Very Weak Turbulence for Certain Dispersive Equations

Gigliola Staffilani

Massachusetts Institute of Technology

SISSA July, 2011

Gigliola Staffilani (MIT)

Very weak turbulence and dispersive PDE

SISSA July, 2011 1 / 49

(a) (b) (c) (b)

- \bigcirc Our Case Study: The 2D Cubic NLS in \mathbb{T}^2
- 2 Can We Show Growth of Sobolev Norms?
- On The Proof of the Main Theorem
 - 4 Finite Resonant Truncation of NLS in \mathbb{T}^2
 - 5 Abstract Combinatorial Resonant Set Λ
- 6 The Toy Model
- 7 Instability For The Toy Model ODE
- 8 A Perturbation Lemma
- A Scaling Argument
- 10 Proof Of The Main Theorem
 - Appendix

The 2D cubic NLS Initial Value Problem in \mathbb{T}^2

We consider the defocusing initial value problem:

(1.1)
$$\begin{cases} (-i\partial_t + \Delta)u = |u|^2 u\\ u(0, x) = u_0(x), \text{ where } x \in \mathbb{T}^2. \end{cases}$$

We have (see Lectures #1)

Theorem (Global well-posedness for smooth data)

For any data $u_0 \in H^s(\mathbb{T}^2)$, $s \ge 1$ there exists a unique global solution $u(x, t) \in C(\mathbb{R}, H^s)$ to the Cauchy problem (1.1).

We also recall that

Mass =
$$M(u) = ||u(t)||^2 = M(0)$$

Energy = $E(u) = \int (\frac{1}{2} |\nabla u(t, x)|^2 + \frac{1}{4} |u(x, t)|^4) dx = E(0).$

Polynomial upper bounds

As mentioned in Vedran's seminar we have

Theorem (Bourgain, Zhong, Sohinger)

For the smooth global solutions of the periodic IVP (1.1) above we have:

 $\|u(t)\|_{\dot{H}^s}\leq C_s|t|^{s+}.$

But are there solutions for which such a growth occur? Unfortunately so far what we can prove is much weaker and we will state the precise theorem a little later.

Can one show growth of Sobolev norms?

One should recall the following result of Bourgain:

Theorem

Given $m, s \gg 1$ there exist $\tilde{\Delta}$ and a global solution u(x, t) to the modified wave equation

$$(\partial_{tt} - \tilde{\Delta})u = u^{\mu}$$

such that $||u(t)||_{H^{s}} \sim |t|^{m}$.

The weakness of this result is in the fact that one needs to modify the equation in order to make a solution exhibit a cascade.

More references

Recently Gerard and Grellier obtained some growth results for Sobolev norms of solutions to the periodic 1D cubic Szegö equation:

 $i\partial_t u = \Pi(|u|^2 u),$

where $\prod(\sum_{k} \hat{f}(k)e^{xk}) = \sum_{k>0} \hat{f}(k)e^{xk}$ is the Szegö projector.

- Physics: Weak turbulence theory due to Hasselmann and Zakharov.
- Numerics (d=1): Majda-McLaughlin-Tabak; Zakharov et. al.
- Probability: Benney and Newell, Benney and Saffman.

To show how far we are from actually solving the open problems proposed above I will present what is known so far for the 2D cubic defocusing NLS in \mathbb{T}^2 .

・ロット (母) ・ ヨ) ・ ヨ)

Very weak energy transfer to high frequencies

What we can prove

Theorem (Colliander-Keel-Staffilani-Takaoka-Tao)

Let s > 1, $K \gg 1$ and $0 < \sigma < 1$ be given. Then there exist a global smooth solution u(x, t) to the IVP (1.1) and T > 0 such that

 $\|u_0\|_{H^s} \leq \sigma$ and $\|u(T)\|_{\dot{H}^s}^2 \geq K$.

