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The 2D cubic NLS Initial Value Problem in T2

We consider the defocusing initial value problem:

(1.1)
{

(−i∂t + ∆)u = |u|2u
u(0, x) = u0(x), where x ∈ T2.

We have (see Lectures #1&#2)

Theorem (Global well-posedness for smooth data)
For any data u0 ∈ Hs(T2), s ≥ 1 there exists a unique global solution
u(x , t) ∈ C(R, Hs) to the Cauchy problem (1.1).

We also recall that

Mass = M(u) = ‖u(t)‖2 = M(0)

Energy = E(u) =

∫
(
1
2
|∇u(t , x)|2 +

1
4
|u(x , t)|4) dx = E(0).
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Polynomial upper bounds

As mentioned in Vedran’s seminar we have

Theorem (Bourgain, Zhong, Sohinger)
For the smooth global solutions of the periodic IVP (1.1) above we have:

‖u(t)‖Ḣs ≤ Cs|t |s+.

But are there solutions for which such a growth occur? Unfortunately so far
what we can prove is much weaker and we will state the precise theorem a
little later.
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Can one show growth of Sobolev norms?

One should recall the following result of Bourgain:

Theorem
Given m, s � 1 there exist ∆̃ and a global solution u(x , t) to the modified
wave equation

(∂tt − ∆̃)u = up

such that ‖u(t)‖Hs ∼ |t |m.

The weakness of this result is in the fact that one needs to modify the
equation in order to make a solution exhibit a cascade.
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More references

Recently Gerard and Grellier obtained some growth results for Sobolev norms
of solutions to the periodic 1D cubic Szegö equation:

i∂tu = Π(|u|2u),

where Π(
∑

k f̂ (k)exk ) =
∑

k>0 f̂ (k)exk is the Szegö projector.

Physics: Weak turbulence theory due to Hasselmann and Zakharov.
Numerics (d=1): Majda-McLaughlin-Tabak; Zakharov et. al.
Probability: Benney and Newell, Benney and Saffman.

To show how far we are from actually solving the open problems proposed
above I will present what is known so far for the 2D cubic defocusing NLS in
T2.
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Very weak energy transfer to high frequencies

What we can prove

Theorem (Colliander-Keel-Staffilani-Takaoka-Tao)
Let s > 1, K � 1 and 0 < σ < 1 be given. Then there exist a global smooth
solution u(x , t) to the IVP (1.1) and T > 0 such that

‖u0‖Hs ≤ σ and ‖u(T )‖2
Ḣs ≥ K .
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Elements of the proof of the main theorem

1 Reduction to a resonant problem RFNLS
2 Construction of a special finite set Λ of frequencies
3 Truncation to a resonant, finite-d Toy Model
4 “Arnold diffusion” for the Toy Model
5 Approximation result via perturbation lemma
6 A scaling argument
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The Ansatz

We consider the gauge transformation

v(t , x) = e−i2Gtu(t , x),

for G ∈ R. If u solves NLS above, then v solves the equation

((NLS)G) (−i∂t + ∆)v = (2G + v)|v |2.

We make the ansatz

v(t , x) =
∑
n∈Z2

an(t)ei(〈n,x〉+|n|2t).

Now the dynamics is all recast trough an(t):

−i∂tan = 2Gan +
∑

n1−n2+n3=n

an1an2an3e
iω4t

where ω4 = |n1|2 − |n2|2 + |n3|2 − |n|2.
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The FNLS system

By choosing
G = −‖v(t)‖2

L2 = −
∑

k

|ak (t)|2

which is constant from the conservation of the mass, one can rewrite the
equation above as

−i∂tan = −an|an|2 +
∑

n1,n2,n3∈Γ(n)

an1an2an3e
iω4t

where

Γ(n) = {n1, n2, n3 ∈ Z2 / n1 − n2 + n3 = n; n1 6= n; n3 6= n}.

