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Compressible Navier-Stokes and Euler equations

̺t + ∇ · (̺~v) = 0, [mass]

(̺~v)t + ∇ · (̺~v ⊗ ~v) +∇p = ∇TS, [momentum]

(̺e)t + ∇ · (̺e~v)
︸ ︷︷ ︸

convection

+∇ · (p~v)
︸ ︷︷ ︸

pressure

= ∇ · (S~v)
︸ ︷︷ ︸

viscosity

+ ∇ · (κ∇T )
︸ ︷︷ ︸

heat conduction

[energy]

where ̺ density, ~v velocity, T temperature (functions of t, x)

S = 2µ

(
1

2
(∇~v + ∇~vT ) − 1

3
∇ · ~v

)

,

e = q +
1

2
|~v|2,

p, q, κ, µ = functions of ̺, T .

p pressure, q specific internal energy, e specific energy, S viscous

stress. κ heat conductivity, µ viscosity coefficient.

Euler = Navier-Stokes without the blue terms.
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Pressure law (“equation of state”) (̺ mass density, q heat per

mass): Polytropic:

p(̺, q) = (γ − 1)̺q =
2

F
̺q

γ = F+2
F where F is “number of degrees of freedom” per particle.

γ = 5
3 for monatomic gas, γ = 7

5 for diatomic gas, γ = 4
3 otherwise

(actual gas more complicated)

Wall

F = 5 degrees of freedom

F = 3 degrees of freedom

monatomic (noble gases like He)

diatomic: O2, N2

Boltzmann equipartition “theorem”: equal time averages 1
2kT of

kinetic energy M
2 v2 in each degree of freedom of each of N particles;

only normal direction yields pressure on wall Ã p formula
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Entropy transport: consider smooth ̺, v, q; e = q + 1
2|v|2.

0 = ̺t + ∇ · (̺v) = ̺t + v · ∇̺ + ̺∇ · v
0 = (̺v)t + ∇ · (̺v ⊗ v) + ∇p

= ̺vt + v̺t + ̺v · ∇v + v∇ · (̺v) + ∇p

⇒ 0 = vt + v · ∇v + ̺−1∇p

0 = (̺e)t + ∇ · (̺ev) + ∇ · (pv)

= ̺et + e̺t + ̺v · ∇e + e∇ · (̺v) + ∇ · (pv)

⇒ 0 = et + v · ∇e + ̺−1∇ · (pv)

= qt + vt · v + v · ∇q + v · ∇v · v + ̺−1p∇ · v + ̺−1∇p · v
⇒ 0 = qt + v · ∇q + ̺−1p(̺, q)∇ · v

s(̺, q)t + v · ∇s(̺, q) = s̺(̺t + v · ∇̺) + sq(qt + v · ∇q)

= −∇ · v
(

s̺(̺, q)̺ + sq(̺, q)̺−1p(̺, q)
)

First-order PDE for s(̺, q): method of characteristics. Example:

most common choice p = (γ − 1)̺q yields gas-dynamic entropy

s = C1

(

log q + (1 − γ) log ̺
)

+ C2.
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Isentropic Euler: if s is constant in x at t = 0:

st + v · ∇s = 0,

hence same constant for all t > 0.

(False for non-smooth flow: shocks produce (physical) entropy.)

s = constant = C1

(

log q + (1 − γ) log ̺
)

+ C2

Ã q = C(s)̺γ−1, p(̺, q) = C̺q = C̺γ

0 = ̺t + ∇ · (̺v)

0 = (̺v)t + ∇ · (̺v ⊗ v) + ∇
(

p(̺)
)

Smooth solutions are full (non-isentropic) Euler solutions.

Weak solutions are not; but close if shocks weak.

0 = vt + v · ∇v + ̺−1∇(p(̺)) = vt + v · ∇v + ∇(π(̺))

π̺ =
p̺

̺
, π(̺) = C′̺γ−1
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Potential flow (compressible)

Assume ∇× v = 0. Then v = ∇φ (velocity potential φ). ∇2 = ∇∇T

0 = vt+v·∇v+∇(π(̺)) = ∇∂tφ+∇2φ∇φ+∇(π(̺)) = ∇(∂tφ+
1

2
|∇φ|2+π(̺))

⇒ ∂tφ +
1

2
|∇φ|2 + π(̺) = const (Bernoulli)

̺ = π−1(C − ∂tφ − 1

2
|∇φ|2), 0 = ̺t + ∇ · (̺∇φ)