• • = • • = •

Elements of the proof of the main theorem

- Reduction to a resonant problem *RFNLS*
- Construction of a special finite set A of frequencies
- Truncation to a resonant, finite-d Toy Model
- Arnold diffusion" for the Toy Model
- Approximation result via perturbation lemma
- A scaling argument

The Ansatz

We consider the gauge transformation

 $\mathbf{v}(t,x)=\mathbf{e}^{-i2Gt}u(t,x),$

for $G \in \mathbb{R}$. If *u* solves *NLS* above, then *v* solves the equation

$$((NLS)_G) \qquad (-i\partial_t + \Delta)v = (2G + v)|v|^2.$$

We make the ansatz

$$v(t,x) = \sum_{n \in \mathbb{Z}^2} a_n(t) e^{i(\langle n,x \rangle + |n|^2 t)}.$$

Now the dynamics is all recast trough $a_n(t)$:

$$-i\partial_t a_n = 2Ga_n + \sum_{n_1-n_2+n_3=n} a_{n_1}\overline{a_{n_2}}a_{n_3}e^{i\omega_4t}$$

where $\omega_4 = |n_1|^2 - |n_2|^2 + |n_3|^2 - |n|^2$.

The FNLS system

By choosing

$$G = - \| \mathbf{v}(t) \|_{L^2}^2 = -\sum_k |\mathbf{a}_k(t)|^2$$

which is constant from the conservation of the mass, one can rewrite the equation above as

$$-i\partial_t a_n = -a_n |a_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma(n)} a_{n_1} \overline{a_{n_2}} a_{n_3} e^{i\omega_4 t}$$

where

$$\Gamma(n) = \{n_1, n_2, n_3 \in \mathbb{Z}^2 \ / \ n_1 - n_2 + n_3 = n; n_1 \neq n; n_3 \neq n\}.$$

From now on we will be referring to this system as the *FNLS* system, with the obvious connection with the original *NLS* equation.

The RFNLS system

We define the set

$$\Gamma_{res}(n) = \{n_1, n_2, n_3 \in \Gamma(n) / \omega_4 = 0\},\$$

where again $\omega_4 = |n_1|^2 - |n_2|^2 + |n_3|^2 - |n|^2$.

The geometric interpretation for this set is the following: If n_1 , n_2 , n_3 are in $\Gamma_{res}(n)$, then these four points represent the vertices of a rectangle in \mathbb{Z}^2 . We finally define the Resonant Truncation *RFNLS* to be the system

$$-i\partial_t b_n = -b_n |b_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma_{res}(n)} b_{n_1} \overline{b_{n_2}} b_{n_3}.$$

Finite dimensional resonant truncation

• A finite set $\Lambda \subset \mathbb{Z}^2$ is closed under resonant interactions if

 $n_1, n_2, n_3 \in \Gamma_{res}(n), n_1, n_2, n_3 \in \Lambda =: n = n_1 - n_2 + n_3 \in \Lambda.$

A Λ-finite dimensional resonant truncation of RFNLS is

$$(RFNLS_{\Lambda}) \qquad -i\partial_t b_n = -b_n |b_n|^2 + \sum_{(n_1, n_2, n_3) \in \Gamma_{res}(n) \cap \Lambda^3} b_{n_1} \overline{b}_{n_2} b_{n_3}.$$

• \forall resonant-closed finite $\Lambda \subset \mathbb{Z}^2$, *RFNLS*_{Λ} is an ODE.

We will construct a **special set** Λ of frequencies.

Our goal is to have a resonant-closed $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_N$, *N* to be fixed later, with the properties below.

Our goal is to have a resonant-closed $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_N$, *N* to be fixed later, with the properties below. Define a nuclear family to be a rectangle (n_1, n_2, n_3, n_4) where the frequencies n_1, n_3 (the 'parents') live in generation Λ_j and n_2, n_4 ('children') live in generation Λ_{j+1} .

Our goal is to have a resonant-closed $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_N$, *N* to be fixed later, with the properties below. Define a nuclear family to be a rectangle (n_1, n_2, n_3, n_4) where the frequencies n_1, n_3 (the 'parents') live in generation Λ_j and n_2, n_4 ('children') live in generation Λ_{j+1} .

• Existence and uniqueness of spouse and children: $\forall 1 \le j < M$ and $\forall n_1 \in \Lambda_j \exists$ unique nuclear family such that $n_1, n_3 \in \Lambda_j$ are parents and $n_2, n_4 \in \Lambda_{j+1}$ are children.

