Regularity results for optimal patterns in the branched transportation problem

Alessio Brancolini

Politecnico di Bari

Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations: Analysis and Control SISSA, June 20-24th, 2011

Outline

Optimal transportation problems

- Monge's Problem
- Kantorovich's Problem

Branched transportation problems

- Modelling and functional
- The landscape function

3 Fractal regularity

Monge's Problem

Problem (Monge's Problem, 1781)

•
$$\mu^+$$
, μ^- probability measures on \mathbb{R}^N ;

minimize

$$M(t) := \int_{\mathbb{R}^N} |x - t(x)|^p \,\mathrm{d}\mu^+(x)$$

among measurable maps $t : \mathbb{R}^N \to \mathbb{R}^N$ such that $\mu^-(B) = \mu^+(t^{-1}(B))$ (transport maps).

- the value of *M*(*t*) is the average transportation cost of moving the mass in *x* to its final position *t*(*x*).
- the value *t*(*x*) of the transport map in *x* tells only the final position of the mass in *x*; there is no information about the path done by the mass during the transportation.
- the mass implicitly moves on straight lines.

Kantorovich's Problem

Problem (Kantorovich's Problem, 1940)

•
$$\mu^+$$
, μ^- probability measures on \mathbb{R}^N ;

minimize

$$\mathcal{K}(\pi) := \int_{\mathbb{R}^N imes \mathbb{R}^N} |x - y|^p \, \mathrm{d}\pi(x, y)$$

among positive Borel measures on $\mathbb{R}^N \times \mathbb{R}^N$ such that $\mu^+(A) = \pi(A \times \mathbb{R}^N), \ \mu^-(B) = \pi(\mathbb{R}^N \times B)$ (transport plans).

- If *t* is transport map, $\pi_t(A \times B) := \mu^+(A \cap t^{-1}(B))$ is a transport plan and $M(t) = K(\pi_t)$;
- $\pi(A \times B)$ is the amount of mass in A (w.r.t. μ^+) moved to B (w.r.t. μ^-);
- no information on the path followed by the mass;
- one can assume that the transportation is on straight lines.

Branched transportation problems

- Many natural systems show a distinctive tree-shaped structure: plants, trees, drainage networks, root systems, bronchial and cardiovascular systems.
- These systems could be described in terms of mass transportation, but Monge-Kantorovich theory is not suitable since the mass is carried from the initial to the final point on a straight line.

Branched transportation problems

Figure: V-shaped versus Y-shaped transport.

The functional (discrete case)

- $\Omega \subset \mathbb{R}^N$ compact, convex;
- $\mu^+ = \sum_{i=1}^m a_i \delta_{x_i}, \mu^- = \sum_{j=1}^n b_j \delta_{y_j}$ convex combinations of Dirac masses;
- *G* weighted directed graph; spt μ^+ , spt $\mu^- \subseteq V(G)$;
- the mass flows from the initial measure μ⁺ to the final measure μ⁻
 "inside" the edges of the graph G.

The functional (discrete case)

• The point is now to provide to each transport path *G* a suitable cost that makes keeping the mass together cheaper. The right cost function is

$$J_{\alpha}(G) := \sum_{e \in E(G)} [m(e)]^{\alpha} l(e),$$

l(e) length of edge e, $0 \le \alpha < 1$ fixed;

• this cost takes advantage of the subadditivity of the function $t \mapsto t^{\alpha}$ in order to make the tree-shaped graphs cheaper.

Branched transportation problems

$$m_1^{\alpha}|x_1 - y_1| + m_2^{\alpha}|x_1 - y_2| \ge |x - b| + m_1^{\alpha}|b - y_1| + m_2^{\alpha}|b - y_2|$$

The functional (continuous case)

• *e* (oriented edge) $\mapsto \mu_e = (\mathcal{H}^1_{|_e})\hat{e}$ (vector measure);

•
$$G \mapsto T_G = \sum_{e \in E(G)} m(e) \mu_e;$$

- div $T_G = \mu^+ \mu^-$ sums up all conditions;
- a general irrigation pattern is defined by density and the cost as a lower semicontinuous envelope:

$$J_{\alpha}(T) = \inf_{T_{G_i} \to T} \liminf_{i \to +\infty} J_{\alpha}(T_{G_i}).$$

The Irrigation Problem

Problem (Irrigation problem)

- μ^+ , μ^- probability measures on \mathbb{R}^N ;
- minimize J_α(T) among irrigation patterns T such that div T = μ⁺ − μ[−].

