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Introduction

The full compressible Navier-Stokes equations are:
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇P = div(T ),

∂t(ρE) + div(ρuE + uP ) = div(uT ) + k4θ,

(0)

ρ: density,
θ: temperature,
u: velocity,
e: internal energy,
P = P (e, ρ): pressure,

E =
1

2
|u|2 + e: total energy,

T = µ(∇u+ (∇u)t) + λ(div u)I : stress tensor (1)
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µ and λ are viscosity coefficients satisfying

µ > 0, λ+
2

N
µ ≥ 0, N : space dimension (2)

k ≥ 0; heat conduction coefficient.

The Compressible Isentropic Navier-Stokes system (CNS) reads: ∂tρ+ divρ = 0

∂t(ρu) + div(ρu⊗ u) +∇P = div T,
(3)

P = P (ρ) = Aργ
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Some KEY Issues:

Global well-posedness theory of smooth or weak solutions for

various boundary conditions

Asymptotic behavior of solutions for physically relevant

parameter regimes

Large Reynolds number limits (which leads to internal layer

and boundary layer theory etc.)

Small Mach number limits (incompressible limits which leads

to various incompressible fluid models)
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Dynamical stability of basic waves (steady flows, nonlinear

and linear waves, etc.).

Numerical Methods for computing physically relevant flows.

Overall Pictures:

Significant progresses have been achieved in 1D.

Almost completely open to Multi-D!
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Major Difficulties:

Mixed-type system: hyperbolic+parabolic for non-vacuum

regions.

Strong degeneracies near vacuum.

Strong nonlinearities: inertial+pressure difference+their

interactions.

Strong nonlinearity in the energy equations
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Main progress:

Local Well-posedness of Classical Solutions away from

vacuum:

Nash (1962): Existence

Serrin (1959): Uniqueness

Local Well-posedness of Classical (or strong) Solutions

containing vacuum states:

Cho Y., Choe H. J., Kim H. 2003, 2004, 2006
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Local Existence of classical Solutions (Cho-Kim (2006)):

Assumption

If (ρ0, u0) satisfies0 ≤ ρ0, ρ0 − ρ̃, P − P (ρ̃) ∈ H3, u0 ∈ D1
0 ∩D3

−µ4u0 − (λ+ µ)∇divu0 +∇P (ρ0) = ρ0g,
(4)

for ρ
1/2
0 g,∇g ∈ L2.

Conclusion

∃ T1 ∈ (0,∞) and a unique classical solution (ρ, u) in Ω× (0, T1].
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Global Existence of Classical Solutions away from

vacuum:

Kazhikhov & Shelukhin (1977): 1D, large initial data

Weigant & Kazhikhov (1995): 2D, large initial data, for very

special µ, λ.
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Theorem (Matsumura-Nishida (1980))

If the initial data (ρ0, u0, θ0) satisfies

‖ρ0 − 1, u0, θ0 − 1‖H3(R3) � 1,

THEN ∃! global classical solution (ρ, u, θ) such that

sup
0≤t<∞

‖ρ− 1, u, θ − 1‖H3(R3)(t)� 1.

Furthermore, the solution behaves diffusively.

Basic Idea of Analysis: Energy Method+Spectrum Analysis

Generalizations to weak solutions by Hoff (1995).
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Matsumura-Nishida’s theory requires that the solution has

SMALL oscillations from a uniform non-vacuum state so that

the density is strictly AWAY from the vacuum and the

gradient of the density remains bounded uniformly in time.

Open Problem 1

Does there exist a global classical solution for large oscillations and

vacuum with constant state as far field which could be either

vacuum or non-vacuum? Can the classical CNS be well behaved

near vacuum?
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Global existence of weak solutions containing vacuum

states:

The density vanishes at far fields, or even has compact support.

Lions (1993, 1998): 3D, large initial data, when γ ≥ 9/5,

Feireisl (2001): 3D, large initial data, when γ > 3/2.

Jiang-Zhang (2001): γ > 1, for spherically symmetric

solutions.

Theorem (Lions-Feireisl (1993, 1998, 2001))

If γ > 3/2 and the initial data (ρ0, u0) satisfies

C0 ,
1

2

∫
ρ0|u0|2dx+

1

γ − 1

∫
P (ρ0)dx <∞. (5)

THEN ∃ a global weak solution (ρ, u).
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Basic Ideas of Analysis: Energy Method + Weak

Convergence Method

Some partial results on the asymptotic behavior of solutions

such as small Mach number limit, etc. have been established

for such weak solutions.