0 = (π′)−1(−φtt −∇φ · ∇φt) + (π′)−1∇φ · (−∇φt −∇2φ∇φ) + ̺∆φ

0 = −φtt − 2∇φ · ∇φt −∇φT∇2φ∇φ + (
dπ

d̺
̺

︸ ︷︷ ︸

c2

)∆φ

0 =

[

c2I −∇φ∇φT −∇φ

−∇φT −1

]

: ∇̂2φ, ∇̂ = (∇, ∂t), A : B = tr(ATB)

Hyperbolic (if c > 0, true unless vacuum or strange pressure law):

Symmetric coefficient matrix, 1 negative, n positive eigenvalues
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Symmetries

1. Rotation/reflection: Q orthogonal,

x′ = Qx, v′(x′, t) = Qv(x, t), ̺′(x′, t) = ̺(x, t), q′(x′, t) = q(x, t)

Exercise: if v, ̺, q solution, then v′, ̺′, q′ also.

2. Change of inertial frame: new origin at speed w relative to old,

x′ = x − wt, v′ = v − w, ̺′ = ̺, q′ = q

t

x

t

w

0
0

−w

Fluid velocity
v

Fluid velocity
v − w

x′

Both combined: Galilean invariance (non-relativistic)

Navier-Stokes, Euler (compressible/not), potential flow X

(including weak/entropy solutions later).

For some p (polytropic): additional symmetries involving ρ, q.
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Checking hyperbolic

0 =

[

c2I −∇φ∇φT −∇φ

−∇φT −1

]

: ∇̂2φ, ∇̂ = (∇, ∂t), A : B = tr(ATB)

Change to coordinates of observer travelling with velocity v = ∇φ

Ã his equation

0 =

[

c2I 0
0 −1

]

: ∇̂2φ, ∇̂ = (∇, ∂t), A : B = tr(ATB)

Now obvious: n eigenvalues c2, one eigenvalue −1.
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Linear wave equation

0 = −φtt − 2∇φ · ∇φt −∇φT∇2φ∇φ + c2∇2φ

Linearize around v = ∇φ ≈ 0: linear wave equation

0 = −φ̃tt−0 − 0 + c2∆φ̃

Models sound waves (“acoustics”)

Linearize around ∇φ ≈ v = const:

0 = −φ̃tt − 2v · ∇φ̃t + (c2 − vvT ) : ∇2φ̃

(Can obtain from 0 = c2∆φ̃ − φ̃tt by “change of observer”.)
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Subsonic/supersonic flow, Mach number

Given Euler solution, localized perturbation at t = 0, linearize:

v

Subsonic flow: M = |v|/c < 1

Initial perturbation: approximate δ in 0

Linear theory: perturbation at t > 0 in
circle with radius ct, center x = tv

Supersonic flow: M = |v|/c > 1

v

Mach cone

α

ct

|v|t

Subsonic flow (M < 1): disturbances propagate in all directions

Supersonic: propagate (in linearization) only inside the Mach cone

α = arcsin
ct

|v|t = arcsin
1

M

α Mach angle

y

x
=

sinα

cosα
=

1/M
√

1 − (1/M)2
=

1
√

M2 − 1
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Incompressible limit

p(̺) = ǫ−1p̃(̺) ǫ ↓ 0.

(Air: c = 340m
s , ≫ v in many applications)

c2 =
dp

d̺
(̺) = ǫ−1dp̃

d̺
(̺) , π(̺) = ǫ−1π̃(̺)

̺ = ̺0 + ǫ̺1 + ..., v = v0 + ǫv1 + ... Ã π̃(̺) = π0 + π1ǫ + ...

0 = ρt + ∇ · (ρv) , 0 = vt + ∇ · (v ⊗ v) + ǫ−1∇π̃

Order ǫ−1: ∇π̃0 = 0 ⇒ ̺0 = const > 0

Order ǫ0: 0 = ̺0t + ∇ · (̺0v0) ⇒ 0 = ∇ · v0

0 = v0t + ∇ · (v0 ⊗ v0) + ∇π1

(requires smoothness; details: e.g. Klainerman/Majda, CPAM 1982)

Loosely speaking: Isentropic Euler = potential flow+ incompressible Euler

With viscosity: incompressible Navier-Stokes

vt + ∇ · (v ⊗ v) + ̺−1∇π = ν∆v

11



Scaling

Consider steady incompressible Navier-Stokes:

∇ · (v ⊗ v) + ∇π = ν∆v , ∇ · v = 0

v = 0 on surface, v → v∞ as x → ∞

L length scale

viscosity ν

viscosity ν

2L length scale L length scale

v∞ v∞ v∞

viscosity ν
2

viscous layer

Three parameters (L, ν, v∞ > 0) reduced to one: Reynolds number:

Re =
|v∞|L

ν
dimensionless

Interesting limits: |v∞| → ∞, or L → ∞, or ν ↓ 0

all lead to incompressible Euler (formally)

Similar technique for compressible (more parameters)
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Euler as a scaling limit

System of conservation laws for U = (̺, ̺~v, ̺q):

∇ · ~f(U)
︸ ︷︷ ︸

first-order

= ∇ · (A(U)∇U)

If U solution, then Uǫ(~x) := U(~x
ǫ) [= considering large scale] solves

ǫ∇ · ~f(Uǫ) = ǫ2∇ · (A(Uǫ)∇Uǫ)

∇ · ~f(Uǫ) = ǫ∇ · (A(Uǫ)∇Uǫ)

Same principle for other higher-order terms (dispersive, ...).

At large scales, least-order terms “dominate”
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Conservation laws:

U = (̺, ̺vx, ̺vy, ̺vz, ̺e) densities of mass, momentum, energy.

Ut + ∇ · (f(U,∇U)) = 0

Formally:
∫

dx →

0 =
d

dt

∫

U(t, x)dx +
∫

∇ · (f(U))dx =
d

dt

∫

U(t, x)dx + 0

on compact boundary-less manifolds, e.g. Td torus.

Complications:

1. boundaries (solid: no flow of mass, but flow of momentum; flow

of energy if moving)

2. unbounded domains (mass infinite, must consider local conser-

vation carefully)

3. source terms (gravitation in momentum/energy equation, ...):

Ut + ∇ · (f(U)) = g(U)

Balance laws
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Discontinuity formation for compressible flow:

Shock waves: discontinuity in ̺, q, v · n.

Vortex sheets: discontinuity in v · t.

Regular
reflection

Vortex sheets form in finite time

vortex

sheets

Smooth flow
ρ bumps

Shock waves
(ρ,~v) discontinuities

Mach reflection

“It is not clear whether singularities form.”

Not for incompressible Euler, but for compressible it is clear.

Long term goal: well-posedness theory for Euler

and convergence theory for numerics.

→ Must deal with vortex sheets and shock waves.
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Supersonic flow onto wedges

Concorde, military jets, space shuttle:

M ≫ 1
shock

solid

Challenge: find a notion of solution that includes non-differentiable

and even discontinuous functions. Compressible Euler:

Ut + ∇ · f(U) = 0 t ≥ 0, x ∈ R
d.

Multiply with smooth compactly supported φ, integrate:

0 =
∫ ∞

0

∫

Rd
φUt+φ∇·f(U)dx dt = −

∫ ∞

0

∫

Rd
φtU+f(U)·∇φdx dt−

∫

Rd
(Uφ)|t=0dx

U “weak solution” if satisfied for all φ.
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Discontinuities as weak solutions

n

≪ dA

U−

U+dA

Flux into (left): f(U−) · n dS dt.

Flux out (right): f(U+) · n dS dt.

≪ |dA| side: neglect

Conservation ⇒ must be equal:

Rankine-Hugoniot condition:
(

f(U+) − f(U−)
)

· n = 0

For moving shocks (speed σ):
(

f(U+) − f(U−)
)

· n = σ(U+ − U−).

[f(U) · n] = σ[U ]

Traffic jams:

v v v v v v v vv

Whitham traffic flow model: car density ̺ ≥ 0 (scalar),

velocity v(̺) = max{1 − ̺,0}, flux f(̺) = ̺v(̺)

0 = ̺t + f(̺)x = ̺t + f̺(̺)̺x

Ã characteristics wave speed f̺(̺) = 1 − 2̺ (̺ ∈ [0,1])

Wave speed depends on state of medium → discontinuities may form

Compressible Euler (1d): wave speeds v − c(̺), v, v + c(̺)
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Contact discontinuities. 2-d flow:

x

vy

x

vy

x

vy

x

y

x

y

x

yt = 0

t = 0 t ' 0 t > 0

vx = vz = 0, vy = vy(x) in incompressible Navier-Stokes:

v
y
t = ǫvy

xx ⇒ vy(t, x) = vy
( 1√

tǫ
x

)

.

Compressible flow: analogous viscous profiles (more complicated)

Another type of contact: entropy jumps: p ∼ ̺T , [p] = 0, [̺], [T ] 6= 0
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Compression and expansion shocks

(unphysical)

x

ρ Compression shock

x

ρ Expansion shock

x

ρ

x

ρNavier-Stokes

viscous layer

NOT a Navier-Stokes limit

Shock wave: “width” scales like 1
ǫ .
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Admissibility conditions

Fluid dynamics main/only source of justifications for definitions.

