Elastic deformations on the plane and approximations

(lecture II)

Aldo Pratelli

Department of Mathematics, University of Pavia (Italy)
"Nonlinear Hyperbolic PDEs, Dispersive and
Transport Equations: Analysis and Control",
Sissa, June 20-24 2011

Plan of the course

Plan of the course

- Lecture I: Mappings of finite distorsion and orientation-preserving homeomorphisms.

Plan of the course

- Lecture I: Mappings of finite distorsion and orientation-preserving homeomorphisms.
- Lecture II: Approximation questions: hystory, strategies and results.

Plan of the course

- Lecture I: Mappings of finite distorsion and orientation-preserving homeomorphisms.
- Lecture II: Approximation questions: hystory, strategies and results.
- Lecture III: Smooth approximation of (countably) piecewise affine homeomorphisms.

Plan of the course

- Lecture I: Mappings of finite distorsion and orientation-preserving homeomorphisms.
- Lecture II: Approximation questions: hystory, strategies and results.
- Lecture III: Smooth approximation of (countably) piecewise affine homeomorphisms.
- Lecture IV: The approximation result.

Plan of the course

- Lecture I: Mappings of finite distorsion and orientation-preserving homeomorphisms.
- Lecture II: Approximation questions: hystory, strategies and results.
- Lecture III: Smooth approximation of (countably) piecewise affine homeomorphisms.
- Lecture IV: The approximation result.
- Lecture V: Bi-Lipschits extension Theorem (part 1).

Plan of the course

- Lecture I: Mappings of finite distorsion and orientation-preserving homeomorphisms.
- Lecture II: Approximation questions: hystory, strategies and results.
- Lecture III: Smooth approximation of (countably) piecewise affine homeomorphisms.
- Lecture IV: The approximation result.
- Lecture V: Bi-Lipschits extension Theorem (part 1).
- Lecture VI: Bi-Lipschits extension Theorem (part 2).

The problem of approximating

The problem of approximating

Let $u: \Omega \rightarrow \Delta$ be an orientation-preserving homeomorphism.

The problem of approximating

Let $u: \Omega \rightarrow \Delta$ be an orientation-preserving homeomorphism.
GOAL: Find an approximating sequence $u_{\varepsilon}: \Omega \rightarrow \mathbb{R}^{2}$ made by good functions with $d\left(u, u_{\varepsilon}\right) \leq \varepsilon$.

The problem of approximating

Let $u: \Omega \rightarrow \Delta$ be an orientation-preserving homeomorphism.
GOAL: Find an approximating sequence $u_{\varepsilon}: \Omega \rightarrow \mathbb{R}^{2}$ made by good functions with $d\left(u, u_{\varepsilon}\right) \leq \varepsilon$.

- What does good mean?

The problem of approximating

Let $u: \Omega \rightarrow \Delta$ be an orientation-preserving homeomorphism.
GOAL: Find an approximating sequence $u_{\varepsilon}: \Omega \rightarrow \mathbb{R}^{2}$ made by good functions with $d\left(u, u_{\varepsilon}\right) \leq \varepsilon$.

- What does good mean?
- What is $d(\cdot, \cdot)$?

The problem of approximating

Let $u: \Omega \rightarrow \Delta$ be an orientation-preserving homeomorphism.
GOAL: Find an approximating sequence $u_{\varepsilon}: \Omega \rightarrow \mathbb{R}^{2}$ made by good functions with $d\left(u, u_{\varepsilon}\right) \leq \varepsilon$.

- What does good mean?
- What is $d(\cdot, \cdot)$?
- Ah, and of course... u_{ε} must be orient. pres. homeomorphisms!

The problem of approximating

Let $u: \Omega \rightarrow \Delta$ be an orientation-preserving homeomorphism.
GOAL: Find an approximating sequence $u_{\varepsilon}: \Omega \rightarrow \mathbb{R}^{2}$ made by good functions with $d\left(u, u_{\varepsilon}\right) \leq \varepsilon$.