Open Problem 2

The regularity and uniqueness of Lions-Feireisl’s weak solutions. In

particular, can one define the particle paths for such solutions?
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Desjardins (1997): For 2D periodic case,

√
ρut ∈ L2(0, T ;L2),∇u ∈ L∞(0, T ;L2),

as long as the density is bounded.

Hoff (2005): A new type of global weak solutions with small

energy, which have extra regularity information compared

with Lions-Feireisl, for general P (ρ) and far field density away

from vacuum, provided

µ > max{4λ,−λ}.



Blowup phenomena and blowup criteria

Blowup of Smooth Solutions containing vacuum states:

Theorem (Xin, 1998)

If

(ρ0, u0, θ0) ∈ Hs(Rd)(s > [d/2] + 2), for Full NS ,

(ρ0, u0) ∈ Hs(R1)(s > 2), for CNS,

and ρ0(x) has compact support.

THEN smooth solutions in C1([0, T ];Hs) have to blow up in finite

time.



Blowup phenomena and blowup criteria

Idea: total pressure behaves dispersively:

∫
Rd
Pdx ≤

C(1 + t)−(γ−1)d for γ ∈ (1, 1 + 2/d)

C(1 + t)−2 for γ > 1 + 2/d.

where γ > 1 is the ratio of specific heat.

Theorem (Huang-Li-Luo-Xin (2010))

If (ρ0, u0) is spherically symmetry and satisfies

(ρ0, u0) ∈ Hs(R2)(s > 2), (6)

and ρ0(x) has compact support.

THEN smooth solutions (ρ, u) ∈ C1([0, T ];Hs) have to blow up in

finite time.



Blowup phenomena and blowup criteria

These theorems raise the question of the mechanism of blowup

and structure of possible singularities:

Blow Up Criteria for strong solutions:

Cho-Choe-Kim (2006),

Fan-Jiang (2007),

Huang-Xin (2009),

Fan-Jiang-Ou (2009),

Huang-Li-Xin (2009),

Sun-Wang-Zhang (2010)

· · · · · ·



Blowup phenomena and blowup criteria

In particular, if T ∗ is the maximal existence time of the local

strong solution (ρ, u), THEN

Theorem (Huang-Li-Xin (2010))

For 3D CNS where initial density may contain vacuum states,

lim
T→T ∗

(‖divu‖L1(0,T ;L∞) + ‖ρ
1
2u‖Ls(0,T ;Lr)) =∞, (7)

lim
T→T ∗

(‖ρ‖L∞(0,T ;L∞) + ‖ρ
1
2u‖Ls(0,T ;Lr)) =∞, (8)

with r and s satisfying

2

s
+

3

r
≤ 1, 3 < r ≤ ∞.



Blowup phenomena and blowup criteria

Remark

If divu ≡ 0, (7) and (8) reduce to the well-known Serrin’s blowup

criterion for 3D incompressible Navier-Stokes equations. Therefore,

This results can be regarded as the Serrin type blowup criterion on

3D compressible Navier-Stokes equations.



Blowup phenomena and blowup criteria

Main ideas: Estimates on material derivatives of velocity+

Lemma (Beale-Kato-Majda type inequality)

For 3 < q <∞, there is a constant C(q) such that the following

estimate holds for all ∇u ∈ L2 ∩D1,q,

‖∇u‖L∞ ≤ C (‖divu‖L∞ + ‖rotu‖L∞) log(e+ ‖∇2u‖Lq)

+ C‖∇u‖L2 + C.
(9)



Blowup phenomena and blowup criteria

Theorem

If µ > λ/7, then

lim
T→T ∗

‖divu‖L1(0,T ;L∞) =∞,

lim
T→T ∗

‖ρ‖L∞(0,T ;L∞) =∞,
(10)

where initial density may contain vacuum states.