Our goal is to have a resonant-closed $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_N$, *N* to be fixed later, with the properties below. Define a nuclear family to be a rectangle (n_1, n_2, n_3, n_4) where the frequencies n_1, n_3 (the 'parents') live in generation Λ_j and n_2, n_4 ('children') live in generation Λ_{j+1} .

- Existence and uniqueness of spouse and children: $\forall 1 \le j < M$ and $\forall n_1 \in \Lambda_j \exists$ unique nuclear family such that $n_1, n_3 \in \Lambda_j$ are parents and $n_2, n_4 \in \Lambda_{j+1}$ are children.
- Existence and uniqueness of siblings and parents: ∀ 1 ≤ j < M and ∀ n₂ ∈ Λ_{j+1} ∃ unique nuclear family such that n₂, n₄ ∈ Λ_{j+1} are children and n₁, n₃ ∈ Λ_j are parents.

Our goal is to have a resonant-closed $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_N$, *N* to be fixed later, with the properties below. Define a nuclear family to be a rectangle (n_1, n_2, n_3, n_4) where the frequencies n_1, n_3 (the 'parents') live in generation Λ_j and n_2, n_4 ('children') live in generation Λ_{j+1} .

- Existence and uniqueness of spouse and children: $\forall 1 \le j < M$ and $\forall n_1 \in \Lambda_j \exists$ unique nuclear family such that $n_1, n_3 \in \Lambda_j$ are parents and $n_2, n_4 \in \Lambda_{j+1}$ are children.
- Existence and uniqueness of siblings and parents: ∀ 1 ≤ j < M and ∀ n₂ ∈ Λ_{j+1} ∃ unique nuclear family such that n₂, n₄ ∈ Λ_{j+1} are children and n₁, n₃ ∈ Λ_j are parents.
- Non degeneracy: The sibling of a frequency is never its spouse.

Our goal is to have a resonant-closed $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_N$, *N* to be fixed later, with the properties below. Define a nuclear family to be a rectangle (n_1, n_2, n_3, n_4) where the frequencies n_1, n_3 (the 'parents') live in generation Λ_j and n_2, n_4 ('children') live in generation Λ_{j+1} .

- Existence and uniqueness of spouse and children: $\forall 1 \le j < M$ and $\forall n_1 \in \Lambda_j \exists$ unique nuclear family such that $n_1, n_3 \in \Lambda_j$ are parents and $n_2, n_4 \in \Lambda_{j+1}$ are children.
- Existence and uniqueness of siblings and parents: ∀ 1 ≤ j < M and ∀ n₂ ∈ Λ_{j+1} ∃ unique nuclear family such that n₂, n₄ ∈ Λ_{j+1} are children and n₁, n₃ ∈ Λ_j are parents.
- Non degeneracy: The sibling of a frequency is never its spouse.
- Faithfulness: Besides nuclear families, A contains no other rectangles.

Our goal is to have a resonant-closed $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_N$, *N* to be fixed later, with the properties below. Define a nuclear family to be a rectangle (n_1, n_2, n_3, n_4) where the frequencies n_1, n_3 (the 'parents') live in generation Λ_j and n_2, n_4 ('children') live in generation Λ_{j+1} .

- Existence and uniqueness of spouse and children: $\forall 1 \le j < M$ and $\forall n_1 \in \Lambda_j \exists$ unique nuclear family such that $n_1, n_3 \in \Lambda_j$ are parents and $n_2, n_4 \in \Lambda_{j+1}$ are children.
- Existence and uniqueness of siblings and parents: ∀ 1 ≤ j < M and ∀ n₂ ∈ Λ_{j+1} ∃ unique nuclear family such that n₂, n₄ ∈ Λ_{j+1} are children and n₁, n₃ ∈ Λ_j are parents.
- Non degeneracy: The sibling of a frequency is never its spouse.
- Faithfulness: Besides nuclear families, Λ contains no other rectangles.
- Integenerational Equality: The function $n \mapsto a_n(0)$ is constant on each generation Λ_j .

