Very Weak Turbulence for Certain Dispersive Equations

Gigliola Staffilani

Massachusetts Institute of Technology

SISSA
July, 2011

(9) Our Case Study: The 2D Cubic NLS in \mathbb{T}^{2}
(2) Can We Show Growth of Sobolev Norms?
(3) On The Proof of the Main Theorem
(4) Finite Resonant Truncation of NLS in \mathbb{T}^{2}
(5) Abstract Combinatorial Resonant Set \wedge
(6) The Toy Model
(7) Instability For The Toy Model ODE
(8) A Perturbation Lemma
(9) A Scaling Argument
(10) Proof Of The Main Theorem
(11) Appendix

The 2D cubic NLS Initial Value Problem in \mathbb{T}^{2}

We consider the defocusing initial value problem:

$$
\left\{\begin{array}{c}
\left(-i \partial_{t}+\Delta\right) u=|u|^{2} u \tag{1.1}\\
u(0, x)=u_{0}(x), \text { where } x \in \mathbb{T}^{2} .
\end{array}\right.
$$

We have (see Lectures \#1\&\#2)

Theorem (Global well-posedness for smooth data)

For any data $u_{0} \in H^{s}\left(\mathbb{T}^{2}\right)$, $s \geq 1$ there exists a unique global solution $u(x, t) \in C\left(\mathbb{R}, H^{s}\right)$ to the Cauchy problem (1.1).

We also recall that

$$
\begin{aligned}
& \text { Mass }=M(u)=\|u(t)\|^{2}=M(0) \\
& \text { Energy }=E(u)=\int\left(\frac{1}{2}|\nabla u(t, x)|^{2}+\frac{1}{4}|u(x, t)|^{4}\right) d x=E(0) .
\end{aligned}
$$

Polynomial upper bounds

As mentioned in Vedran's seminar we have

Theorem (Bourgain, Zhong, Sohinger)

For the smooth global solutions of the periodic IVP (1.1) above we have:

$$
\|u(t)\|_{H^{s}} \leq C_{s}|t|^{s+} .
$$

But are there solutions for which such a growth occur? Unfortunately so far what we can prove is much weaker and we will state the precise theorem a little later.

Can one show growth of Sobolev norms?

One should recall the following result of Bourgain:

Theorem

Given $m, s \gg 1$ there exist $\tilde{\Delta}$ and a global solution $u(x, t)$ to the modified wave equation

$$
\left(\partial_{t t}-\tilde{\Delta}\right) u=u^{p}
$$

such that $\|u(t)\|_{H^{s}} \sim|t|^{m}$.
The weakness of this result is in the fact that one needs to modify the equation in order to make a solution exhibit a cascade.

More references

Recently Gerard and Grellier obtained some growth results for Sobolev norms of solutions to the periodic 1D cubic Szegö equation:

$$
i \partial_{t} u=\Pi\left(|u|^{2} u\right)
$$

where $\Pi\left(\sum_{k} \hat{f}(k) e^{x k}\right)=\sum_{k>0} \hat{f}(k) e^{x k}$ is the Szegö projector.

- Physics: Weak turbulence theory due to Hasselmann and Zakharov.
- Numerics (d=1): Majda-McLaughlin-Tabak; Zakharov et. al.
- Probability: Benney and Newell, Benney and Saffman.

To show how far we are from actually solving the open problems proposed above I will present what is known so far for the 2D cubic defocusing NLS in \mathbb{T}^{2}.

Very weak energy transfer to high frequencies

What we can prove

Theorem (Colliander-Keel-Staffilani-Takaoka-Tao)

Let $s>1, K \gg 1$ and $0<\sigma<1$ be given. Then there exist a global smooth solution $u(x, t)$ to the IVP (1.1) and $T>0$ such that

$$
\left\|u_{0}\right\|_{H^{s}} \leq \sigma \quad \text { and } \quad\|u(T)\|_{\dot{H}^{s}}^{2} \geq K .
$$

Elements of the proof of the main theorem

(Reduction to a resonant problem RFNLS
(2) Construction of a special finite set \wedge of frequencies
(3) Truncation to a resonant, finite-d Toy Model
(9) "Arnold diffusion" for the Toy Model
(6) Approximation result via perturbation lemma
(6) A scaling argument

The Ansatz

We consider the gauge transformation

$$
v(t, x)=e^{-i 2 G t} u(t, x)
$$

for $G \in \mathbb{R}$. If u solves $N L S$ above, then v solves the equation

$$
\begin{equation*}
\left(-i \partial_{t}+\Delta\right) v=(2 G+v)|v|^{2} . \tag{NLS}
\end{equation*}
$$

We make the ansatz

$$
v(t, x)=\sum_{n \in \mathbb{Z}^{2}} a_{n}(t) e^{i\left(\langle n, x\rangle+|n|^{2} t\right)} .
$$

Now the dynamics is all recast trough $a_{n}(t)$:

$$
-i \partial_{t} a_{n}=2 G a_{n}+\sum_{n_{1}-n_{2}+n_{3}=n} a_{n_{1}} \overline{a_{n_{2}}} a_{n_{3}} e^{i \omega_{4} t}
$$

where $\omega_{4}=\left|n_{1}\right|^{2}-\left|n_{2}\right|^{2}+\left|n_{3}\right|^{2}-|n|^{2}$.

