containing φ−ε(θ), an open
neighborhood B(θ) ⊂ T1M of θ homeomorphic to Σθ × (−ε, 2ε), and a continuous
function t1 : Σθ −→ R such that

(1) t1(θ) = ε,
(2) φt1(η)(η) ∈ S(W ),

(3) If φt(η) ∈ S(W ) for some η ∈ Σθ and t ∈ (−ε, 2ε) then t ≥ t1(η).
(4) The orbit of σ intersects S(W ) if and only if there exist θ(σ) ∈ S(W ),

r0 ∈ R, such that φr0(σ) ∈ B(θ(σ)).

Proof. Let us start the proof by the following remark:

Claim 1: Given θ ∈ S(W ) there exists an open neighborhood B0(θ) of θ in W
such that the orbit of every point η in the neighborhood hits S(W ) at some time
t(η).

Suppose by contradiction that such neighborhood does not exist. This would
imply the existence of a sequence of points θn converging to θ, and the existence of
τ > 0 such that φt(θn) does not intersect S(W ) for every t ∈ (−τ, τ). By Lemma
1.3 the Riccati operator Uθn(t) associated to the tangent space of W along the orbit
φt(θn) satisfies

‖ Uθn(t) ‖≤ C(−τ, τ, τ
8

)

for every t ∈ (− 7τ
8 ,

7τ
8 ). Since the Riccati operators associated to W depend con-

tinuously on η ∈W we would get that

‖ Uθ(t) ‖≤ C(−τ, τ, τ
8

)

which yields that the tangent space of W at θ is ”far” from the vertical subbundle,
contradicting the assumption that θ ∈ S(W ).

Once B0(θ) exists, by Lemma 2.4 there exists ε > 0 such that the point θ is the
unique point of intersection of φ(−3ε,2ε)(θ) with S(W ).

Let Σ ⊂ B0(θ) be a cross section for the geodesic flow containing θ and define
Σ1 = φ−ε(Σ), and B1(θ) by
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B1(θ) = ∪t∈(−ε,2ε)φt(Σ1).

Let t1 : Σ1 −→ R be given by the first positive time t1(η) ∈ (−ε, 2ε) where
φt1(η)(η) ∈ S(W ).

By Claim 1 and the choice of Σ1 we know that for every η ∈ Σ1 there exists
some t(η) close to ε such that φtη (η) ∈ S(W ). Since for each η the intersections of
its orbit with S(W ) are discrete (Lemma 2.4) there would be a first positive time
of intersection of the orbit of η ∈ Σ1 with S(W ). So t1 is well defined in Σ1.

Claim 2: The function t1 : Σ1 −→ R is continuous at φ−ε(θ).

Otherwise, let ηn ∈ Σ1 be a sequence converging to φ−ε(θ) such that −ε <
t1(ηn) ≤ ε − a for some a > 0 suitably small. Since S(W ) is closed we have that
φt1(ηnk )(ηnk) converges to some φt̄(θ) ∈ S(W ) where −2ε ≤ t̄ ≤ −a. But the only

point of φt(θ) in S(W ) in the interval t ∈ (−3ε, 2ε) is t = 0. This yields that
t̄ ≤ −3ε and hence t1(ηnk) does not belong to the interval (−ε, ε) for some nk large,
which contradicts the fact that t1(η) is well defined in Σ1.

Claim 3: There exists an open subset Σθ ⊂ Σ1 where the function t1 is contin-
uous.

By Claim 2 there exists an open subset Σθ ⊂ Σ1 such that | t1(η) |< ε
2 and any

other point φt(η) ∈ S(W ) with −2ε < t < t1(η) satisfies t < − 3
2ε. Then, the same

argument of the proof of Claim 2 applies to show the continuity of t1 in an open
neighborhood of η.