Theorem

If inf ρ0 > 0, then

lim
T→T ∗

‖divu‖L1(0,T ;L∞) =∞. (11)



Global classical solutions with large oscillations and vacuum

Consider the Cauchy problem to isentropic compressible

Navier-Stokes equations:

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u)− µ∆u− (µ+ λ)∇(divu) +∇P (ρ) = 0,

u(x, t)→ 0, ρ(x, t)→ ρ̃ ≥ 0, as |x| → ∞,

(ρ, u)|t=0 = (ρ0, u0), x ∈ R3



Global classical solutions with large oscillations and vacuum

Assumption

For given M > 0 (not necessarily small), ρ̃ ≥ 0, β ∈ (1/2, 1], and

ρ̄ ≥ ρ̃+ 1, suppose that the initial data (ρ0, u0) satisfy

0 ≤ inf ρ0 ≤ sup ρ0 ≤ ρ̄, ‖u0‖2Ḣβ ≤M,

u0 ∈ Ḣβ ∩D1 ∩D3, (ρ0 − ρ̃, P (ρ0)− P (ρ̃)) ∈ H3,
(12)

and the compatibility condition

−µ4u0 − (µ+ λ)∇divu0 +∇P (ρ0) = ρ0g, (13)

for some g ∈ D1 with ρ
1/2
0 g ∈ L2.



Global classical solutions with large oscillations and vacuum

Conclusion (Huang-Li-Xin (2010))

∃ε(ρ̄,M) s.t. if initial energy C0 satisfies C0 ≤ ε, the Cauchy

problem has a unique global classical solution (ρ, u) satisfying for

any 0 < τ < T <∞,

0 ≤ ρ(x, t) ≤ 2ρ̄, x ∈ R3, t ≥ 0,

(ρ− ρ̃, P − P (ρ̃)) ∈ C([0, T ];H3),

u ∈ C([0, T ];D1 ∩D3) ∩ L2(0, T ;D4) ∩ L∞(τ, T ;D4),

ut ∈ L∞(0, T ;D1) ∩ L2(0, T ;D2) ∩ L∞(τ, T ;D2) ∩H1(τ, T ;D1),

√
ρut ∈ L∞(0, T ;L2),



Global classical solutions with large oscillations and vacuum

Conclusion (Continued)

and the following large-time behavior:

lim
t→∞

∫
(|ρ− ρ̃|q + ρ1/2|u|4 + |∇u|2)(x, t)dx = 0,

∀q ∈

(2,∞), for ρ̃ > 0,

(γ,∞), for ρ̃ = 0.

where

C0 ,
∫ (

1

2
ρ0|u0|2 + ρ0

∫ ρ0

ρ̃

P (s)− P (ρ̃)

s2
ds

)
dx.



Global classical solutions with large oscillations and vacuum

Theorem (blowup behavior)

Assume that ∃x0 ∈ R3 such that ρ0(x0) = 0. Then if ρ̃ > 0,

lim
t→∞
‖∇ρ(·, t)‖Lr =∞,

for any r > 3.



Global classical solutions with large oscillations and vacuum

Remark

The solution obtained above becomes a classical one for positive

time. Although it has small energy, yet whose oscillations could be

arbitrarily large. In particular, both interior and far field vacuum

states are allowed.



Global classical solutions with large oscillations and vacuum

Remark

If ρ̃ > 0, the requirement of small energy, is equivalent to smallness

of the mean-square norm of (ρ0 − ρ̃, u0). Therefore, our

conclusions generalize the classical theory of Matsumura-Nishida

(1980) to the case of large oscillations and far field density being

either vacuum or non-vacuum. However, our solution may contain

vacuum states, whose appearance leads to the large time blowup

behavior, this is in sharp contrast to that in Matsumura-Nishida

(1980) and Hoff (2005, 2008) where the gradients of the density

are suitably small uniformly for all time.



Global classical solutions with large oscillations and vacuum

Remark

When ρ̃ = 0, the small energy assumption is equivalent to that

both the kinetic energy and the total pressure are suitably small,

and there is no requirement on the size of the set of vacuum

states. In particular, the initial density may have compact support.

Thus, our results can be regarded as uniqueness and regularity

theory of Lions-Feireisl’s weak solutions with small initial energy.

Remark

We have given a positive answer to the Open Problems 1, 2

provided initial energy is suitably small.
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Remark

For the incompressible Navier-Stokes system, Fujita-Kato (1964)

and Kato (1984) proved that the system is globally wellposed for

small initial data in the homogeneous Sobolev spaces Ḣ1/2 or in

L3. In our case, since the initial energy is small, we need the

boundedness assumptions on the Ḣβ-norm of the initial velocity. It

should be noted here that Ḣβ ↪→ L6/(3−2β) and 6/(3− 2β) > 3 for

β > 1/2, which implies that, compared with the results of

Fujita-Kato (1964) and Kato (1984), our conditions on the initial

velocity may be optimal under the smallness conditions on the

initial energy.
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Remark

It is very surprising that the above theory holds only in

3-dimensional. Indeed, in the case ρ̃ = 0, one would not expect the

same global existence result as already showing by the symmetric

solutions with compact density. On the other hand, for the far

fields away from vacuum, the corresponding results can be

generalized to 2-dimensional, and furthermore, the result can be

even improved by relaxing the requirement u0 ∈ Hs from

1/2 < s < 1 to 0 < s < 1.