The FNLS system

By choosing

$$
G=-\|v(t)\|_{L^{2}}^{2}=-\sum_{k}\left|a_{k}(t)\right|^{2}
$$

which is constant from the conservation of the mass, one can rewrite the equation above as

$$
-i \partial_{t} a_{n}=-a_{n}\left|a_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma(n)} a_{n_{1}} \overline{a_{n_{2}}} a_{n_{3}} e^{i \omega_{4} t}
$$

where

$$
\Gamma(n)=\left\{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} / n_{1}-n_{2}+n_{3}=n ; n_{1} \neq n ; n_{3} \neq n\right\} .
$$

From now on we will be refering to this system as the FNLS system, with the obvious connection with the original NLS equation.

The RFNLS system

We define the set

$$
\Gamma_{\text {res }}(n)=\left\{n_{1}, n_{2}, n_{3} \in \Gamma(n) / \omega_{4}=0\right\}
$$

where again $\omega_{4}=\left|n_{1}\right|^{2}-\left|n_{2}\right|^{2}+\left|n_{3}\right|^{2}-|n|^{2}$.
The geometric interpretation for this set is the following: If n_{1}, n_{2}, n_{3} are in $\Gamma_{\text {res }}(n)$, then these four points represent the vertices of a rectangle in \mathbb{Z}^{2}. We finally define the Resonant Truncation RFNLS to be the system

$$
-i \partial_{t} b_{n}=-b_{n}\left|b_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma_{\text {res }}(n)} b_{n_{1}} \overline{b_{n_{2}}} b_{n_{3}} .
$$

Finite dimensional resonant truncation

- A finite set $\Lambda \subset \mathbb{Z}^{2}$ is closed under resonant interactions if

$$
n_{1}, n_{2}, n_{3} \in \Gamma_{r e s}(n), n_{1}, n_{2}, n_{3} \in \Lambda=: n=n_{1}-n_{2}+n_{3} \in \Lambda
$$

- A \wedge-finite dimensional resonant truncation of RFNLS is
$\left(R F N L S_{\Lambda}\right) \quad-i \partial_{t} b_{n}=-b_{n}\left|b_{n}\right|^{2}+\sum_{\left(n_{1}, n_{2}, n_{3}\right) \in \Gamma_{r e s}(n) \cap \wedge^{3}} b_{n_{1}} \bar{b}_{n_{2}} b_{n_{3}}$.
- \forall resonant-closed finite $\Lambda \subset \mathbb{Z}^{2}, R F N L S_{\Lambda}$ is an ODE.

We will construct a special set \wedge of frequencies.

Abstract Combinatorial Resonant Set \wedge

Our goal is to have a resonant-closed $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{N}, N$ to be fixed later, with the properties below.

Abstract Combinatorial Resonant Set \wedge

Our goal is to have a resonant-closed $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{N}, N$ to be fixed later, with the properties below. Define a nuclear family to be a rectangle $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ where the frequencies n_{1}, n_{3} (the 'parents') live in generation Λ_{j} and n_{2}, n_{4} ('children') live in generation Λ_{j+1}.

Abstract Combinatorial Resonant Set \wedge

Our goal is to have a resonant-closed $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{N}, N$ to be fixed later, with the properties below. Define a nuclear family to be a rectangle ($n_{1}, n_{2}, n_{3}, n_{4}$) where the frequencies n_{1}, n_{3} (the 'parents') live in generation Λ_{j} and n_{2}, n_{4} ('children') live in generation Λ_{j+1}.

- Existence and uniqueness of spouse and children: $\forall 1 \leq j<M$ and $\forall n_{1} \in \Lambda_{j} \exists$ unique nuclear family such that $n_{1}, n_{3} \in \Lambda_{j}$ are parents and $n_{2}, n_{4} \in \Lambda_{j+1}$ are children.

Abstract Combinatorial Resonant Set \wedge

Our goal is to have a resonant-closed $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{N}, N$ to be fixed later, with the properties below. Define a nuclear family to be a rectangle $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ where the frequencies n_{1}, n_{3} (the 'parents') live in generation Λ_{j} and n_{2}, n_{4} ('children') live in generation Λ_{j+1}.

