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A reminder

Given a scalar function z(x), x ∈ D = [0,1], there is a unique non

decreasing function Z(x) = Rearrange(z)(x) such that,∫
D

f(Z(x))dx =

∫
D

f(z(x))dx

for all test function f.

Notice that in the discrete case when

z(x) = zj, j/N < x < (j + 1)/N, j = 0, ...,N− 1

then Z(x) = Zj where (Z1, ...,ZN) is just (z1, ..., zN) sorted in
increasing order.
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A function and its rearrangement

N = 200 grid points in x
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A toy-model for (very fast) convection

Model:
-vertical coordinate only: x = x3 ∈ D = [0,1]
-temperature field: y(t,x)
-heat source term: G = G(t,x,y)

Time discrete scheme:
-time step h > 0, y(t = nh,x) ∼ yn(x), n = 0,1,2, · · ·
-predictor (heating): yn+1/2(x) = yn(x) + h G(nh,x,yn(x))
-corrector (fast convection): yn+1 = Rearrange(yn+1/2)
so that the temperature profile stays monotonically increasing at
EACH time step. (This actually corresponds to a succession of
stable equilibria modified by the source term.)
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Heat profiles with a rough time step

G = G(x) = 1 + exp(−25(x− 0.2)2)− exp(−20(x− 0.4)2)
t,x ∈ [0,1] h = 0.1 (= 10 time steps) 500 grid points in x,

heat profile y(t,x) versus x drawn every 2 time steps
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Heat profiles with a fine time step

G = G(x) = 1 + exp(−25(x− 0.2)2)− exp(−20(x− 0.4)2)
t,x ∈ [0,1] h = 0.005 (= 200 time steps) 500 grid points in x,

heat profile y(t,x) versus x drawn every 40 time steps
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mixing of the fluid parcels

t,x ∈ [0,1] h = 0.005 500 grid points in x
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Interpretation as a competition model
Model:
N agents (factories, researchers, universities...) in competition,
xn(i) = cumulated production of agent i = 1, · · ·,N at time nh

¯
,

σn(i) rank of agent i at time nh
¯

,
Model: xn+1(i) = xn(i) + h G(nh, σn(i)/N,xn(i)),

Thus the corresponding sorted sequence yn = Rearrange(xn)
satisfies: yn+1 = Rearrange(yn + h G), which is just a discrete
version of our toy-model.

The model means that the production between two different times
depends essentially on the ranking. For example G(x) = 1− x,
means that the top people slow down their production while the
bottom people catch up as fast as possible. It seems that
G(x) = (sin(1.5πx))2, for example, is more realistic (bottom people
are discouraged while top people get even more competitive!).
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Convergence analysis
Theorem
As h→ 0, the time-discrete scheme has a unique limit y
in space C0(R+, L2(D,Rd)) that satisfies the subdifferential
inclusion with convex potential:

G(t,x,y) ∈ ∂ty + ∂C[y]

where C[y] = 0 if y is non decreasing as a function of x
and C[y] = +∞ otherwise.
In addition, in the case G = G(x) = g′(x),
the pseudo-inverse x = u(t,y) is an entropy solution to the scalar
conservation law

∂tu + ∂y(g(u)) = 0.

This is an example of the more general L2 formulation of multidimensional
scalar conservation laws, YB ARMA 2009
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Multidimensional rearrangement
Theorem
Given a bounded domain D ⊂ Rd

and an L2 map x ∈ D→ z(x) ∈ Rd,

there is a unique rearrangement with convex potential
Rearrange(z)(x) = ∇p(x),
p(x) lsc convex in x ∈ Rd, a.e. differentiable on D, such that∫

D
f(∇p(x))dx =

∫
D

f(z(x))dx

for all continuous function f such that |f(x)| ≤ 1 + |x|2
This is a typical result in optimal transport theory, see YB, CRAS Paris 1987 and
CPAM 1991, Smith and Knott, JOTA 1987, cf. Villani, Topics in optimal
transportation, AMS, 2003, see also papers, lecture notes and books by
Rachev-Rüschendorf, Evans, Caffarelli, Urbas, Gangbo-McCann, Otto,
Ambrosio-Savaré, Trudinger-Wang and many others contributions...
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Multi-d generalization of the toy-model

Model:
-a smooth bounded domain x ∈ D ⊂ Rd

-a vector-valued field: y(t,x) ∈ Rd (generalized temperature)
-a source term: G = G(t,x,y) ∈ Rd with bounded derivatives

Time discrete scheme:
-time step h > 0, y(t = nh,x) ∼ yn(x), n = 0,1,2, · · ·
-predictor (heating): yn+1/2(x) = yn(x) + h G(nh,x,yn(x))
-corrector (fast convection): yn+1 = Rearrange(yn+1/2)
as the unique rearrangement with convex potential yn+1 = ∇pn+1
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Main property of the scheme

Take a smooth function f. Then∫
D

f(yn+1(x))dx =

∫
D

f(yn+1/2(x))dx

(because yn+1 is a rearrangement of yn+1/2)

=

∫
D

f(yn(x) + hG(nh,x,yn(x)))dx

(by definition of predictor yn+1/2)

=

∫
D

f(yn(x))dx + h
∫

D
(∇f)(yn(x)) ·G(nh,x,yn(x))dx + o(h)
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Convergence of the scheme
Theorem
As h→ 0, the time-discrete scheme has converging
subsequences.
Each limit y belongs to the space C0(R+, L2(D,Rd)) and has a
convex potential p(t, ·) for each t ≥ 0.