From now on we will be refering to this system as the FNLS system, with the
obvious connection with the original NLS equation.
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The RFNLS system

We define the set

Γres(n) = {n1, n2, n3 ∈ Γ(n) / ω4 = 0},

where again ω4 = |n1|2 − |n2|2 + |n3|2 − |n|2.
The geometric interpretation for this set is the following: If n1, n2, n3 are in
Γres(n), then these four points represent the vertices of a rectangle in Z2.
We finally define the Resonant Truncation RFNLS to be the system

−i∂tbn = −bn|bn|2 +
∑

n1,n2,n3∈Γres(n)

bn1bn2bn3 .
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Finite dimensional resonant truncation

A finite set Λ ⊂ Z2 is closed under resonant interactions if

n1, n2, n3 ∈ Γres(n), n1, n2, n3 ∈ Λ =: n = n1 − n2 + n3 ∈ Λ.

A Λ-finite dimensional resonant truncation of RFNLS is

(RFNLSΛ) −i∂tbn = −bn|bn|2 +
∑

(n1,n2,n3)∈Γres(n)∩Λ3

bn1bn2bn3 .

∀ resonant-closed finite Λ ⊂ Z2, RFNLSΛ is an ODE.

We will construct a special set Λ of frequencies.
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Abstract Combinatorial Resonant Set Λ

Our goal is to have a resonant-closed Λ = Λ1 ∪ · · · ∪ ΛN , N to be fixed later,
with the properties below.

Define a nuclear family to be a rectangle
(n1, n2, n3, n4) where the frequencies n1, n3 (the ’parents’) live in generation Λj
and n2, n4 (’children’) live in generation Λj+1.

Existence and uniqueness of spouse and children: ∀ 1 ≤ j < M and
∀ n1 ∈ Λj ∃ unique nuclear family such that n1, n3 ∈ Λj are parents and
n2, n4 ∈ Λj+1 are children.
Existence and uniqueness of siblings and parents: ∀ 1 ≤ j < M and
∀ n2 ∈ Λj+1 ∃ unique nuclear family such that n2, n4 ∈ Λj+1 are children
and n1, n3 ∈ Λj are parents.
Non degeneracy: The sibling of a frequency is never its spouse.
Faithfulness: Besides nuclear families, Λ contains no other rectangles.
Integenerational Equality:The function n 7−→ an(0) is constant on each
generation Λj .
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Cartoon Construction of Λ
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Cartoon Construction of Λ
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More properties for the set Λ

Multiplicative Structure: If N = N(σ, K ) is large enough then Λ consists
of N × 2N−1 disjoint frequencies n with |n| > N = N(σ, K ), the first
frequency in Λ1 is of size N and we call N the Inner Radius of Λ.
Wide Diaspora: Given σ � 1 and K � 1, if N is large enough then
Λ = Λ1 ∪ .... ∪ ΛN as above and

∑
n∈ΛN

|n|2s ≥ K 2

σ2

∑
n∈Λ1

|n|2s.

Approximation: If spt(an(0)) ⊂ Λ then FNLS-evolution an(0) 7−→ an(t) is
nicely approximated by RFNLSΛ-ODE an(0) 7−→ bn(t).
Given ε, s, K , build Λ so that RFNLSΛ has weak turbulence.
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The Toy Model

The truncation of RFNLS to the constructed set Λ is the ODE

(RFNLSΛ) −i∂tbn = −bn|bn|2 +
∑

(n1,n2,n3)∈Λ3∩Γres(n)

bn1bn2bn3 .

The intergenerational equality hypothesis (n 7−→ bn(0) is constant on
each generation Λj .) persists under RFNLSΛ:

∀ m, n ∈ Λj , bn(t) = bm(t).