- What does good mean? (smooth / piecewise affine)
- What is $d(\cdot, \cdot)$?
- Ah, and of course... u_{ε} must be orient. pres. homeomorphisms!

The problem of approximating

Let $u: \Omega \rightarrow \Delta$ be an orientation-preserving homeomorphism.
GOAL: Find an approximating sequence $u_{\varepsilon}: \Omega \rightarrow \mathbb{R}^{2}$ made by good functions with $d\left(u, u_{\varepsilon}\right) \leq \varepsilon$.

- What does good mean? (smooth / piecewise affine)
- What is $d(\cdot, \cdot)$?
- Ah, and of course... u_{ε} must be orient. pres. homeomorphisms!

BAD NEWS: Convolution does not work! (unless $u, u^{-1} \in W^{2, \infty}$) (Example by Seregin and Shilkin)

A simple idea to approximate

A simple idea to approximate

Take a triangulation of Ω.

A simple idea to approximate

Take a triangulation of Ω.
Build the affine interpolation.

A simple idea to approximate

Take a triangulation of Ω.
Build the affine interpolation.
Is it a good approximation for $d=d_{L \infty}^{*}$?

A simple idea to approximate

Take a triangulation of Ω.
Build the affine interpolation.
Is it a good approximation for $d=d_{L \infty}^{*}$? YES (trivial).

A simple idea to approximate

Take a triangulation of Ω.
Build the affine interpolation.
Is it a good approximation for $d=d_{L \infty}^{*}$? YES (trivial).
Is it an homeomorphism? Or, at least, is it orientation preserving?

A simple idea to approximate

Take a triangulation of Ω.
Build the affine interpolation.
Is it a good approximation for $d=d_{L \infty}^{*}$? YES (trivial).
Is it an homeomorphism? Or, at least, is it orientation preserving? Maybe NOT.

A simple idea to approximate

Take a triangulation of Ω.
Build the affine interpolation.
Is it a good approximation for $d=d_{L \infty}^{*}$? YES (trivial).
Is it an homeomorphism? Or, at least, is it orientation preserving? Maybe NOT.

BAD NEWS: Even taking "randomly" arbitrarily many points does not work!

Good results

Good results

The strategy of last slide (with a careful choice of points) can be adjusted.

Good results

The strategy of last slide (with a careful choice of points) can be adjusted.

Positive results by Bing, Connell, Kirby, Moise, counterexample by Donaldson and Sullivan.

Good results

The strategy of last slide (with a careful choice of points) can be adjusted.

Positive results by Bing, Connell, Kirby, Moise, counterexample by Donaldson and Sullivan.

All this works with the distance

$$
d(u, v)=d_{L \infty}^{*}(u, v)=\|u-v\|_{L^{\infty}}+\left\|u^{-1}-v^{-1}\right\|_{L^{\infty}} .
$$

What would we really like?

What would we really like?

If u is thought as a deformation, then the energy is something of the form

What would we really like?

If u is thought as a deformation, then the energy is something of the form

$$
\mathcal{W}(u)=\int_{\Omega}|D u|^{p}+h(\operatorname{det} D u),
$$

with h diverging both at 0 and $+\infty$.

What would we really like?

If u is thought as a deformation, then the energy is something of the form

$$
\mathcal{W}(u)=\int_{\Omega}|D u|^{p}+h(\operatorname{det} D u),
$$

with h diverging both at 0 and $+\infty$.

- Why exploding at 0 ?

What would we really like?

If u is thought as a deformation, then the energy is something of the form

$$
\mathcal{W}(u)=\int_{\Omega}|D u|^{p}+h(\operatorname{det} D u),
$$

with h diverging both at 0 and $+\infty$.

- Why exploding at 0 ?
- Why the determinant?

What would we really like?