Global classical solutions with large oscillations and vacuum

Remark

Similar theory holds for bounded domains and periodic problems.

Remark

Similar results hold for the full compressible Navier-Stokes system

in the case ρ̃ > 0, although the theory fails for ρ̃ = 0.

Remark

The main results fail for the compressible Navier-Stokes system

with viscosity coefficients degenerate at vacuum. This settles a

longstanding question on the validity of the classical CNS near

vacuum.



Some Basic Ideas of Analysis for CNS

(1) The Classical Theory away from Vacuum

(a) Local theory: The local theory can be established by

• well-posedness theory of linear symmetric system with variable

coefficients by using Kato’s theory.

• iteration scheme and contraction mapping principle based on

energy estimate in a similar way as symmetric-hyperbolic

system.

Remark: No special structure of the coupled

hyperbolic-parabolic system of CNS is used for this theory.
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(b) Global theory: based on energy estimates. However, the global

in time high order regularity estimates are depending crucially

on the dissipative structure of the CNS system as follows. Set

U = (ρ, u, θ), Ū = (1, 0, θ̄), θ̄ > 0

Then the CNS (0) can be written as

A0(U)∂t U+

N∑
j=1

Aj(U) ∂xj U−
N∑

j,k=1

Bjk(U)∂2x;xkU = g(U,DxU)
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where

A
0
(U) =


Pρ
ρ

ρI

ρeθ

θ

 ,
N∑
j=1

A
j
(U)ξj =


(
Pρ
ρ

)u · ξ Pρξ 0

Pρξ
t ρ(u · ξ)I Pθξ

t

0 Pθξ
ρeθ

θ
(u · ξ)



∑
j,k

Bjk(U)ξjξk =


0

µ|ξ|2I + (µ+ λ)ξtξ

(kθ )|ξ|2



g(U,DxU) =


0

0

1
θΨ


Ψ =

µ

2

N∑
i,j=1

(∂xju
i + ∂xiu

j)2 + λ(divu)2
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Then the following conditions are satisfied:

(i) A0(Ū) is real, symmetric, and positive;

(ii) Aj(Ū) are real symmetric (j = 1, · · · , N);

(iii) Bij(Ū) are real symmetric, Bjk = Bkj , and∑
Bjk(U)wjwk ≥ 0, ∀w ∈ SN−1

(iv) ∃ real constant (N + 2)× (N + 2) matrices Kj

(j = 1, · · · , N) 3
(a) KjA0(Ū) are real and anti=symmetric, i.e.,

(KjA0)t = −KjA0, j = 1, · · · , N

(b)
N∑

j,k=1

{1

2
[KjAk(Ū) + (KjAk(Ū))t] +Bjk(Ū)}wjwk >

0, ∀w ∈ SN−1
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In fact, Kj are given by

N∑
j=1

Kj ξj = α


0 Pρ(Ū)ξ 0

−Pρ(Ū)ξt 0 0

0 0 0


with α > 0 begin properly chosen!
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Remark: The conditions (a) and (b) above are called Kawashima

dissipative condition, which makes sure that this solutions to the

linearized problem decays to zero, i.e.,

A0∂t U +
∑
j

Aj(U) ∂x U −
∑
j,k

Bjk(U)∂2xjDhU = 0

||Dl
x U(t)||2 ≤ C{e−c1t||Dl

xU(0)||2 + (1 + t)−(2γ+l)||U(0)||2Lρ}

γ = N(
1

2p
− 1

4
), γ′ = n(

1

2q
− 1

4
)

In fact, Kj are proper multiplies in the energy estimates.
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(2) On the local well-posedness of classical or strong solutions

with vacuum

(i) compatibility of the initial data.

(ii) standard iteration scheme, regularization, and cut-off

arguments.