- Existence and uniqueness of spouse and children: $\forall 1 \leq j<M$ and $\forall n_{1} \in \Lambda_{j} \exists$ unique nuclear family such that $n_{1}, n_{3} \in \Lambda_{j}$ are parents and $n_{2}, n_{4} \in \Lambda_{j+1}$ are children.
- Existence and uniqueness of siblings and parents: $\forall 1 \leq j<M$ and $\forall n_{2} \in \Lambda_{j+1} \exists$ unique nuclear family such that $n_{2}, n_{4} \in \Lambda_{j+1}$ are children and $n_{1}, n_{3} \in \Lambda_{j}$ are parents.

Abstract Combinatorial Resonant Set \wedge

Our goal is to have a resonant-closed $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{N}, N$ to be fixed later, with the properties below. Define a nuclear family to be a rectangle $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ where the frequencies n_{1}, n_{3} (the 'parents') live in generation Λ_{j} and n_{2}, n_{4} ('children') live in generation Λ_{j+1}.

- Existence and uniqueness of spouse and children: $\forall 1 \leq j<M$ and $\forall n_{1} \in \Lambda_{j} \exists$ unique nuclear family such that $n_{1}, n_{3} \in \Lambda_{j}$ are parents and $n_{2}, n_{4} \in \Lambda_{j+1}$ are children.
- Existence and uniqueness of siblings and parents: $\forall 1 \leq j<M$ and $\forall n_{2} \in \Lambda_{j+1} \exists$ unique nuclear family such that $n_{2}, n_{4} \in \Lambda_{j+1}$ are children and $n_{1}, n_{3} \in \Lambda_{j}$ are parents.
- Non degeneracy: The sibling of a frequency is never its spouse.

Abstract Combinatorial Resonant Set ^

Our goal is to have a resonant-closed $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{N}, N$ to be fixed later, with the properties below. Define a nuclear family to be a rectangle $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ where the frequencies n_{1}, n_{3} (the 'parents') live in generation Λ_{j} and n_{2}, n_{4} ('children') live in generation Λ_{j+1}.

- Existence and uniqueness of spouse and children: $\forall 1 \leq j<M$ and $\forall n_{1} \in \Lambda_{j} \exists$ unique nuclear family such that $n_{1}, n_{3} \in \Lambda_{j}$ are parents and $n_{2}, n_{4} \in \Lambda_{j+1}$ are children.
- Existence and uniqueness of siblings and parents: $\forall 1 \leq j<M$ and $\forall n_{2} \in \Lambda_{j+1} \exists$ unique nuclear family such that $n_{2}, n_{4} \in \Lambda_{j+1}$ are children and $n_{1}, n_{3} \in \Lambda_{j}$ are parents.
- Non degeneracy: The sibling of a frequency is never its spouse.
- Faithfulness: Besides nuclear families, \wedge contains no other rectangles.

Abstract Combinatorial Resonant Set \wedge

Our goal is to have a resonant-closed $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{N}, N$ to be fixed later, with the properties below. Define a nuclear family to be a rectangle
$\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ where the frequencies n_{1}, n_{3} (the 'parents') live in generation Λ_{j} and n_{2}, n_{4} ('children') live in generation Λ_{j+1}.

- Existence and uniqueness of spouse and children: $\forall 1 \leq j<M$ and $\forall n_{1} \in \Lambda_{j} \exists$ unique nuclear family such that $n_{1}, n_{3} \in \Lambda_{j}$ are parents and $n_{2}, n_{4} \in \Lambda_{j+1}$ are children.
- Existence and uniqueness of siblings and parents: $\forall 1 \leq j<M$ and $\forall n_{2} \in \Lambda_{j+1} \exists$ unique nuclear family such that $n_{2}, n_{4} \in \Lambda_{j+1}$ are children and $n_{1}, n_{3} \in \Lambda_{j}$ are parents.
- Non degeneracy: The sibling of a frequency is never its spouse.
- Faithfulness: Besides nuclear families, \wedge contains no other rectangles.
- Integenerational Equality:The function $n \longmapsto a_{n}(0)$ is constant on each generation Λ_{j}.