-

-

ヘロト ヘヨト ヘヨト ヘ

ъ

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gigliola Staffilani (MIT)

SISSA July, 2011 18 / 49

ъ

Cartoon Construction of A

-

Cartoon Construction of A

Gigliola Staffilani (MIT)

э SISSA July, 2011 20 / 49

-

Gigliola Staffilani (MIT)

Very weak turbulence and dispersive PDE

SISSA July, 2011 21 / 49

-

ヘロト ヘヨト ヘヨト ヘ

Gigliola Staffilani (MIT)

SISSA July, 2011 22 / 49

ъ

Cartoon Construction of A

ъ

Gigliola Staffilani (MIT)

Very weak turbulence and dispersive PDE

SISSA July, 2011 24 / 49

ъ

Gigliola Staffilani (MIT)

Very weak turbulence and dispersive PDE

SISSA July, 2011 25 / 49

ъ

ъ

<ロト <回ト < 回ト

ъ

ъ

ъ

More properties for the set Λ

- Multiplicative Structure: If N = N(σ, K) is large enough then Λ consists of N × 2^{N-1} disjoint frequencies n with |n| > N = N(σ, K), the first frequency in Λ₁ is of size N and we call N the Inner Radius of Λ.
- Wide Diaspora: Given $\sigma \ll 1$ and $K \gg 1$, if *N* is large enough then $\Lambda = \Lambda_1 \cup ... \cup \Lambda_N$ as above and

$$\sum_{n\in\Lambda_N}|n|^{2s}\geq \frac{\kappa^2}{\sigma^2}\sum_{n\in\Lambda_1}|n|^{2s}.$$

- Approximation: If spt(a_n(0)) ⊂ ∧ then *FNLS*-evolution a_n(0) → a_n(t) is nicely approximated by *RFNLS*_Λ-ODE a_n(0) → b_n(t).
- Given ϵ , s, K, build Λ so that $RFNLS_{\Lambda}$ has weak turbulence.

The Toy Model

- The truncation of *RFNLS* to the constructed set Λ is the ODE (*RFNLS*_{Λ}) $-i\partial_t b_n = -b_n |b_n|^2 + \sum_{\substack{(n_1, n_2, n_3) \in \Lambda^3 \cap \Gamma_{res}(n)}} b_{n_1} b_{n_2} b_{n_3}.$
- The intergenerational equality hypothesis (*n* → *b_n*(0) is constant on each generation Λ_i.) persists under *RFNLS*_Λ:

$$\forall m,n \in \Lambda_j, b_n(t) = b_m(t).$$

RFNLS^Λ may be reindexed by generation number *j*. The recast dynamics is the Toy Model (ODE):

$$-i\partial_t b_j(t) = -b_j(t)|b_j(t)|^2 - 2b_{j-1}(t)^2\overline{b_j(t)} - 2b_{j+1}(t)^2\overline{b_j(t)},$$

with the boundary condition

$$b_0(t) = b_{N+1}(t) = 0.$$

(BC)

Conservation laws for the ODE system

The following are conserved quantities for (ODE)

$$\begin{aligned} &\textit{Mass} = \sum_{j} |b_{j}(t)|^{2} = C_{0} \\ &\textit{Momentum} = \sum_{j} |b_{j}(t)|^{2} \sum_{n \in \Lambda_{j}} n = C_{1}, \end{aligned}$$

and if

Kinetic Energy =
$$\sum_{j} |b_j(t)|^2 \sum_{n \in \Lambda_j} |n|^2$$

Potential Energy = $\frac{1}{2} \sum_{j} |b_j(t)|^4 + \sum_{j} |b_j(t)|^2 |b_{j+1}(t)|^2$,

then

Energy = Kinetic Energy + Potential Energy = C_2 .

¹Maybe dynamical systems methods are useful here?

Gigliola Staffilani (MIT)

Very weak turbulence and dispersive PDE

SISSA July, 2011 33 / 49

Using direct calculation¹, we will prove that our Toy Model ODE evolution $b_j(0) \mapsto b_j(t)$ is such that:

¹Maybe dynamical systems methods are useful here?

Using direct calculation¹, we will prove that our Toy Model ODE evolution $b_j(0) \mapsto b_j(t)$ is such that:

 $(b_1(0), b_2(0), \ldots, b_N(0)) \sim (1, 0, \ldots, 0)$

¹Maybe dynamical systems methods are useful here?