[Arnold: geodesics on Diff0; Slemrod et al: link between Euler, isometric embedding]

Justification is informal, rigorous arguments only supporting role.

Vanishing viscosity condition: admissible = ǫ ↓ 0 limit (in some sense) of

solutions of

Euler + ǫ · perturbation (Navier-Stokes, Boltzmann, ...)

Entropy condition: η, ~ψ entropy-entropy flux pair if

∂η

∂U
(U)

∂ ~f

∂U
(U) =

∂ ~ψ

∂U
(U).

⇒ for smooth solutions U of Ut + ∇ · (f(U)):

η(U)t + ∇ · (~ψ(U)) = 0

Weak solution U satisfies entropy condition if

∀ convex η : η(U)t + ∇ · (~ψ(U)) ≤ 0

Motivation: true for uniform viscosity ∆U , true for Navier-Stokes

with η = −̺s, s entropy per mass (second law of thermodynamics).
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Entropy condition for shock waves

For all smooth entropy-flux pairs (η, ~ψ) with convex η:

η(U)t + ∇ · (~ψ(U)) ≤ 0

For n pointing from − to + and for [A] = A+ − A−:

[~ψ(U) · n] ≤ σ[η(U)]

Check: satisfied (<) for compression shocks, violated (>) for expan-

sion shocks.

Shock waves not truly “inviscid”: a distributional “ghost” of the

viscous/heat conduction terms remains in the zero viscosity/heat

conduction coefficient limit
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Known uniqueness results

Scalar multi-dimensional conservation laws (..., Kružkov (1970)):

uniqueness, vanishing viscosity ⇔ entropy condition

1-d compressible Euler, small BV/closely related classes:

uniqueness (Bressan/Crasta/Piccoli, Bressan/LeFloch, ...),

vanishing uniform viscosity limit (Bianchini/Bressan 2005),

vanishing Navier-Stokes viscosity limit (Chen/Perepelitsa 2010)

Dafermos/DiPerna: weak-strong uniqueness:

If ∃ classical (̺,~v, T ∈ Lip) solution of multi-d compressible Euler,

then no other weak entropy solutions for same initial data.
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Piecewise smooth weak solutions

Isolated

points Pk

smooth discontinuities Sj

smooth region Ri

Bǫ(Pk)

Uj

Regions Ri separated by C1

hypersurfaces Sj, meeting in

isolated points Pk.

f ∈ C1(Ri), g ∈ C0(Ri),

lim f ∃ on each side in each

point of Sj except Pk.

Fact: ∇ · f = g satisfied in weak sense

0
!
=

∫

Ω
f · ∇φ + gφ dx

a. if satisfied in classical sense in Ri,

b. f satisfies Rankine-Hugoniot condition at Sj,

c. f, g not too singular in Pk: nearby, with r = dist(x, Pk),

f(x) = o(r1−d) , g(x) = O(rδ−d) (δ > 0)
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Piecewise smooth weak solutions — isolated points

Consider one of the Pk. Assume Pk = 0 (coordinate change).

0
!
=

∫

Ω
∇φ · f + φg dx

Choose θǫ(x) = θǫ(|x|), θǫ ∈ C∞[0,∞), θǫ(r) =







1, 0 ≤ r ≤ ǫ
2

0, ǫ ≤ r < ∞,

θǫ = O(1), ∇θǫ = O(ǫ−1).

φ(x) = φ(x)
(

1 − θǫ(x)
)

︸ ︷︷ ︸

Pk 6∈supp

+ φ(x)θǫ(x)

∫

Bǫ(0)
∇(θǫφ) · f dx =

∫ ǫ

0
|∂Br|O(ǫ−1)o(r1−d)dr = o(1) as ǫ ↓ 0

∫

Bǫ(0)
θǫφg dx =

∫ ǫ

0
|∂Br|O(1)O(rδ−d)dr = O(ǫδ) as ǫ ↓ 0

⇒ may remove Bǫ(Pk) from suppφ, at o(1)ǫ↓0 cost!

(Points have Hausdorff dimension < d−1, below hypersurfaces. Flux

significant only through surface measure > 0, unless very singular.)
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Proof (piecewise smooth weak solutions)

Given φ ∈ C∞(Ω), suppφ compact, Pk 6∈ suppφ.

Choose finite cover Uj of suppφ so that

each Uj meets exactly one Sj and therefore exactly two Ri.

Smoothly partition φ =
∑

j φj so that suppφj ⊂ Uj.