(iii) The a priori estimates depend crucially on the uniform elliptic

regularity of the momentum equation even at vacuum.
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(3) On blow-up of the smooth solutions to CNS

For the full CNS, the blow-up of smooth solution with

compactly supported initial density is proved by

• (key) dispersive of the total pressure

∫
R
Pdx ≤

{
C(1 + t)−(γ−1)N ∀γ ∈ (1, 1 + 2

N )

C(1 + t)−2 ∀t ≥ 1 + 2
N

which follows from studying the functional
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Iγ(t) =



∫
RN
|x− u(x, t)(t+ 1)|2ρ(x, t)dx

+
2

γ − 1
(t+ 1)2

∫
RN

p(x, t)dx γ ∈ (1, 1 +
2

N
)∫

RN
|x− u(x, t)t|2p(x, t)dx

+
2

γ − 1
t2
∫
Rd
p(x, t)dx γ ≥ 1 +

2

N

Then

d

dt
Ij(t) =

 ≤
2−N(γ−1)

t+1 Iγ(t), γ ∈ (1, 1 + 2
N )

≤ 0, ∀γ ≥ (1 + 2
N )
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• Estimate of the support of the density: Let Bc1 be the

minimal ball containing the support ρ0(x). Let

BR(t) = {(x, t)|x = x(t, x0),
dx

dt
= u, x0 ∈ Bc1}

Fact: BR(t) = Bc1 × {t}
which follows from the elliptic system divT = 0

div(uT ) + k∆θ = 0
on t× RN\SR(t)
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• Since

∫
RN

ρ(x, t)dx =

∫
RN

ρ0(x)dx = m0. Thus

∀γ ∈ (1, 1 +
2

N
)

Iγ(0) ≥ 2

γ − 1
(1 + t)(γ−1)N

∫
RN

p(x, t)dx

≥ 2

γ − 1
(1 + t)(γ−1)Ne

S1
c VBR(t)

1

VBR(t)

∫
BR(t)

(ρ(x, t))γdx

≥ 2

γ − 1
(1 + t)(γ−1)Ne

S1
c V 1−γ

BR(t)
mγ

0 .
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For the isentropic CNS, it seems difficult to get steps above,

indeed, it is not true in general. However, for 2-d symmetric flow,

the momentum equation becomes

ρ(∂tu+ u · ∂ru) + (P (ρ))r = (2µ+ λ)(∂ru+ r−1u)r

so on R2 × {t}\SR(t),

(2µ+ λ)(∂ru+ r−1u)r = 0⇒ u(r, t) = c(t)r−1

u(x, t) = u(r, t)
x

r
∈ C1([0, T ] : Hs(R2))⇒ u ≡ 0 on R2×{t}\SR(t)
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(4) On blow-up creteria: The key elements are estimates vorticity

w = ∇× u, effective viscosity

F = (2µ+ λ) div u− P (ρ)

and the material derivative of the velocity u̇ ≡ ∂t + u · ∇u.

• Hodge decomposition: the momentum equation of CNS ⇔

∆F = div (ρu̇), µ∆w = ∇× (ρu̇)

⇔ ρu̇ = ∇G−∇× w

• Transport equation for pressure

∂tP + div (Pu) + (γ − 1)P divu = 0
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Step 1 : sup
0≤t≤T

||ρ
1
2u(t)||2L2 + ||ρ||γLγ ) +

∫ T

0
||∇u||2L2dt ≤ C

Step 2 : sup
0≤t≤T

||∇u||2L2 + ||
∫ T

0

∫
ρ|∂tu|2dx dt ≤ C

Step 3 :

sup
0≤t≤T

∫
ρ|u̇|2dx+

∫ T

0
(||∇u||2L2 +||div u||2L∞+||w||2L∞)dt ≤ C

Step 4 : sup
0≤t≤T

(||ρ||H1∩W 1q + ||∇u||H1 ≤ C

which is based on the Beale-Kato-Majda inequality

Step 5 : sup
0≤t≤T

∫
ρ|u|q(x, t)dx ≤ C, q > 3
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These steps are based on the following elliptic estimates:

Lemma: ∃ positive constant C depending only on λ and µ such

that for any p ∈ [2, 6]

||∇F ||L6 + ||∇w||Lp ≤ C||ρu̇||Lp ,

||F ||Lp + ||w||Lp ≤ C||ρu̇||
(3p−6)

(2p)

L2 (||∇u||L2 + ||p− p(ρ)||L2)
(6p)
(2p)

||∇u||Lp ≤ C(||F ||Lp + ||w||Lp) + C||p− p(ρ̃)||Lp

||∇u||Lp ≤ C||∇u||
(6−p)
(2p)

L2 (||ρu̇||L2 + ||p− p(ρ̃)||L6)
(3p−6)

2p

These elliptic estimates are also used frequently in the analysis for

global existence of smooth solutions below.