(D) (A) (A) (A)

Using direct calculation¹, we will prove that our Toy Model ODE evolution $b_j(0) \mapsto b_j(t)$ is such that:

$$(b_1(0), b_2(0), \dots, b_N(0)) \sim (1, 0, \dots, 0)$$

 $(b_1(t_2), b_2(t_2), \dots, b_N(t_2)) \sim (0, 1, \dots, 0)$

¹Maybe dynamical systems methods are useful here?

Using direct calculation¹, we will prove that our Toy Model ODE evolution $b_j(0) \mapsto b_j(t)$ is such that:

$$(b_1(0), b_2(0), \dots, b_N(0)) \sim (1, 0, \dots, 0)$$

 $(b_1(t_2), b_2(t_2), \dots, b_N(t_2)) \sim (0, 1, \dots, 0)$

٠

¹Maybe dynamical systems methods are useful here?

Using direct calculation¹, we will prove that our Toy Model ODE evolution $b_j(0) \mapsto b_j(t)$ is such that:

$$(b_1(0), b_2(0), \dots, b_N(0)) \sim (1, 0, \dots, 0)$$

 $(b_1(t_2), b_2(t_2), \dots, b_N(t_2)) \sim (0, 1, \dots, 0)$

٠

$$(b_1(t_N), b_2(t_N), \ldots, b_N(t_N)) \sim (0, 0, \ldots, 1)$$

¹Maybe dynamical systems methods are useful here?

Gigliola Staffilani (MIT)

Very weak turbulence and dispersive PDE

Using direct calculation¹, we will prove that our Toy Model ODE evolution $b_j(0) \mapsto b_j(t)$ is such that:

$$(b_1(0), b_2(0), \dots, b_N(0)) \sim (1, 0, \dots, 0)$$

 $(b_1(t_2), b_2(t_2), \dots, b_N(t_2)) \sim (0, 1, \dots, 0)$

٠

$$(b_1(t_N), b_2(t_N), \ldots, b_N(t_N)) \sim (0, 0, \ldots, 1)$$

Bulk of conserved mass is transferred from Λ_1 to Λ_N .

¹Maybe dynamical systems methods are useful here?

Using direct calculation¹, we will prove that our Toy Model ODE evolution $b_j(0) \mapsto b_j(t)$ is such that:

$$(b_1(0), b_2(0), \dots, b_N(0)) \sim (1, 0, \dots, 0)$$

 $(b_1(t_2), b_2(t_2), \dots, b_N(t_2)) \sim (0, 1, \dots, 0)$

$$(b_1(t_N), b_2(t_N), \ldots, b_N(t_N)) \sim (0, 0, \ldots, 1)$$

Bulk of conserved mass is transferred from Λ_1 to Λ_N . Weak turbulence lower bound follows from Wide Diaspora Property.

¹Maybe dynamical systems methods are useful here?

Instability for the ODE: the set up

Global well-posedness for ODE is not an issue. Then we define

 $\Sigma = \{x \in \mathbb{C}^N \mid |x|^2 = 1\}$ and $W(t) : \Sigma \to \Sigma$,

where $W(t)b(t_0) = b(t + t_0)$ for any solution b(t) of *ODE*. It is easy to see that for any $b \in \Sigma$

$$\partial_t |b_j|^2 = 4 \Re (i {ar b_j}^2 (b_{j-1}^2 + b_{j+1}^2)) \leq 4 |b_j|^2.$$

So if

$$b_j(0) = 0 = b_j(t) = 0$$
, for all $t \in [0, T]$.

If moreover we define the torus

$$\mathbb{T}_{j} = \{(b_{1},...,b_{N}) \in \Sigma / |b_{j}| = 1, b_{k} = 0, k \neq j\}$$

then

$$W(t)\mathbb{T}_j = \mathbb{T}_j$$
 for all $j = 1, ..., N$

(\mathbb{T}_j is invariant).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Instability for the ODE

Theorem (Sliding Theorem)

Let $N \ge 6$. Given $\epsilon > 0$ there exist x_3 within ϵ of \mathbb{T}_3 and x_{N-2} within ϵ of \mathbb{T}_{N-2} and a time t such that

 $W(t)x_3=x_{N-2}.$

Remark

 $W(t)x_3$ is a solution of total mass 1 arbitrarily concentrated near mode j = 3 at some time t_0 and then arbitrarily concentrated near mode j = N - 2 at later time t.