A pattern minimizing J_{α} is the best branched structure between the source μ^+ and the irrigated measure μ^- .

The landscape function

 $\mu^+ = \delta_S$. For optimal graphs the landscape function *Z* is given by

The landscape function can be defined also in the continuous setting.

Why to consider the landscape function?

- In a discrete form, the landscape function was already introduced in geophysics and is related to the problem of erosion and landscape equilibrium;
- the landscape function is related to first order variations of the functional *J*_α;
- the Hölder regularity of landscape function is related to the decay of the mass on the paths of the graph.

The landscape function

First order variations

Theorem (First order gain formula)

The pattern G satisfies

$$J_{\alpha}(\tilde{G}) - J_{\alpha}(G) \leq \alpha m(Z(y) - Z(x)) + m^{\alpha}|x - y|.$$

Mass decay on the graph

Theorem (Mass decay)

Suppose that G is optimal. If Z is Hölder continuous of exponent β , then the mass decay is exponent is $(1 - \beta)/(1 - \alpha)$:

$$m(x)\gtrsim l(x)^{\frac{1-\beta}{1-\alpha}},$$

and vice versa.

Hölder continuity when the irrigated measure is LAR

Definition

A measure μ is lower Ahlfors regular in dimension *h* if there exist $r_0 > 0$ and $c_A > 0$ such that:

$$\mu(B_r(x)) \ge c_A r^h$$
 for all $x \in \operatorname{spt} \mu$ and $0 \le r < r_0$.

Theorem

Suppose that the irrigated measure is LAR in dimension h. Then, the landscape function Z is Hölder with exponent $\beta = 1 + h(\alpha - 1)$.

Some example shows that the landscape regularity may be better and may depend on the source of irrigation.

Best estimate on the Hölder exponent

Definition

A measure μ is upper Ahlfors regular in dimension *h* if there exists $C_A > 0$ such that:

$$\mu(B_r(x)) \leq C_A r^h$$
 for all $r > 0$.

Theorem

Suppose that the irrigated measure is UAR above in dimension h and the landscape function Z is Hölder with exponent β . Then, $\beta \leq 1 + h(\alpha - 1)$.

If the irrigated measure is Ahlfors regular in dimension *h* (both LAR and UAR), the best Hölder exponent is $1 + h(\alpha - 1)$.

Main branches from a point

In the next the irrigated measure will always be *Ahlfors regular* in dimension *h*.

Definition (Main branches from a point x)

A main branch starting from a point x is the branch maximizing the residual length.

Fractal regularity

- N = number of branches bifurcating of residual length between ε and Cε.
- mass carried by one of such branches $\gtrsim \varepsilon^h$,
- mass of the tubolar neighbourhood of radius $C\varepsilon \sim I\varepsilon^{h-1}$,
- mass balance: $\varepsilon^h N \lesssim I \varepsilon^{h-1}$,

•
$$N \lesssim \frac{l}{\varepsilon}$$
.

Fractal regularity

- For small ε and a suitable choice of C the measure irrigated by "long branches" and by "far away branches" is a fraction of the measure of U_{Cε} \ U_ε;
- the mass carried by a branch of residual length between ε and $C\varepsilon$ is $\lesssim \varepsilon^h$;
- mass balance condition: $I\varepsilon^{h-1} \leq N\varepsilon^h$;

•
$$N \gtrsim \frac{1}{\varepsilon}$$
.

Bibliography

A. Brancolini, S. Solimini.

On the Hölder regularity of the landscape function. To appear on IFBj.

A. Brancolini, S. Solimini. Fractal regularity results on optimal patterns. In preparation.

F. Santambrogio.

Optimal channel networks, landscape function and branched transport. IFBj (9), 2007.