RFNLSΛ may be reindexed by generation number j .
The recast dynamics is the Toy Model (ODE):

−i∂tbj(t) = −bj(t)|bj(t)|2 − 2bj−1(t)2bj(t)− 2bj+1(t)2bj(t),

with the boundary condition

(BC) b0(t) = bN+1(t) = 0.
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Conservation laws for the ODE system

The following are conserved quantities for (ODE)

Mass =
∑

j

|bj(t)|2 = C0

Momentum =
∑

j

|bj(t)|2
∑
n∈Λj

n = C1,

and if

Kinetic Energy =
∑

j

|bj(t)|2
∑
n∈Λj

|n|2

Potential Energy =
1
2

∑
j

|bj(t)|4 +
∑

j

|bj(t)|2|bj+1(t)|2,

then
Energy = Kinetic Energy + Potential Energy = C2.
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Toy model traveling wave solution

Using direct calculation1, we will prove that our Toy Model ODE evolution
bj(0) 7−→ bj(t) is such that:

(b1(0), b2(0), . . . , bN(0)) ∼ (1, 0, . . . , 0)

(b1(t2), b2(t2), . . . , bN(t2)) ∼ (0, 1, . . . , 0)

.

.

.

(b1(tN), b2(tN), . . . , bN(tN)) ∼ (0, 0, . . . , 1)

Bulk of conserved mass is transferred from Λ1 to ΛN . Weak turbulence lower
bound follows from Wide Diaspora Property.

1Maybe dynamical systems methods are useful here?
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Instability for the ODE : the set up

Global well-posedness for ODE is not an issue. Then we define

Σ = {x ∈ CN / |x |2 = 1} and W (t) : Σ → Σ,

where W (t)b(t0) = b(t + t0) for any solution b(t) of ODE . It is easy to see that
for any b ∈ Σ

∂t |bj |2 = 4<(i b̄j
2
(b2

j−1 + b2
j+1)) ≤ 4|bj |2.

So if
bj(0) = 0 =:bj(t) = 0, for all t ∈ [0, T ].

If moreover we define the torus

Tj = {(b1, ...., bN) ∈ Σ / |bj | = 1, bk = 0, k 6= j}

then
W (t)Tj = Tj for all j = 1, ...., N

(Tj is invariant).
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Instability for the ODE

Theorem (Sliding Theorem)
Let N ≥ 6. Given ε > 0 there exist x3 within ε of T3 and xN−2 within ε of TN−2
and a time t such that

W (t)x3 = xN−2.

Remark
W (t)x3 is a solution of total mass 1 arbitrarily concentrated near mode j = 3
at some time t0 and then arbitrarily concentrated near mode j = N − 2 at later
time t.
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The sliding process

To motivate the theorem let us first observe that when N = 2 we can easily
demonstrate that there is an orbit connecting T1 to T2. Indeed in this case we
have the explicit “slider” solution

(7.1) b1(t) :=
e−itω√

1 + e2
√

3t
; b2(t) :=

e−itω2√
1 + e−2

√
3t

where ω := e2πi/3 is a cube root of unity.

This solution approaches T1 exponentially fast as t → −∞, and approaches
T2 exponentially fast as t → +∞. One can translate this solution in the j
parameter, and obtain solutions that “slide” from Tj to Tj+1. Intuitively, the
proof of the Sliding Theorem for higher N should then proceed by
concatenating these slider solutions......
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This is a cartoon of what we have:

Tj T1 T2

Figure: Explicit oscillator solution around Tj and the slider solution from T1 to T2

This though cannot work directly because each solution requires an infinite
amount of time to connect one circle to the next, but it turns out that a suitably
perturbed or “fuzzy” version of these slider solutions can in fact be glued
together.
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A Perturbation Lemma

Lemma
Let Λ ⊂ Z2 introduced above. Let B � 1 and δ > 0 small and fixed. Let
t ∈ [0, T ] and T ∼ B2 log B. Suppose there exists b(t) ∈ l1(Λ) solving RFNLSΛ

such that
‖b(t)‖l1 . B−1.

Then there exists a solution a(t) ∈ l1(Z2) of FNLS such that

a(0) = b(0), and ‖a(t)− b(t)‖l1(Z2) . B−1−δ,

for any t ∈ [0, T ].