イロト イポト イヨト イヨト

The sliding process

To motivate the theorem let us first observe that when N = 2 we can easily demonstrate that there is an orbit connecting \mathbb{T}_1 to \mathbb{T}_2 . Indeed in this case we have the explicit "slider" solution

(7.1)
$$b_1(t) := \frac{e^{-it}\omega}{\sqrt{1 + e^{2\sqrt{3}t}}}; \quad b_2(t) := \frac{e^{-it}\omega^2}{\sqrt{1 + e^{-2\sqrt{3}t}}}$$

where $\omega := e^{2\pi i/3}$ is a cube root of unity.

This solution approaches \mathbb{T}_1 exponentially fast as $t \to -\infty$, and approaches \mathbb{T}_2 exponentially fast as $t \to +\infty$. One can translate this solution in the *j* parameter, and obtain solutions that "slide" from \mathbb{T}_j to \mathbb{T}_{j+1} . Intuitively, the proof of the Sliding Theorem for higher *N* should then proceed by concatenating these slider solutions.....

This is a cartoon of what we have:

Figure: Explicit oscillator solution around \mathbb{T}_j and the slider solution from \mathbb{T}_1 to \mathbb{T}_2

This though cannot work directly because each solution requires an infinite amount of time to connect one circle to the next, but it turns out that a suitably perturbed or "fuzzy" version of these slider solutions can in fact be glued together.

A Perturbation Lemma

Lemma

Let $\Lambda \subset \mathbb{Z}^2$ introduced above. Let $B \gg 1$ and $\delta > 0$ small and fixed. Let $t \in [0, T]$ and $T \sim B^2 \log B$. Suppose there exists $b(t) \in I^1(\Lambda)$ solving RFNLS_{Λ} such that

 $\|b(t)\|_{l^1} \lesssim B^{-1}.$

Then there exists a solution $a(t) \in I^1(\mathbb{Z}^2)$ of FNLS such that

 $a(0) = b(0), \text{ and } \|a(t) - b(t)\|_{l^1(\mathbb{Z}^2)} \lesssim B^{-1-\delta},$

for any $t \in [0, T]$.

Proof.

This is a standard perturbation lemma proved by checking that the "non resonant" part of the nonlinearity remains small enough.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Recasting the main theorem

With all the notations and reductions introduced we can now recast the main theorem in the following way:

Theorem

For any $0 < \sigma \ll 1$ and $K \gg 1$ there exists a complex sequence (a_n) such that

$$\left(\sum_{n\in\mathbb{Z}^2}|a_n|^2|n|^{2s}\right)^{1/2}\lesssim\sigma$$

and a solution $(a_n(t))$ of (FNLS) and T > 0 such that

$$\left(\sum_{n\in\mathbb{Z}^2}|a_n(T)|^2|n|^{2s}\right)^{1/2}>K.$$

A Scaling Argument

In order to be able to use "instability" to move mass from lower frequencies to higher ones and start with a small data we need to introduce scaling.

Consider in $[0, \tau]$ the solution b(t) of the system *RFNLS*^{Λ} with initial datum b_0 . Then the rescaled function

$$b^{\lambda}(t) = \lambda^{-1}b(rac{t}{\lambda^2})$$

solves the same system with datum $b_0^{\lambda} = \lambda^{-1} b_0$.

We then first pick the complex vector b(0) that was found in the "instability" theorem above. For simplicity let's assume here that $b_j(0) = 1 - \epsilon$ if j = 3 and $b_j(0) = \epsilon$ if $j \neq 3$ and then we fix

$$a_n(0) = egin{cases} b_j^\lambda(0) & ext{for any } n \in \Lambda_j \ 0 & ext{otherwise }. \end{cases}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Estimating the size of (a(0))

By definition

$$\left(\sum_{n\in\Lambda} |a_n(0)|^2 |n|^{2s}\right)^{1/2} = \frac{1}{\lambda} \left(\sum_{j=1}^M |b_j(0)|^2 \left(\sum_{n\in\Lambda_j} |n|^{2s}\right)\right)^{1/2} \sim \frac{1}{\lambda} Q_3^{1/2},$$

where the last equality follows from defining

$$\sum_{n\in\Lambda_j}|n|^{2s}=Q_j,$$

and the definition of $a_n(0)$ given above. At this point we use the proprieties of the set Λ to estimate $Q_3 C(N) N^{2s}$, where N is the inner radius of Λ . We then conclude that

$$\left(\sum_{n\in\Lambda}|\boldsymbol{a}_n(\boldsymbol{0})|^2|\boldsymbol{n}|^{2s}
ight)^{1/2}=\lambda^{-1}\boldsymbol{C}(\boldsymbol{N})\boldsymbol{N}^s\sim\sigma.$$