Cartoon Construction of \wedge

More properties for the set \wedge

- Multiplicative Structure: If $N=N(\sigma, K)$ is large enough then Λ consists of $N \times 2^{N-1}$ disjoint frequencies n with $|n|>N=N(\sigma, K)$, the first frequency in Λ_{1} is of size N and we call N the Inner Radius of Λ.
- Wide Diaspora: Given $\sigma \ll 1$ and $K \gg 1$, if N is large enough then $\Lambda=\Lambda_{1} \cup \ldots \cup \Lambda_{N}$ as above and

$$
\sum_{n \in \Lambda_{N}}|n|^{2 s} \geq \frac{K^{2}}{\sigma^{2}} \sum_{n \in \Lambda_{1}}|n|^{2 s}
$$

- Approximation: If $\operatorname{spt}\left(a_{n}(0)\right) \subset \Lambda$ then $F N L S$-evolution $a_{n}(0) \longmapsto a_{n}(t)$ is nicely approximated by $R F N L S_{\Lambda}-$ ODE $a_{n}(0) \longmapsto b_{n}(t)$.
- Given ϵ, s, K, build \wedge so that $R F N L S_{\wedge}$ has weak turbulence.

The Toy Model

- The truncation of RFNLS to the constructed set Λ is the ODE

$$
\left(R F N L S_{\Lambda}\right) \quad-i \partial_{t} b_{n}=-b_{n}\left|b_{n}\right|^{2}+\sum_{\left(n_{1}, n_{2}, n_{3}\right) \in \Lambda^{3} \cap \Gamma_{\text {res }}(n)} b_{n_{1}} b_{n_{2}} b_{n_{3}} .
$$

- The intergenerational equality hypothesis $\left(n \longmapsto b_{n}(0)\right.$ is constant on each generation Λ_{j}.) persists under $R F N L S_{\wedge}$:

$$
\forall m, n \in \wedge_{j}, b_{n}(t)=b_{m}(t) .
$$

- RFNLS」 may be reindexed by generation number j. The recast dynamics is the Toy Model (ODE):

$$
-i \partial_{t} b_{j}(t)=-b_{j}(t)\left|b_{j}(t)\right|^{2}-2 b_{j-1}(t)^{2} \overline{b_{j}(t)}-2 b_{j+1}(t)^{2} \overline{b_{j}(t)}
$$

with the boundary condition

$$
\begin{equation*}
b_{0}(t)=b_{N+1}(t)=0 . \tag{BC}
\end{equation*}
$$

Conservation laws for the ODE system

The following are conserved quantities for (ODE)

$$
\begin{aligned}
& \text { Mass }=\sum_{j}\left|b_{j}(t)\right|^{2}=C_{0} \\
& \text { Momentum }=\sum_{j}\left|b_{j}(t)\right|^{2} \sum_{n \in \Lambda_{j}} n=C_{1},
\end{aligned}
$$

and if

$$
\begin{aligned}
& \text { Kinetic Energy }=\sum_{j}\left|b_{j}(t)\right|^{2} \sum_{n \in \Lambda_{j}}|n|^{2} \\
& \text { Potential Energy }=\frac{1}{2} \sum_{j}\left|b_{j}(t)\right|^{4}+\sum_{j}\left|b_{j}(t)\right|^{2}\left|b_{j+1}(t)\right|^{2},
\end{aligned}
$$

then

$$
\text { Energy }=\text { Kinetic Energy }+ \text { Potential Energy }=C_{2}
$$

Toy model traveling wave solution

${ }^{1}$ Maybe dynamical systems methods are useful here?

Toy model traveling wave solution

Using direct calculation ${ }^{1}$, we will prove that our Toy Model ODE evolution $b_{j}(0) \longmapsto b_{j}(t)$ is such that:

Toy model traveling wave solution

Using direct calculation ${ }^{1}$, we will prove that our Toy Model ODE evolution $b_{j}(0) \longmapsto b_{j}(t)$ is such that:

$$
\left(b_{1}(0), b_{2}(0), \ldots, b_{N}(0)\right) \quad \sim(1,0, \ldots, 0)
$$

Toy model traveling wave solution

Using direct calculation ${ }^{1}$, we will prove that our Toy Model ODE evolution $b_{j}(0) \longmapsto b_{j}(t)$ is such that:

$$
\begin{aligned}
\left(b_{1}(0), b_{2}(0), \ldots, b_{N}(0)\right) & \sim(1,0, \ldots, 0) \\
\left(b_{1}\left(t_{2}\right), b_{2}\left(t_{2}\right), \ldots, b_{N}\left(t_{2}\right)\right) & \sim(0,1, \ldots, 0)
\end{aligned}
$$

Toy model traveling wave solution

Using direct calculation ${ }^{1}$, we will prove that our Toy Model ODE evolution $b_{j}(0) \longmapsto b_{j}(t)$ is such that:

$$
\begin{aligned}
\left(b_{1}(0), b_{2}(0), \ldots, b_{N}(0)\right) & \sim(1,0, \ldots, 0) \\
\left(b_{1}\left(t_{2}\right), b_{2}\left(t_{2}\right), \ldots, b_{N}\left(t_{2}\right)\right) & \sim(0,1, \ldots, 0)
\end{aligned}
$$