Proof.
This is a standard perturbation lemma proved by checking that the “non
resonant” part of the nonlinearity remains small enough.
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Recasting the main theorem

With all the notations and reductions introduced we can now recast the main
theorem in the following way:

Theorem
For any 0 < σ � 1 and K � 1 there exists a complex sequence (an) such that∑

n∈Z2

|an|2|n|2s

1/2

. σ

and a solution (an(t)) of (FNLS) and T > 0 such that∑
n∈Z2

|an(T )|2|n|2s

1/2

> K .
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A Scaling Argument

In order to be able to use “instability” to move mass from lower frequencies to
higher ones and start with a small data we need to introduce scaling.

Consider in [0, τ ] the solution b(t) of the system RFNLSΛ with initial datum b0.
Then the rescaled function

bλ(t) = λ−1b(
t
λ2 )

solves the same system with datum bλ
0 = λ−1b0.

We then first pick the complex vector b(0) that was found in the “instability”
theorem above. For simplicity let’s assume here that bj(0) = 1− ε if j = 3 and
bj(0) = ε if j 6= 3 and then we fix

an(0) =

{
bλ

j (0) for any n ∈ Λj

0 otherwise .
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Estimating the size of (a(0))

By definition

(∑
n∈Λ

|an(0)|2|n|2s

)1/2

=
1
λ

 M∑
j=1

|bj(0)|2
∑

n∈Λj

|n|2s

1/2

∼ 1
λ

Q1/2
3 ,

where the last equality follows from defining∑
n∈Λj

|n|2s = Qj ,

and the definition of an(0) given above. At this point we use the proprieties of
the set Λ to estimate Q3C(N)N2s, where N is the inner radius of Λ. We then
conclude that (∑

n∈Λ

|an(0)|2|n|2s

)1/2

= λ−1C(N)Ns ∼ σ.
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Estimating the size of (a(T ))

By using the perturbation lemma with B = λ and T = λ2τ we have

‖a(T )‖Hs ≥ ‖bλ(T )‖Hs − ‖a(T )− bλ(T )‖Hs = I1 − I2.

We want I2 � 1 and I1 > K . For the first

I2 ≤ ‖a(T )− bλ(T )‖l1(Z2)

(∑
n∈Λ

|n|2s

)1/2

. λ−1−δ

(∑
n∈Λ

|n|2s

)1/2

.

As above
I2 . λ−1−δC(N)Ns

At this point we need to pick λ and N so that

‖a(0)‖Hs = λ−1C(N)Ns ∼ σ and I2 . λ−1−δC(N)Ns � 1

and thanks to the presence of δ > 0 this can be achieved by taking λ and N
large enough.
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Estimating I1

It is important here that at time zero one starts with a fixed non zero datum,
namely ‖a(0)‖Hs = ‖bλ(0)‖Hs ∼ σ > 0. In fact we will show that

I2
1 = ‖bλ(T )‖2

Hs ≥
K 2

σ2 ‖b
λ(0)‖2

Hs ∼ K 2.

If we define for T = λ2t

R =

∑
n∈Λ |bλ

n (λ2t)|2|n|2s∑
n∈Λ |bλ

n (0)|2|n|2s ,

then we are reduce to showing that R & K 2/σ2. Now recall the notation

Λ = Λ1 ∪ ..... ∪ ΛN and
∑
n∈Λj

|n|2s = Qj .
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More on Estimating I1
Using the fact that by the theorem on “instability” (approximately) one obtains
bj(T ) = 1− ε if j = N − 2 and bj(T ) = ε if j 6= N − 2, it follows that

R =

∑N
i=1
∑

n∈Λi
|bλ

i (λ2t)|2|n|2s∑N
i=1
∑

n∈Λi
|bλ

i (0)|2|n|2s

≥ QN−2(1− ε)

(1− ε)Q3 + εQ1 + .... + εQN
∼ QN−2(1− ε)

QN−2

[
(1− ε) Q3

QN−2
+ .... + ε

]
&

(1− ε)

(1− ε) Q3
QN−2

=
QN−2

Q3

and the conclusion follows from ”large diaspora” of Λj :

QN−2 =
∑

n∈ΛN−2

|n|2s &
K 2

σ2

∑
n∈Λ3

|n|2s =
K 2

σ2 Q3.
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Where does the set Λ come from?