So the open neighborhood of the statement is B(θ) = ∪t∈(−ε,2ε)φt(Σθ) and items
(1), (2), (3) follow from the Claims. Item (4) follows from the existence of the local
cross section Σθ. Indeed, an orbit that intersects B(θ) must intersect the cross
section Σθ and by items (1), (2), (3) it must intersect the singular set S(W ). �

Corollary 4.4. Under the assumption of Lemma 4.3 the function ψθ : Σθ −→
S(W ) given by ψθ(η) = φt1(η)(η) is a homeomorphism onto its image Sθ ⊂ S(W ).
Moreover, in local coordinates Σθ × (−ε, ε) the set Sθ is the graph of ψθ and is a
cross section for the geodesic flow.

Proof. It is clear that ψθ is a continuous bijection due to the continuity of the
function t1 ( Lemma 4.3 ) and the injectivity of the geodesic flow. The image Sθ
of ψθ is the graph of t1, namely

Sθ = {(η, t1(η)), η ∈ Σθ}
in the local coordinates Σθ × (−ε, ε). This yields that Sθ is a C0 submanifold

of codimension 1 in W . And since the intersections of each orbit of W with the
singular set are isolated (Corollary 2.4) the set Sθ is a local cross section by the
definition. �

Corollary 4.4 gives a local description of part of the singular set S(W ) for every
C1 Lagrangian, invariant torus. Around every point θ ∈ S(W ) there is an open
neighborhood B(θ) of W such that B(θ) ∩ S(W ) containing a n − 1 continuous
submanifold that is a cross section for the geodesic flow. The structure of the
singular set might be more complicated, the following result (that won’t be really
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needed for the proof of the main theorem) gives a more precise description of the
local profile of S(W ).

Lemma 4.5. Let (M, g) be a compact n-dimensional Riemannian manifold and
let W ⊂ T1M be a C1 Lagrangian invariant submanifold. Let l > 0 be given in
Corollary 2.4 and suppose that the number ε = ε(θ) defined in Lemma 4.3 satisfies
5ε ≤ l for every θ ∈ S(W ). Then there exists at most n cross sections Si in B(θ)
such that

S(W ) ∩B(θ) = ∪iSi.
Moreover, there exist functions ti : Ai ⊂ Σθ −→ R where Ai is an open subset (in
the relative topology) such that for every η ∈ Ai, φti(η)(η) is the i-th intersection of
the piece orbit of η contained in B(θ) with S(W ) (following the orientation of the
orbit).

Proof. We obtain the sections Σi recursively, taking Σ1 = Σθ. If the piece of orbit
in B(θ) of every point in Σθ just meets S(W ) at Σθ then the lemma is proved,
i = 1. Otherwise, there is a point η ∈ Σθ such that φ(−2ε,2ε)(η) meets S(W )∩B(θ)
at least twice. Let A2 ⊂ Σθ be this set of points and define

t2 : A2 −→ R

t2(η) = inf{t > t1(η) s.t. φt(η) ∈ S(W )}.
The same ideas in the proof of Lemma 4.3 lead to show that t2 is a continuous

function and that A2 is an open subset (in the relative topology ) of Σθ. The
function t2 can be extended to the boundary of A2 in Σθ if and only if there exists
a sequence ηn converging to some α ∈ Σθ such that

inf{t > t1(ηn) s.t. φt(ηn) ∈ S(W )} = 0.

The point α could be regarded as a sort of ramification point of the singular set
S(W ). Notice that A2 might not be connected, and by the definition of cross section
the set

Σ2 = ∪η∈A2
{φt2(η)(η)}

is again a cross section. We can go on by taking A3 ⊂ A2 such that φ(−2ε,2ε)(η)
meets S(W ) ∩ B(θ) at least three times. By the assumption on the bound of ε
depending on l, there are at most n steps in this process according to Corollary
2.4. �

5. Nonwandering points and the proof of Theorem B

The purpose of the section is to show Theorem B. A point θ ∈ T1M is non-
wandering for the geodesic flow if given an open neighborhood N of θ there exists
tN ∈ R with | tN |≥ 1 such that φtN (N)∩N is nonempty. Every recurrent point is
of course nonwandering but the converse is not true in general.