Some Basic Ideas of Analysis for CNS

(5) Analysis for the Global Well-Posedness of Smooth Solutions

Main difficulties:

the appearance of vacuum

no other constraints on the viscosity coefficients except the

physical restrictions

KEY Issue:

the time-independent upper bound for the density

the time-depending higher norm estimates of the smooth

solution
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Main ideas:

basic estimates on the material derivatives of the velocity.

weighted spatial mean estimates on the gradient and the

material derivatives of the velocity.

estimates on L1(0,min{1, T}; L∞)-norm and the

time-independent ones on L8/3(min{1, T}, T ; L∞)-norm of

the effective viscous flux F , (2µ+ λ)divu− P (ρ) + P (ρ̃).



Some Basic Ideas of Analysis for CNS

Zlotnik’s inequality for time-uniform upper bound for the

density (KEY estimates)

Beale-Kato-Majda type inequality for time-depending higher

order estimates on both the density and velocity
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Sketch of the main estimates: Let (ρ, u) be a classical solution

to the barotropic CNS with initial data on [0, T ]× R3. Set

A1(T ) , sup
t∈[0,T ]

(
σ‖∇u‖2L2

)
+

∫ T

0

∫
σρ|u̇|2dxdt,

A2(T ) , sup
t∈[0,T ]

σ3
∫
ρ|u̇|2dx+

∫ T

0

∫
σ3|∇u̇|2dxdt,

A3(T ) , sup
0≤t≤T

∫
ρ|u|3(x, t)dx.
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Then the following Basic Energy Estimate holds

sup
0≤t≤T

∫ (
1

2
ρ|u|2 +G(ρ)

)
dx+∫ T

0

∫ (
µ|∇u|2 + (λ+ µ)(div u)2

)
dxdt ≤ C0.

The key a priori estimates on (ρ, u) are given in
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Proposition 1: Let the assumptions in Theorem 5 hold. Then for

δ0 ,
(2β − 1)

(4β)
∈ (0,

1

4
],

there exists ε(ρ̄,M) > 0, K(ρ̄,M) > 0 such that if (ρ, u) is a

smooth solution satisfying C0 ≤ ε and

sup
R3×[0,T ]

ρ ≤ 2ρ̄, A1(T )+A2(T ) ≤ 2C
1
2
0 , A3(σ(T )) ≤ 2Cδ00 ,

the following estimates hold

sup
R3×[0,T ]

ρ ≤ 7

4
ρ̄, A1(T ) +A2(T ) ≤ C

1
2
0 , A3(σ(T )) ≤ Cδ00 .
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The proof of this proposition can be done by several steps.

Step 1: Basic estimates on velocity field and its material derivatives.

The basic estimates are given

Lemma 1:

A1(T ) ≤ C(ρ̄)C0 + C(ρ̄)

∫ T

0

∫
σ|∇u|3 dxdt,

A2(T ) ≤ C(ρ̄)C0 + C(ρ̄)A1(T ) + C(ρ̄)

∫ T

0

∫
σ3|∇u|4 dxdt,

provided 0 ≤ ρ ≤ 2ρ̄.
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Lemma 1 is obtained by applying multiplier

σmu̇(∂t + div(u·))k, m = 0, 1, 2, 3, k = 0, 1

to the momentum system

ρu̇+∇p = µ∆u+ (µ+ λ)(div u)

and estimating the resulting identities and using the transport

equation for P .
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Step 2: Short time energy estimates

Lemma 2: It holds that

sup
0≤t≤σ(T )

t1−β‖∇u‖2L2 +

∫ σ(T )

0
t1−β

∫
ρ|u̇|2 dxdt ≤ K(ρ̄,M),

sup
0≤t≤σ(T )

t2−β
∫
ρ|u̇|2 dx+

∫ σ(T )

0
t2−β

∫
|∇u̇|2 dxdt ≤ K(ρ̄,M),

provided C0 ≤ ε0.
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Lemma 2 follows by splitting and interpolation. Fix (u, ρ), consider

u = w1 + w2 with

Lw1 = 0, w1(x, 0) = u0(x)

Lw2 = −∇p(ρ), w2(x, 0) = 0

where

Lw = ρẇ − (µ∆w + (µ+ λ)∇(div w))

with

ẇ = ∂tw + u∇ · w.