If u is thought as a deformation, then the energy is something of the form

$$
\mathcal{W}(u)=\int_{\Omega}|D u|^{p}+h(\operatorname{det} D u),
$$

with h diverging both at 0 and $+\infty$.

- Why exploding at 0 ?
- Why the determinant?

So our dream result is to take $u, u^{-1} \in W^{1, p}$, and approximate with $d=d_{W^{1, p}}^{*}$.

The results by Bellido and Mora-Corral

The results by Bellido and Mora-Corral

Theorem (Mora-Corral): It is possible to approximate u which is smooth out of a point.

The results by Bellido and Mora-Corral

Theorem (Mora-Corral): It is possible to approximate u which is smooth out of a point. (not trivial at al!!!!)

The results by Bellido and Mora-Corral

Theorem (Mora-Corral): It is possible to approximate u which is smooth out of a point. (not trivial at all!!!)

Theorem (Bellido, Mora-Corral): If $u, u^{-1} \in C^{0, \alpha}$, then it is possible to approximate with $d=d_{C^{0, \beta}}$ (but not $d=d_{C^{0, \beta}}^{*}$).

The results by Bellido and Mora-Corral

Theorem (Mora-Corral): It is possible to approximate u which is smooth out of a point. (not trivial at all!!!)

Theorem (Bellido, Mora-Corral): If $u, u^{-1} \in C^{0, \alpha}$, then it is possible to approximate with $d=d_{C^{0, \beta}}$ (but not $d=d_{C^{0, \beta}}^{*}$). (finally some derivatives!!!)

The result by Iwaniec, Kovalev, Onninen

The result by Iwaniec, Kovalev, Onninen

Theorem (Iwaniec, Kovalev, Onninen): If $u \in W^{1, p}(1<p<\infty)$, then it is possible to approximate with $d=d_{W^{1, p}}$ (but not $d=d_{W^{1, p}}^{*}$).

The result by Iwaniec, Kovalev, Onninen

Theorem (Iwaniec, Kovalev, Onninen): If $u \in W^{1, p}(1<p<\infty)$, then it is possible to approximate with $d=d_{W^{1, p}}$ (but not $d=d_{W^{1, p}}^{*}$).

- Technique.

The result by Iwaniec, Kovalev, Onninen

Theorem (Iwaniec, Kovalev, Onninen): If $u \in W^{1, p}(1<p<\infty)$, then it is possible to approximate with $d=d_{W^{1, p}}$ (but not $d=d_{W^{1, p}}^{*}$).

- Technique.
- Why doesn't it work for the inverse?

The new results

The new results

Theorem (Mora-Corral, P.): Let $d=d_{W^{1, p}}\left(\right.$ or $d=d_{W^{1, p}}^{*}$). Then, approximation with with piecewise affine \Longleftrightarrow with smooth.

The new results

Theorem (Mora-Corral, P.): Let $d=d_{W^{1, p}}\left(\right.$ or $d=d_{W^{1, p}}^{*}$). Then, approximation with with piecewise affine \Longleftrightarrow with smooth.

Theorem (Daneri, P.): Let u be bi-Lipschitz. Then, one has approximation with $d=d_{W^{1, p}}^{*}$ for all $1 \leq p<\infty$.

The new results

Theorem (Mora-Corral, P.): Let $d=d_{W^{1, p}}\left(\right.$ or $d=d_{W^{1, p}}^{*}$). Then, approximation with with piecewise affine \Longleftrightarrow with smooth.

Theorem (Daneri, P.): Let u be bi-Lipschitz. Then, one has approximation with $d=d_{W^{1, p}}^{*}$ for all $1 \leq p<\infty$.

Theorem (Daneri, P.): Let $u: \partial D \rightarrow \mathbb{R}^{2}$ be L bi-Lipschitz. Then there exists an extension $u: \mathcal{D} \rightarrow \mathbb{R}^{2}$ which is $C L^{4}$ bi-Lipschitz.