In addition,

d
dt

∫
D

f(y(t,x))dx =

∫
D
(∇f)(y(t,x)) ·G(t,x,y(t,x))dx

for all smooth function f such that |f(x)| ≤ 1 + |x|2
See YB, JNLS 2009. Notice that the system is self-consistent, thanks to the
rearrangement theorem. However, our global existence result does not imply
stability with respect to initial conditions, except for d = 1, where we can use
the theory of scalar conservation laws, or d > 1 and G(x) = −x , where we can
use maximal monotone operator theory
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Interpretation of the multi-d toy model

The formulation we have obtained for the multidimensional toy
model

d
dt

∫
D

f(y(t,x))dx =

∫
D
(∇f)(y(t,x)) ·G(t,x,y(t,x))dx

for all smooth function f, with y = ∇p,

in some sense means that there exists an underlying
divergence-free vector field v(t,x) such that

∂ty + (v · ∇)y = G(t,x,y), ∇ · v = 0, v//∂D

which, continuously in time, rearranges y(t,x) so that y stays a
map with a convex potential at any time.
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Interpretation of the multi-d toy model

It turns out that the model can be interpreted as a singular limit of
the Navier-Stokes Boussinesq equations with vector-valued
buoyancy forces. This is what we are now going to explain in the
last part of the talk
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The NS-Boussinesq model

Let D be a smooth bounded domain D ⊂ R3 in which moves an
incompressible fluid of velocity v(t,x) at x ∈ D, t ≥ 0, subject to

the Navier-Stokes equations

NSB ε2(∂tv + (v · ∇)v)− ν∇2v +∇p = y ∇ · v = 0

with ε, ν > 0 and v = 0 along ∂D.

The force field y is subject to the advection equation

∂ty + (v · ∇)y = G(t,x,y)

where G is a given smooth source term with bounded derivatives.
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Remark 1: From the PDE viewpoint, global existence of weak
solutions in 3D follows from Leray/Diperna-Lions theory, while
global existence of smooth solutions in 2D follows from Hou-Li
2005 and Chae 2006. (See also recent work by Danchin-Paicu.)

Remark 2: for any suitable test function f, we have INDEPENDTLY
of ε,v, ν

d
dt

∫
D

f(y(t,x))dx =

∫
D
(∇f)(y(t,x)) ·G(t,x,y(t,x))dx.

Remark 3: The presence of ε << 1 is equivalent to the action, on a
long time interval, of a small source term slowly varying in time
and corresponds to the rescaling: G→ εG(tε,x,y), t→ t/ε

We call Hydrostatic− Boussinesq(HB) the limit equations
formally obtained by setting ε, ν to zero.
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2005 and Chae 2006. (See also recent work by Danchin-Paicu.)

Remark 2: for any suitable test function f, we have INDEPENDTLY
of ε,v, ν

d
dt

∫
D

f(y(t,x))dx =

∫
D
(∇f)(y(t,x)) ·G(t,x,y(t,x))dx.

Remark 3: The presence of ε << 1 is equivalent to the action, on a
long time interval, of a small source term slowly varying in time
and corresponds to the rescaling: G→ εG(tε,x,y), t→ t/ε

We call Hydrostatic− Boussinesq(HB) the limit equations
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A natural convexity condition for the HB system

The Hydrostatic Boussinesq HB system

HB : ∂ty + (v · ∇)y = G(t,x,y), ∇ · v = 0, ∇p = y

looks strange since there is no direct equation for v.

Notice that, (v · ∇)y = (D2
xp · v) and v = ∇× A, for some

divergence-free vector potential A = A(t,x) ∈ R3, when d = 3.
Taking the curl of the evolution equation, we get

∇× (D2
xp(t,x) · ∇ × A) = ∇× (G(t,x,∇p))

This linear ’magnetostatic’ system in A is elliptic whenever p is
strongly convex: 0 << D2

xp(t,x) << +∞
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Rigorous derivation of the HB model under strong
convexity condiition
Theorem
Assume D = R3/Z3, (y,p,v) to be a smooth solution of the HB

hydrostatic Boussinesq model, with 0 << D2
xp(t,x) << +∞

Then, as ν = ε→ 0, any Leray solution (yε,pε,vε) to the full NSB
Navier-Stokes Boussinesq equations, with same initial condition,
converges to (y,p,v).

Idea of the proof: Estimate:

d
dt

∫
D
{K(t,yε(t,x),y(t,x)) +

ε2

2
|vε − v|2}dx

K(t,y′,y) = p∗(t,y′)− p∗(t,y)−∇p∗(t,y) · (y′ − y) ∼ |y− y′|2

where p∗(t, z) = supx∈D x · z− p(t,x) is the Legendre-Fenchel
transform of p.
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Global solutions to the HB system
Under the convexity condition, the HB system just coincides with
our multi-d toy model! Thus we conclude:
THEOREM

Assume G to be a smooth function with bounded first derivatives.
Let C be the convex cone of all maps y ∈ L2(D,R3)

such that y(x) = ∇p(x) a.e. in D for some CONVEX function p.
We say that (t→ y(t, ·)) ∈ C0(R+,L2(D,R3)) valued in the cone C is

a solution to the HB system if

d
dt

∫
D

f(y(t,x))dx =

∫
D
(∇f)(y(t,x)) ·G(t,x,y(t,x))dx, ∀f

Then, for each y0 ∈ C, there is always a GLOBAL solution such
that y(t = 0, ·) = y0
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