Applying standard estimates and interpolation to w1, w2 has better

estimates!
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Step 3: Short time high energy estimates

Lemma 3: It holds that

sup
0≤t≤σ(T )

∫
ρ|u|3dx ≤ Cδ00

provided that C0 ≤ ε1 ≤ ε0.

Lemma 3 follows from the energy estimate with multiplier 3|u|u to

the momentum system and Lemma 2.
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Step 4: Estimates on the effective viscous flux

Define the effective viscous flux as

F , (2µ+ λ)div u− (P (ρ)− P (ρ̃)).

Then the following time independent bounds are essential to

estimate the density.

Lemma 4: There exists constant C = C(ρ̄,M) such that∫ σ(T )

0
‖F‖L∞dt ≤ C(ρ̄,M)C

3δ0
8

0 ,

∫ T

σ(T )
‖F‖

8
3
L∞dt ≤ C(ρ̄,M)C

2
3
0 .
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This follows from the following estimates:

∫ σ(T )

0
||F (·, t)||L∞

≤ C

∫ σ(T )

0
||F (·, t)||

1
2
L6 ||∇F (·, t)||

1
2
L6dt

≤ C(ρ̄)

∫ σ(T )

0
||ρ

1
2 u̇||

1
2
L2 ||∇u̇||

1
2
L2dt

≤ C(ρ̄)

∫ σ(T )

0
t
−(2−β)

4 ||ρu̇||
1
2
L2 (t

2−β ||∇u̇||2
L2 )

1
4 dt

≤ C(ρ̄,M)

∫ σ(T )

0
(t
−(2−β)

3 ||ρu̇||
2
3
L2dt)

3
4

≤ C(ρ̄,M)(

∫ σ(T )

0
t
−[(2−β)(−δ0+ 2

3
)+δ0]

(t
2−β ||ρ

1
2 u̇||2

L2 )
−δ0+ 1

3 (t||ρ
1
2 u̇||2

L2 )
δ0dt)

3
4

≤ C(ρ̄,M)(A1(σ(T )))
3δ0
4 ≤ C(ρ̄,M)C

3δ0
8

0 .
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∫ T

σ(T )
||F (·, t)||

8
3
L∞dt

≤ C

∫ T

σ(T )
||F (·, T )||

2
3

L2 ||∇F (·, t)||2L6dt

≤ CC
1
6
0

∫ T

σ(T )
||ρu̇||2L6dt ≤ C

1
6
0

∫ T

σ(T )
||u̇||2L6dt

≤ C(ρ̄)C
1
6
0

∫ T

σ(T )
||∇u̇||2L2dt ≤ C(ρ̄)C

1
6
+ 1

2
0 ≤ C(ρ̄)C

2
3
0 .
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Step 5: Super-norm estimate on the density

To apply this lemma to bound density, we recall a lemma in

the theory of ordinary differential equation due to Zlotink.

Lemma 5 [Zlotnik]: Consider the problem
y′(t) = g(y) + b′(t) on [0, T ], y(0) = y0,

g ∈ C(R), y, b ∈W 1,1(0, T ), g(∞) = −∞
b(t2)− b(t1) ≤ N0 +N1(t2 − t1) for all 0 ≤ t1 < t2 ≤ T.

Then, y(t) ≤ max
{
y0, ζ

}
+N0 <∞ on [0, T ], where ζ is a

constant such that g(ζ) ≤ −N1 for ζ ≥ ζ.



Some Basic Ideas of Analysis for CNS

Rewrite the continuity equation as

Dtρ = g(ρ) + b′(t),

where

Dtρ , ρt + u · ∇ρ, g(ρ) , − aρ

2µ+ λ
(ργ − ρ̃γ),

b(t) , − 1

2µ+ λ

∫ t

0
ρFdt.

For all 0 ≤ t1 < t2 ≤ σ(T ),

|b(t2)− b(t1)| ≤ C
∫ σ(T )
0 ‖(ρF )(·, t)‖L∞dt

≤ C(ρ̄,M)C
3δ0
8

0 .
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Thus Lemma 5 implies that

sup
t∈[0,σ(T )]

‖ρ‖L∞ ≤
3ρ̄

2
,

for C0 suitably small.

