Elastic deformations on the plane and approximations

(lecture V-VI)

Aldo Pratelli

Department of Mathematics, University of Pavia (Italy)
"Nonlinear Hyperbolic PDEs, Dispersive and
Transport Equations: Analysis and Control", Sissa, June 20-24 2011

Plan of the course

Plan of the course

- Lecture I: Mappings of finite distorsion and orientation-preserving homeomorphisms.

Plan of the course

- Lecture I: Mappings of finite distorsion and orientation-preserving homeomorphisms.
- Lecture II: Approximation questions: hystory, strategies and results.

Plan of the course

- Lecture I: Mappings of finite distorsion and orientation-preserving homeomorphisms.
- Lecture II: Approximation questions: hystory, strategies and results.
- Lecture III: Smooth approximation of (countably) piecewise affine homeomorphisms.

Plan of the course

- Lecture I: Mappings of finite distorsion and orientation-preserving homeomorphisms.
- Lecture II: Approximation questions: hystory, strategies and results.
- Lecture III: Smooth approximation of (countably) piecewise affine homeomorphisms.
- Lecture IV: The approximation result.

Plan of the course

- Lecture I: Mappings of finite distorsion and orientation-preserving homeomorphisms.
- Lecture II: Approximation questions: hystory, strategies and results.
- Lecture III: Smooth approximation of (countably) piecewise affine homeomorphisms.
- Lecture IV: The approximation result.
- Lecture V: Bi-Lipschits extension Theorem (part 1).

Plan of the course

- Lecture I: Mappings of finite distorsion and orientation-preserving homeomorphisms.
- Lecture II: Approximation questions: hystory, strategies and results.
- Lecture III: Smooth approximation of (countably) piecewise affine homeomorphisms.
- Lecture IV: The approximation result.
- Lecture V: Bi-Lipschits extension Theorem (part 1).
- Lecture VI: Bi-Lipschits extension Theorem (part 2).

The bi-Lipschitz extension theorem

The bi-Lipschitz extension theorem

Theorem (Daneri, P.): Let $u: \partial \mathcal{D} \rightarrow \mathbb{R}^{2}$ be piecewise affine and L bi-Lipschitz. Then there exists an extension of u which is $C L^{4}$ bi-Lipschitz.

The bi-Lipschitz extension theorem

Theorem (Daneri, P.): Let $u: \partial \mathcal{D} \rightarrow \mathbb{R}^{2}$ be piecewise affine and L bi-Lipschitz. Then there exists an extension of u which is $C L^{4}$ bi-Lipschitz.

- In particular, there is such a u finitely piecewise affine.

The bi-Lipschitz extension theorem

Theorem (Daneri, P.): Let $u: \partial \mathcal{D} \rightarrow \mathbb{R}^{2}$ be piecewise affine and L bi-Lipschitz. Then there exists an extension of u which is $C L^{4}$ bi-Lipschitz.

- In particular, there is such a u finitely piecewise affine.
- You may prefer to have a smooth $C L^{28 / 3}$ bi-Lipschitz extension.

The bi-Lipschitz extension theorem

Theorem (Daneri, P.): Let $u: \partial \mathcal{D} \rightarrow \mathbb{R}^{2}$ be piecewise affine and L bi-Lipschitz. Then there exists an extension of u which is $C L^{4}$ bi-Lipschitz.

- In particular, there is such a u finitely piecewise affine.
- You may prefer to have a smooth $C L^{28 / 3}$ bi-Lipschitz extension.
- If u is generic, then there is again a $C L^{4}$ bi-Lipschitz extension.

The proof of the result (1/2)

The proof of the result (1/2)

Step I: Selecting the central ball.

The proof of the result (1/2)

Step I: Selecting the central ball.
Step II: Definition and properties of the primary sectors.

The proof of the result (1/2)

Step I: Selecting the central ball.
Step II: Definition and properties of the primary sectors.
Step III: How to partition a sector in ordered triangles.

The proof of the result (1/2)

Step I: Selecting the central ball.
Step II: Definition and properties of the primary sectors.
Step III: How to partition a sector in ordered triangles.
Step IV: Definition of the good paths.

The proof of the result (1/2)

Step I: Selecting the central ball.
Step II: Definition and properties of the primary sectors.
Step III: How to partition a sector in ordered triangles.
Step IV: Definition of the good paths.
Step V: Estimate on the length of the good paths.

The proof of the result $(2 / 2)$

The proof of the result (2/2)

Step VI: Definition of the speed function.

The proof of the result (2/2)

Step VI: Definition of the speed function.
Step VII: The bi-Lipschitz extension on each primary sector.

The proof of the result (2/2)

Step VI: Definition of the speed function.
Step VII: The bi-Lipschitz extension on each primary sector.
Step VIII: The bi-Lipschitz extension in the internal polygon.

The proof of the result (2/2)

Step VI: Definition of the speed function.
Step VII: The bi-Lipschitz extension on each primary sector.
Step VIII: The bi-Lipschitz extension in the internal polygon.
Step IX: The smooth extension.

The proof of the result (2/2)

Step VI: Definition of the speed function.
Step VII: The bi-Lipschitz extension on each primary sector.
Step VIII: The bi-Lipschitz extension in the internal polygon.
Step IX: The smooth extension.
Step X : The non piecewise affine case.

Thank you