Toy model traveling wave solution

Using direct calculation ${ }^{1}$, we will prove that our Toy Model ODE evolution $b_{j}(0) \longmapsto b_{j}(t)$ is such that:

$$
\begin{aligned}
\left(b_{1}(0), b_{2}(0), \ldots, b_{N}(0)\right) & \sim(1,0, \ldots, 0) \\
\left(b_{1}\left(t_{2}\right), b_{2}\left(t_{2}\right), \ldots, b_{N}\left(t_{2}\right)\right) & \sim(0,1, \ldots, 0) \\
& \cdot \\
& \cdot \\
\left(b_{1}\left(t_{N}\right), b_{2}\left(t_{N}\right), \ldots, b_{N}\left(t_{N}\right)\right) & \sim(0,0, \ldots, 1)
\end{aligned}
$$

Toy model traveling wave solution

Using direct calculation ${ }^{1}$, we will prove that our Toy Model ODE evolution $b_{j}(0) \longmapsto b_{j}(t)$ is such that:

$$
\begin{aligned}
\left(b_{1}(0), b_{2}(0), \ldots, b_{N}(0)\right) & \sim(1,0, \ldots, 0) \\
\left(b_{1}\left(t_{2}\right), b_{2}\left(t_{2}\right), \ldots, b_{N}\left(t_{2}\right)\right) & \sim(0,1, \ldots, 0) \\
& \cdot \\
& \cdot \\
\left(b_{1}\left(t_{N}\right), b_{2}\left(t_{N}\right), \ldots, b_{N}\left(t_{N}\right)\right) & \sim(0,0, \ldots, 1)
\end{aligned}
$$

Bulk of conserved mass is transferred from Λ_{1} to Λ_{N}.

Toy model traveling wave solution

Using direct calculation ${ }^{1}$, we will prove that our Toy Model ODE evolution $b_{j}(0) \longmapsto b_{j}(t)$ is such that:

$$
\begin{aligned}
\left(b_{1}(0), b_{2}(0), \ldots, b_{N}(0)\right) & \sim(1,0, \ldots, 0) \\
\left(b_{1}\left(t_{2}\right), b_{2}\left(t_{2}\right), \ldots, b_{N}\left(t_{2}\right)\right) & \sim(0,1, \ldots, 0) \\
& \cdot \\
& \cdot \\
\left(b_{1}\left(t_{N}\right), b_{2}\left(t_{N}\right), \ldots, b_{N}\left(t_{N}\right)\right) & \sim(0,0, \ldots, 1)
\end{aligned}
$$

Bulk of conserved mass is transferred from Λ_{1} to Λ_{N}. Weak turbulence lower bound follows from Wide Diaspora Property.

Instability for the ODE: the set up

Global well-posedness for ODE is not an issue. Then we define

$$
\Sigma=\left\{x \in \mathbb{C}^{N} /|x|^{2}=1\right\} \text { and } W(t): \Sigma \rightarrow \Sigma
$$

where $W(t) b\left(t_{0}\right)=b\left(t+t_{0}\right)$ for any solution $b(t)$ of $O D E$. It is easy to see that for any $b \in \Sigma$

$$
\partial_{t}\left|b_{j}\right|^{2}=4 \Re\left(i \bar{b}_{j}^{2}\left(b_{j-1}^{2}+b_{j+1}^{2}\right)\right) \leq 4\left|b_{j}\right|^{2}
$$

So if

$$
b_{j}(0)=0=: b_{j}(t)=0, \text { for all } t \in[0, T] .
$$

If moreover we define the torus

$$
\mathbb{T}_{j}=\left\{\left(b_{1}, \ldots, b_{N}\right) \in \Sigma /\left|b_{j}\right|=1, b_{k}=0, k \neq j\right\}
$$

then

$$
W(t) \mathbb{T}_{j}=\mathbb{T}_{j} \text { for all } j=1, \ldots ., N
$$

(\mathbb{T}_{j} is invariant).

Instability for the ODE

Theorem (Sliding Theorem)

Let $N \geq 6$. Given $\epsilon>0$ there exist x_{3} within ϵ of \mathbb{T}_{3} and x_{N-2} within ϵ of \mathbb{T}_{N-2} and a time t such that

$$
W(t) x_{3}=x_{N-2}
$$

Remark

$W(t) x_{3}$ is a solution of total mass 1 arbitrarily concentrated near mode $j=3$ at some time t_{0} and then arbitrarily concentrated near mode $j=N-2$ at later time t.