Here we do not construct Λ, but we construct Σ, a set that has a lot of the
properties of Λ. We define the standard unit square S ⊂ C to be the

four-element set of complex numbers

S = {0, 1, 1 + i , i}.

We split S = S1 ∪ S2, where S1 := {1, i} and S2 := {0, 1 + i}. The
combinatorial model Σ is a subset of a large power of the set S. More
precisely, for any 1 ≤ j ≤ N, we define Σj ⊂ CN−1 to be the set of all
N − 1-tuples (z1, . . . , zN−1) such that z1, . . . , zj−1 ∈ S2 and zj , . . . , zN−1 ∈ S1.
In other words,

Σj := Sj−1
2 × SN−j

1 .
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Note that each Σj consists of 2N−1 elements, and they are all disjoint. We
then set Σ = Σ1 ∪ . . . ∪ ΣN ; this set consists of N2N−1 elements. We refer to
Σj as the j th generation of Σ.

For each 1 ≤ j < N, we define a combinatorial nuclear family connecting
generations Σj ,Σj+1 to be any four-element set F ⊂ Σj ∪ Σj+1 of the form

F := {(z1, . . . , zj−1, w , zj+1, . . . , zN) : w ∈ S}

where z1, . . . , zj−1 ∈ S2 and zj+1, . . . , zN ∈ S1 are fixed. In other words, we
have

F = {F0, F1, F1+i , Fi} = {(z1, . . . , zj−1)} × S × {(zj+1, . . . , zN)}

where Fw = (z1, . . . , zj−1, w , zj+1, . . . , zN).
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It is clear that
F is a four-element set consisting of two elements F1, Fi of Σj (which we
call the parents in F ) and two elements F0, F1+i of Σj+1 (which we call the
children in F ).
For each j there are 2N−2 combinatorial nuclear families connecting the
generations Σj and Σj+1.
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Properties of Σ

One easily verifies the following properties:

Existence and uniqueness of spouse and children: For any 1 ≤ j < N
and any x ∈ Σj there exists a unique combinatorial nuclear family F
connecting Σj to Σj+1 such that x is a parent of this family (i.e. x = F1 or
x = Fi ). In particular each x ∈ Σj has a unique spouse (in Σj ) and two
unique children (in Σj+1).
Existence and uniqueness of sibling and parents: For any 1 ≤ j < N and
any y ∈ Σj+1 there exists a unique combinatorial nuclear family F
connecting Σj to Σj+1 such that y is a child of the family (i.e. y = F0 or
y = F1+i ). In particular each y ∈ Σj+1 has a unique sibling (in Σj+1) and
two unique parents (in Σj ).
Nondegeneracy: The sibling of an element x ∈ Σj is never equal to its
spouse.
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Example:

If N = 7, the point x = (0, 1 + i , 0, i , i , 1) lies in the fourth generation Σ4. Its
spouse is (0, 1 + i , 0, 1, i , 1) (also in Σ4) and its two children are
(0, 1 + i , 0, 0, i , 1) and (0, 1 + i , 0, 1 + i , i , 1) (both in Σ5). These four points
form a combinatorial nuclear family connecting the generations Σ4 and Σ5.
The sibling of x is (0, 1 + i , 1 + i , i , i , 1) (also in Σ4, but distinct from the
spouse) and its two parents are (0, 1 + i , 1, i , i , 1) and (0, 1 + i , i , i , i , 1) (both in
Σ3). These four points form a combinatorial nuclear family connecting the
generations Σ3 and Σ4. Elements of Σ1 do not have siblings or parents, and
elements of Σ7 do not have spouses or children.
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