Estimating the size of (a(T))

By using the perturbation lemma with $B = \lambda$ and $T = \lambda^2 \tau$ we have

$$\|a(T)\|_{H^s} \ge \|b^{\lambda}(T)\|_{H^s} - \|a(T) - b^{\lambda}(T)\|_{H^s} = l_1 - l_2.$$

We want $l_2 \ll 1$ and $l_1 > K$. For the first

$$I_2 \leq \|m{a}(T) - m{b}^\lambda(T)\|_{l^1(\mathbb{Z}^2)} \left(\sum_{n\in\Lambda} |n|^{2s}
ight)^{1/2} \lesssim \lambda^{-1-\delta} \left(\sum_{n\in\Lambda} |n|^{2s}
ight)^{1/2} .$$

As above

 $I_2 \lesssim \lambda^{-1-\delta} C(N) N^s$

At this point we need to pick λ and N so that

 $\|a(0)\|_{H^s} = \lambda^{-1} C(N) N^s \sim \sigma$ and $I_2 \lesssim \lambda^{-1-\delta} C(N) N^s \ll 1$

and thanks to the presence of $\delta > 0$ this can be achieved by taking λ and N large enough.

Estimating I₁

It is important here that at time zero one starts with a fixed non zero datum, namely $||a(0)||_{H^s} = ||b^{\lambda}(0)||_{H^s} \sim \sigma > 0$. In fact we will show that

$$I_1^2 = \|b^{\lambda}(T)\|_{H^s}^2 \ge rac{\kappa^2}{\sigma^2} \|b^{\lambda}(0)\|_{H^s}^2 \sim \kappa^2.$$

If we define for $T = \lambda^2 t$

$$\mathbf{R} = \frac{\sum_{n \in \Lambda} |b_n^{\lambda}(\lambda^2 t)|^2 |n|^{2s}}{\sum_{n \in \Lambda} |b_n^{\lambda}(0)|^2 |n|^{2s}},$$

then we are reduce to showing that $R \gtrsim K^2/\sigma^2$. Now recall the notation

$$\Lambda = \Lambda_1 \cup \cup \Lambda_N$$
 and $\sum_{n \in \Lambda_j} |n|^{2s} = Q_j$.

More on Estimating *I*₁

Using the fact that by the theorem on "instability" (approximately) one obtains $b_j(T) = 1 - \epsilon$ if j = N - 2 and $b_j(T) = \epsilon$ if $j \neq N - 2$, it follows that

$$R = \frac{\sum_{i=1}^{N} \sum_{n \in \Lambda_i} |b_i^{\lambda}(\lambda^2 t)|^2 |n|^{2s}}{\sum_{i=1}^{N} \sum_{n \in \Lambda_i} |b_i^{\lambda}(0)|^2 |n|^{2s}}$$

$$\geq \frac{Q_{N-2}(1-\epsilon)}{(1-\epsilon)Q_3 + \epsilon Q_1 + \dots + \epsilon Q_N} \sim \frac{Q_{N-2}(1-\epsilon)}{Q_{N-2}\left[(1-\epsilon)\frac{Q_3}{Q_{N-2}} + \dots + \epsilon\right]}$$

$$\gtrsim \frac{(1-\epsilon)}{(1-\epsilon)\frac{Q_3}{Q_{N-2}}} = \frac{Q_{N-2}}{Q_3}$$

and the conclusion follows from "large diaspora" of Λ_i :

$$Q_{N-2} = \sum_{n \in \Lambda_{N-2}} |n|^{2s} \gtrsim \frac{K^2}{\sigma^2} \sum_{n \in \Lambda_3} |n|^{2s} = \frac{K^2}{\sigma^2} Q_3.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Where does the set Λ come from?