The sliding process

To motivate the theorem let us first observe that when $N=2$ we can easily demonstrate that there is an orbit connecting \mathbb{T}_{1} to \mathbb{T}_{2}. Indeed in this case we have the explicit "slider" solution

$$
\begin{equation*}
b_{1}(t):=\frac{e^{-i t} \omega}{\sqrt{1+e^{2 \sqrt{3} t}}} ; \quad b_{2}(t):=\frac{e^{-i t} \omega^{2}}{\sqrt{1+e^{-2 \sqrt{3} t}}} \tag{7.1}
\end{equation*}
$$

where $\omega:=e^{2 \pi i / 3}$ is a cube root of unity.
This solution approaches \mathbb{T}_{1} exponentially fast as $t \rightarrow-\infty$, and approaches \mathbb{T}_{2} exponentially fast as $t \rightarrow+\infty$. One can translate this solution in the j parameter, and obtain solutions that "slide" from \mathbb{T}_{j} to \mathbb{T}_{j+1}. Intuitively, the proof of the Sliding Theorem for higher N should then proceed by concatenating these slider solutions......

This is a cartoon of what we have:

Figure: Explicit oscillator solution around \mathbb{T}_{j} and the slider solution from \mathbb{T}_{1} to \mathbb{T}_{2}

This though cannot work directly because each solution requires an infinite amount of time to connect one circle to the next, but it turns out that a suitably perturbed or "fuzzy" version of these slider solutions can in fact be glued together.

A Perturbation Lemma

Lemma

Let $\Lambda \subset \mathbb{Z}^{2}$ introduced above. Let $B \gg 1$ and $\delta>0$ small and fixed. Let $t \in[0, T]$ and $T \sim B^{2} \log B$. Suppose there exists $b(t) \in I^{1}(\Lambda)$ solving RFNLS Λ_{Λ} such that

$$
\|b(t)\|_{\mu} \lesssim B^{-1}
$$

Then there exists a solution $a(t) \in I^{1}\left(\mathbb{Z}^{2}\right)$ of $F N L S$ such that

$$
a(0)=b(0), \quad \text { and }\|a(t)-b(t)\|_{r^{\prime}\left(\mathbb{Z}^{2}\right)} \lesssim B^{-1-\delta},
$$

for any $t \in[0, T]$.

Proof.

This is a standard perturbation lemma proved by checking that the "non resonant" part of the nonlinearity remains small enough.

Recasting the main theorem

With all the notations and reductions introduced we can now recast the main theorem in the following way:

Theorem

For any $0<\sigma \ll 1$ and $K \gg 1$ there exists a complex sequence $\left(a_{n}\right)$ such that

$$
\left(\sum_{n \in \mathbb{Z}^{2}}\left|a_{n}\right|^{2}|n|^{2 s}\right)^{1 / 2} \lesssim \sigma
$$

and a solution $\left(a_{n}(t)\right)$ of $(F N L S)$ and $T>0$ such that

$$
\left(\sum_{n \in \mathbb{Z}^{2}}\left|a_{n}(T)\right|^{2}|n|^{2 s}\right)^{1 / 2}>K
$$

A Scaling Argument

In order to be able to use "instability" to move mass from lower frequencies to higher ones and start with a small data we need to introduce scaling.

Consider in $[0, \tau]$ the solution $b(t)$ of the system $R F N L S_{\wedge}$ with initial datum b_{0}. Then the rescaled function

$$
b^{\lambda}(t)=\lambda^{-1} b\left(\frac{t}{\lambda^{2}}\right)
$$

solves the same system with datum $b_{0}^{\lambda}=\lambda^{-1} b_{0}$.
We then first pick the complex vector $b(0)$ that was found in the "instability" theorem above. For simplicity let's assume here that $b_{j}(0)=1-\epsilon$ if $j=3$ and $b_{j}(0)=\epsilon$ if $j \neq 3$ and then we fix

$$
a_{n}(0)=\left\{\begin{array}{c}
b_{j}^{\lambda}(0) \text { for any } n \in \Lambda_{j} \\
0 \text { otherwise } .
\end{array}\right.
$$

Estimating the size of $(a(0))$

By definition

$$
\left(\sum_{n \in \Lambda}\left|a_{n}(0)\right|^{2}|n|^{2 s}\right)^{1 / 2}=\frac{1}{\lambda}\left(\sum_{j=1}^{M}\left|b_{j}(0)\right|^{2}\left(\sum_{n \in \Lambda_{j}}|n|^{2 s}\right)\right)^{1 / 2} \sim \frac{1}{\lambda} Q_{3}^{1 / 2}
$$

where the last equality follows from defining

$$
\sum_{n \in \Lambda_{j}}|n|^{2 s}=Q_{j},
$$

and the definition of $a_{n}(0)$ given above. At this point we use the proprieties of the set Λ to estimate $Q_{3} C(N) N^{2 s}$, where N is the inner radius of Λ. We then conclude that

$$
\left(\sum_{n \in \Lambda}\left|a_{n}(0)\right|^{2}|n|^{2 s}\right)^{1 / 2}=\lambda^{-1} C(N) N^{s} \sim \sigma
$$