The main idea is to apply Theorem C to look at the singular set S(W ) as a sort
of weak or generalized cross section.

Suppose that S(W ) is nonempty, let B(θ) for θ ∈ S(W ) be the set given by
Lemma 4.3 and let Sθ ⊂ B(θ) be the singular cross section given in Corollary 4.4.
By the compactness of S(W ), there exists a finite covering by open sets of the form
B(θi) homeomorphic to Σθi × (−εi, εi). Let ε̄ be the supremum of the ε′is.
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Lemma 5.1. Let W be a C1 Lagrangian minimizing torus invariant by the geodesic
flow of (Tn, g). If the singular set of the canonical projection S(W ) is not empty,
then there exists a point θ ∈ S(W ) and an open neighborhood ν(θ) such that every
orbit of a point in ν(θ) does not meet S(W ) set for every t > ε̄.

Proof. Let us argue by contradiction. Suppose that such a point θ ∈ S(W ) does
not exist. By continuity of the geodesic flow the set of points θ ∈ B(θi1) whose
orbits φt(θ) intersect any B(θi2) for t ≥ ε̄ is an open subset Ri1,i2 ⊂ B(θi1). By the
choice of ε̄ we have that i1 is different from i2, and by the contradiction assumption
we have that the union

Γ1 = ∪i,jRi,j
is open and dense in B(θi) for every i and represents the set of points in the union

of the balls B(θi) that meet the singular set at least twice. Let Pi,j : Ri,j −→ Σθj
be the Poincaré map giving the first intersection of an orbit of a point in the domain
Ri,j of Pi,j with the cross section Σθj . The union of the images of the maps Pi,j is

R1 = ∪i,jPi,j(Ri,j)
and by assumption, this set is also open in the union of the sections Σθi ’s and
therefore their orbits intersect the union of the balls B(θi)’s in an open set. Now,
by the contradiction assumption, the set

Γ1 ∩R1 = ∪i,j(Pi,j(Ri,j) ∩ Γ1) = ∪i,jR̃i,j
is open and dense in R1 and therefore, the set

Γ2 = ∪P−1
i,j (R̃i,j)

is open and dense in the union of the balls B(θi) and represents the set of points
that meet the singular set at least 3 times.

We can continue by induction defining the open sets

Ri1,i2,i3 = Pi1,i2(Ri1,i2) ∩B(θi3)

R2 = ∪i,j,kPj,k(Ri,j,k)

Γ1 ∩R2 = ∪i,j,k(Pi,j(Ri,j,k) ∩ Γ1) = ∪i,j,kR̃i,j,k
that is an open set by the contradiction assumption,

Γ3 = ∪i,j,kP−1
i,j (R̃i,j,k)

that is open and dense in the union of the balls B(θi) and consists of the points
whose orbits meet at least 4 times the singular set, and so on.

By this procedure we get that given any m ∈ N the set of orbits of W that meet
the singular set at least m times is open and dense in the union of the balls B(θi).
This clearly contradicts the fact that the torus W is minimizing since we know that
this number must be less than n. �
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Proof of Theorem B

Suppose that the singular set S(W ) is nonempty. By Lemma 5.1 there exists
an open neighborhood ν(θ) of a point θ ∈ S(W ) such that every orbit in the
neighborhood stays for t > ε̄ in a regular component. Combining this fact with
Lemma 4.3 we get

Claim: There exists an open neighborhood of θ of wandering points.

Indeed, Lemma 4.3 gives us an open neighborhood B(θ) of θ such that every orbit
meeting B(θ) has to meet the singular set. Since the positive orbits of points in
B(θ)∩ν(θ) do not meet the singular set again, none of these orbits meet B(θ)∩ν(θ)
for t > 0 thus proving that the points of B(θ) ∩ ν(θ) are wandering points.

To finish the proof of Theorem B, the assumption and the Claim imply that
S(W ) is empty and therefore by Theorem 3.5 the torus W is a graph.
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