Here we do not construct Λ , but we construct Σ , a set that has a lot of the properties of Λ . We define the *standard unit square* $S \subset \mathbb{C}$ to be the

four-element set of complex numbers

 $S = \{0, 1, 1 + i, i\}.$

We split $S = S_1 \cup S_2$, where $S_1 := \{1, i\}$ and $S_2 := \{0, 1 + i\}$. The combinatorial model Σ is a subset of a large power of the set S. More precisely, for any $1 \le j \le N$, we define $\Sigma_j \subset \mathbb{C}^{N-1}$ to be the set of all N - 1-tuples (z_1, \ldots, z_{N-1}) such that $z_1, \ldots, z_{j-1} \in S_2$ and $z_j, \ldots, z_{N-1} \in S_1$. In other words,

$$\Sigma_j := S_2^{j-1} \times S_1^{N-j}.$$

Note that each Σ_j consists of 2^{N-1} elements, and they are all disjoint. We then set $\Sigma = \Sigma_1 \cup \ldots \cup \Sigma_N$; this set consists of $N2^{N-1}$ elements. We refer to Σ_j as the *j*th generation of Σ .

For each $1 \le j < N$, we define a *combinatorial nuclear family connecting* generations Σ_j, Σ_{j+1} to be any four-element set $F \subset \Sigma_j \cup \Sigma_{j+1}$ of the form

 $F := \{(z_1, \ldots, z_{j-1}, w, z_{j+1}, \ldots, z_N) : w \in S\}$

where $z_1, \ldots, z_{j-1} \in S_2$ and $z_{j+1}, \ldots, z_N \in S_1$ are fixed. In other words, we have

 $F = \{F_0, F_1, F_{1+i}, F_i\} = \{(z_1, \dots, z_{j-1})\} \times S \times \{(z_{j+1}, \dots, z_N)\}$

where $F_w = (z_1, ..., z_{j-1}, w, z_{j+1}, ..., z_N).$

・ロン ・回 と ・ ヨ と ・ ヨ

It is clear that

- *F* is a four-element set consisting of two elements F_1 , F_i of Σ_j (which we call the *parents* in *F*) and two elements F_0 , F_{1+i} of Σ_{j+1} (which we call the *children* in *F*).
- For each *j* there are 2^{N-2} combinatorial nuclear families connecting the generations Σ_j and Σ_{j+1}.

< 日 > < 同 > < 三 > < 三 >

Properties of Σ

One easily verifies the following properties:

- Existence and uniqueness of spouse and children: For any $1 \le j < N$ and any $x \in \Sigma_j$ there exists a unique combinatorial nuclear family Fconnecting Σ_j to Σ_{j+1} such that x is a parent of this family (i.e. $x = F_1$ or $x = F_i$). In particular each $x \in \Sigma_j$ has a unique spouse (in Σ_j) and two unique children (in Σ_{j+1}).
- Existence and uniqueness of sibling and parents: For any $1 \le j < N$ and any $y \in \Sigma_{j+1}$ there exists a unique combinatorial nuclear family F connecting Σ_j to Σ_{j+1} such that y is a child of the family (i.e. $y = F_0$ or $y = F_{1+i}$). In particular each $y \in \Sigma_{j+1}$ has a unique sibling (in Σ_{j+1}) and two unique parents (in Σ_j).
- Nondegeneracy: The sibling of an element x ∈ Σ_j is never equal to its spouse.

Example:

If N = 7, the point x = (0, 1 + i, 0, i, i, 1) lies in the fourth generation Σ_4 . Its spouse is (0, 1 + i, 0, 1, i, 1) (also in Σ_4) and its two children are (0, 1 + i, 0, 0, i, 1) and (0, 1 + i, 0, 1 + i, i, 1) (both in Σ_5). These four points form a combinatorial nuclear family connecting the generations Σ_4 and Σ_5 . The sibling of *x* is (0, 1 + i, 1 + i, i, i, 1) (also in Σ_4 , but distinct from the spouse) and its two parents are (0, 1 + i, 1, i, i, 1) and (0, 1 + i, i, i, i, 1) (both in Σ_3). These four points form a combinatorial nuclear family connecting the generations Σ_3 and Σ_4 . Elements of Σ_1 do not have siblings or parents, and elements of Σ_7 do not have spouses or children.