Estimating the size of $(a(T))$

By using the perturbation lemma with $B=\lambda$ and $T=\lambda^{2} \tau$ we have

$$
\|a(T)\|_{H^{s}} \geq\left\|b^{\lambda}(T)\right\|_{H^{s}}-\left\|a(T)-b^{\lambda}(T)\right\|_{H^{s}}=I_{1}-I_{2}
$$

We want $I_{2} \ll 1$ and $I_{1}>K$. For the first

$$
I_{2} \leq\left\|a(T)-b^{\lambda}(T)\right\|_{\mu^{\prime}\left(\mathbb{Z}^{2}\right)}\left(\sum_{n \in \Lambda}|n|^{2 s}\right)^{1 / 2} \lesssim \lambda^{-1-\delta}\left(\sum_{n \in \Lambda}|n|^{2 s}\right)^{1 / 2}
$$

As above

$$
I_{2} \lesssim \lambda^{-1-\delta} C(N) N^{s}
$$

At this point we need to pick λ and N so that

$$
\|a(0)\|_{H^{s}}=\lambda^{-1} C(N) N^{s} \sim \sigma \text { and } I_{2} \lesssim \lambda^{-1-\delta} C(N) N^{s} \ll 1
$$

and thanks to the presence of $\delta>0$ this can be achieved by taking λ and N large enough.

Estimating I_{1}

It is important here that at time zero one starts with a fixed non zero datum, namely $\|a(0)\|_{H^{s}}=\left\|b^{\lambda}(0)\right\|_{H^{s}} \sim \sigma>0$. In fact we will show that

$$
I_{1}^{2}=\left\|b^{\lambda}(T)\right\|_{H^{s}}^{2} \geq \frac{K^{2}}{\sigma^{2}}\left\|b^{\lambda}(0)\right\|_{H^{s}}^{2} \sim K^{2}
$$

If we define for $T=\lambda^{2} t$

$$
R=\frac{\sum_{n \in \Lambda}\left|b_{n}^{\lambda}\left(\lambda^{2} t\right)\right|^{2}|n|^{2 s}}{\sum_{n \in \Lambda}\left|b_{n}^{\lambda}(0)\right|^{2}|n|^{2 s}},
$$

then we are reduce to showing that $R \gtrsim K^{2} / \sigma^{2}$. Now recall the notation

$$
\Lambda=\Lambda_{1} \cup \ldots . . \cup \Lambda_{N} \quad \text { and } \quad \sum_{n \in \Lambda_{j}}|n|^{2 s}=Q_{j}
$$

More on Estimating I_{1}

Using the fact that by the theorem on "instability" (approximately) one obtains $b_{j}(T)=1-\epsilon$ if $j=N-2$ and $b_{j}(T)=\epsilon$ if $j \neq N-2$, it follows that

$$
\begin{aligned}
R & =\frac{\sum_{i=1}^{N} \sum_{n \in \Lambda_{i}}\left|b_{i}^{\lambda}\left(\lambda^{2} t\right)\right|^{2}|n|^{2 s}}{\sum_{i=1}^{N} \sum_{n \in \Lambda_{i}}\left|b_{i}^{\lambda}(0)\right|^{2}|n|^{2 s}} \\
& \geq \frac{Q_{N-2}(1-\epsilon)}{(1-\epsilon) Q_{3}+\epsilon Q_{1}+\ldots .+\epsilon Q_{N}} \sim \frac{Q_{N-2}(1-\epsilon)}{Q_{N-2}\left[(1-\epsilon) \frac{Q_{3}}{Q_{N-2}}+\ldots .+\epsilon\right]} \\
& \gtrsim \frac{(1-\epsilon)}{(1-\epsilon) \frac{Q_{3}}{Q_{N-2}}}=\frac{Q_{N-2}}{Q_{3}}
\end{aligned}
$$

and the conclusion follows from "large diaspora" of Λ_{j} :

$$
Q_{N-2}=\sum_{n \in \Lambda_{N-2}}|n|^{2 s} \gtrsim \frac{K^{2}}{\sigma^{2}} \sum_{n \in \Lambda_{3}}|n|^{2 s}=\frac{K^{2}}{\sigma^{2}} Q_{3} .
$$

Where does the set \wedge come from?