For all σ(T ) ≤ t1 ≤ t2 ≤ T ,

|b(t2)− b(t1)| ≤ C(ρ̄)

∫ t2

t1

‖F (·, t)‖L∞dt

≤ a

2µ+ λ
(t2 − t1) + C(ρ̄)

∫ T

σ(T )
‖F (·, t)‖

8
3
L∞dt

≤ a

2µ+ λ
(t2 − t1) + C(ρ̄)C

2
3
0 .
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Applying Lemma 5 again leads to

sup
t∈[0,T ]

‖ρ‖L∞ ≤
7ρ̄

4
,

for C0 suitably small.

Collecting all these steps leads to the proof of Proposition 1.

The next key step is the following time-dependent estimates on the

spatial gradient of the smooth solution (ρ, u).



Some Basic Ideas of Analysis for CNS

Proposition 2: Under the assumptions of Proposition 1, the

following estimates hold

sup
0≤t≤T

∫
R3

ρ|u̇|2dx+

∫ T

0

∫
R3

|∇u̇|2dxdt ≤ C,

sup
0≤t≤T

(||∇ρ||L2∩L6 + ||∇u||H1) +

∫ T

0
||∇u||L∞dt ≤ C,

where the positive constant C depends on T .
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To see this, one recall a Beal-Kato-Majda type inequality,

||∇u||L∞(R3) ≤ C
(
||div u||L∞(R3) + ||curlu||L∞(R3)

)
log
(
e+ ||∇2 u||Lq(R3)

)
+ C||∇u||L2(R3) + C

for all ∇u ∈ L2(R3) ∩D1,q(R3), q ∈ (3,∞). Note that

||∇2 u||Lp ≤ C(||ρu̇||Lp + ||∇p||Lp), p ∈ [2, 6]

which follows from the momentum equations regarded as an

elliptic system.
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Thus

||∇u||L∞(R3) ≤ C(||div u||L∞ + ||curlu||L∞) log(e+ ||∇u̇||L2)

+C(||div u||L∞ + ||curlu||L∞) log(e+ ||∇ρ||L6) + C

Since

∂t||∇ρ||Lρ ≤ C(1 + ||∇u||L∞)||∇ρ||Lp + C||∇2 u||Lp

as it follows from the continuity equation, one gets

f ′(t) ≤ Cg(t)f(t) + Cg(t)f(t) log f(t) + Cg(t)

where

f(t) , e+ ||∇ρ||L6 ,

g(t) , 1 + (||div u||L∞ + ||curlu||L∞) log(e+ ||∇u̇||L2) + ||∇u̇||L2
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Note that ∫ T

0
g(t) dt ≤ C

∫ T

0
||∇u̇||2L2 dt ≤ C.

Thus, the logarithmic Gronwall’s inequality leads

sup
0≤t≤T

||∇ρ||L6(R3) ≤ C,

and ∫ T

0
||∇u||L∞ dt ≤ C.

The rest of the Proposition 2 follows easily.

With Proposition 1 and Proposition 2 at hand, the high order

estimates can be obtained in a similar way as in the analysis of

blow-up criterions. Indeed, one has
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Time-dependent high norm estimates:

Proposition 3: There is a positive constant C = C(T ) such that

sup
0≤t≤T

∫
ρ|∂tu|2dx+

∫ T

0

∫
|∇∂tu|2dx dt ≤ C;

sup
t∈[0,T ]

(||ρ− ρ2||H2 + ||p(ρ)− p(ρ̃)||H2) ≤ C;

sup
t∈[0,T ]

(||(∂tρ, ∂tP )||H1 +

∫ T

0
||(∂2t ρ, ∂2t P )||2L2)dt ≤ C;

sup
t∈[0,T ]

||(ρ− ρ̄, P − P (ρ̃))||H3 ≤ C;
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sup
t∈[0,T ]

(||∇∂tu||L2 + ||∇u||H2)

+

∫ T

0
(||ρ∂2t u||2L2 + ||∇∂tu||2H1 + ||∇u||2H3)dt ≤ C;

and ∀τ ∈ (0, T ], ∃C = C(τ, T ) such that

sup
t∈[τ,T ]

(||∇∂tu||H1 + ||∇4u||L2) +

∫ T

τ
||∇∂2t u||2L2dt ≤ C(τ, T ).



Thank You!