Here we do not construct Λ, but we construct Σ, a set that has a lot of the properties of Λ. We define the standard unit square $S \subset \mathbb{C}$ to be the four-element set of complex numbers

$$
S=\{0,1,1+i, i\} .
$$

We split $S=S_{1} \cup S_{2}$, where $S_{1}:=\{1, i\}$ and $S_{2}:=\{0,1+i\}$. The combinatorial model Σ is a subset of a large power of the set S. More precisely, for any $1 \leq j \leq N$, we define $\Sigma_{j} \subset \mathbb{C}^{N-1}$ to be the set of all N - 1 -tuples $\left(z_{1}, \ldots, z_{N-1}\right)$ such that $z_{1}, \ldots, z_{j-1} \in S_{2}$ and $z_{j}, \ldots, z_{N-1} \in S_{1}$. In other words,

$$
\Sigma_{j}:=S_{2}^{j-1} \times S_{1}^{N-j} .
$$

Note that each Σ_{j} consists of 2^{N-1} elements, and they are all disjoint. We then set $\Sigma=\Sigma_{1} \cup \ldots \cup \Sigma_{N}$; this set consists of $N 2^{N-1}$ elements. We refer to Σ_{j} as the $j^{\text {th }}$ generation of Σ.
For each $1 \leq j<N$, we define a combinatorial nuclear family connecting generations Σ_{j}, Σ_{j+1} to be any four-element set $F \subset \Sigma_{j} \cup \Sigma_{j+1}$ of the form

$$
F:=\left\{\left(z_{1}, \ldots, z_{j-1}, w, z_{j+1}, \ldots, z_{N}\right): w \in S\right\}
$$

where $z_{1}, \ldots, z_{j-1} \in S_{2}$ and $z_{j+1}, \ldots, z_{N} \in S_{1}$ are fixed. In other words, we have

$$
F=\left\{F_{0}, F_{1}, F_{1+i}, F_{i}\right\}=\left\{\left(z_{1}, \ldots, z_{j-1}\right)\right\} \times S \times\left\{\left(z_{j+1}, \ldots, z_{N}\right)\right\}
$$

where $F_{w}=\left(z_{1}, \ldots, z_{j-1}, w, z_{j+1}, \ldots, z_{N}\right)$.

It is clear that

- F is a four-element set consisting of two elements F_{1}, F_{i} of Σ_{j} (which we call the parents in F) and two elements F_{0}, F_{1+i} of Σ_{j+1} (which we call the children in F).
- For each j there are 2^{N-2} combinatorial nuclear families connecting the generations Σ_{j} and Σ_{j+1}.

Properties of Σ

One easily verifies the following properties:

- Existence and uniqueness of spouse and children: For any $1 \leq j<N$ and any $x \in \Sigma_{j}$ there exists a unique combinatorial nuclear family F connecting Σ_{j} to Σ_{j+1} such that x is a parent of this family (i.e. $x=F_{1}$ or $x=F_{i}$). In particular each $x \in \Sigma_{j}$ has a unique spouse (in Σ_{j}) and two unique children (in Σ_{j+1}).
- Existence and uniqueness of sibling and parents: For any $1 \leq j<N$ and any $y \in \Sigma_{j+1}$ there exists a unique combinatorial nuclear family F connecting Σ_{j} to Σ_{j+1} such that y is a child of the family (i.e. $y=F_{0}$ or $y=F_{1+i}$). In particular each $y \in \Sigma_{j+1}$ has a unique sibling (in Σ_{j+1}) and two unique parents (in Σ_{j}).
- Nondegeneracy: The sibling of an element $x \in \Sigma_{j}$ is never equal to its spouse.

Example:

If $N=7$, the point $x=(0,1+i, 0, i, i, 1)$ lies in the fourth generation Σ_{4}. Its spouse is $(0,1+i, 0,1, i, 1)$ (also in Σ_{4}) and its two children are $(0,1+i, 0,0, i, 1)$ and ($0,1+i, 0,1+i, i, 1$) (both in Σ_{5}). These four points form a combinatorial nuclear family connecting the generations Σ_{4} and Σ_{5}. The sibling of x is $(0,1+i, 1+i, i, i, 1)$ (also in Σ_{4}, but distinct from the spouse) and its two parents are ($0,1+i, 1, i, i, 1$) and ($0,1+i, i, i, i, 1$) (both in $\left.\Sigma_{3}\right)$. These four points form a combinatorial nuclear family connecting the generations Σ_{3} and Σ_{4}. Elements of Σ_{1} do not have siblings or parents, and elements of Σ_{7} do not have spouses or children.