0
!
=

∫

Ω
f · ∇φ + gφ dx =

∑

j

∫

Uj

f · ∇φj + gφj dx

Sufficient to check “weak solution” in each Uj separately.
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Rankine-Hugoniot

f± limits on R± side.

0
!
=

∫

Uj

f ·∇φ+g φ dx =
∑

σ=±

∫

Rσ

f ·∇φ+g φ dx

R+

R−

xk

n+

S

∫

R±
f · ∇φ + g φ dx =

∫

R±
(−∇ · f + g)
︸ ︷︷ ︸

=0

φ dx +
∫

S
φ f± · n± dS

n± unit normal to S in x ∈ S, outer to R±. Note n− = −n+.

∑

σ=±

∫

S
φ f± · n±dS =

∫

S
φ (f+ − f−) · n+

︸ ︷︷ ︸

=0

dS

if Rankine-Hugoniot condition

(f+ − f−) · n = 0
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Initial condition

et + ∇ · f = g, e = e0 given at t = 0

Multiply with test function φ,
∫

dx,
∫

dt by parts:
∫ ∞

0

∫

Rd
e φt + f · ∇φ + g φ dx dt +

∫

Rd
e0 φ|t=0 dx = 0

Fact: sufficient to check for suppφ ⋐ ( 0,∞) × R
d and

e(t, ·) → e0 in L1
loc(R

d) as t ↓ 0.

as well as f, g ∈ L∞
t ([0,∞);L1

x(K)) for compact K. (assumptions lazy)

θǫ(t) ∈ C∞[0,∞), θǫ =







= 1, 0 ≤ t ≤ ǫ
2,

= 0, ǫ ≤ t < ∞,
θǫ = O(1), θǫ

t = O(ǫ−1).

φ = φ(1 − θǫ)
︸ ︷︷ ︸

t=0 6∈supp

+ φθǫ.

Sufficient to check
∫ ∞

0

∫

Rd
e (θǫφ)t + f · ∇(θǫφ) + g θǫ φ dx dt +

∫

Rd
e φ|t=0 dx = 0
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(θǫφ)t = θǫ
tφ + O(1)ǫ↓0, and µ(t,x) supp(θǫφ) = O(ǫ), so

∫ ∞

0

∫

Rd
e ∂t(θ

ǫφ) dx dt = O(ǫ) +
∫ ∞

0

∫

Rd
e(t, x)
︸ ︷︷ ︸

L1
loc→ e0

θǫ
t(t) φ(t, x)

︸ ︷︷ ︸

L∞
→ φ(0,x)

dx dt

→
∫ ∞

0
θǫ
t ·

∫

Rn
e0(x)φ(0, x)dx dt = −

∫

Rn
e0 φ|t=0dx

∫ ∞

0

∫

Rd
f

︸︷︷︸

=O(1)
L∞

t L1
x

· ∇(θǫφ)
︸ ︷︷ ︸

=O(1)L∞
t L∞

x

+ g
︸︷︷︸

=O(1)
L∞

t L1
x

θǫφ
︸︷︷︸

=O(1)L∞
t L∞

x

dx dt = O(ǫ)

All estimates combined, get
∫ ∞

0

∫

Rd
e φt + f · ∇φ + g φ dx dt +

∫

Rd
e φ|t=0 dx = 0
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Scheffer non-uniqueness

V. Scheffer (1993): ∃ incompressible Euler solutions ~v ∈ L2(Rt ×R
3
x)

with compact support in space-time:

~x

t

~v = 0

~v = 0

~v 6= 0

A. Schnirelman (1996): Different, simpler proof for ~v ∈ L2(Rt ×T
3
x).

External forces

Dafermos (1979), DiPerna (1979): cannot happen in compressible

Euler flow (with entropy condition).

Ã possible misinterpretations:

“No problem if we require conservation of energy.”

“No problem if we consider compressibility.”

De Lellis/Szekelyhidi (ARMA 2008) [MUST READ]: non-uniqueness

example also for compressible Euler, with entropy and energy con-

served.
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De Lellis/Szekelyhidi solutions:

∃ weak entropy solutions U = (̺,~v, T ) ∈ L∞(Rt × R
n
x)

with same initial data.

Compact support in space:
⋃

t

suppU(t, ·) ⋐ R
3

Entropy and energy conserved, can be considered “shock-free”.

⇒ vorticity is the cause of non-uniqueness

“Hope: problem absent for ‘most’ initial data.”

De Lellis/Szekelyhidi: non-uniqueness for residual (complement count-

able union of nowhere dense sets in L2) set of initial data.

“De Lellis/Szekelyhidi solutions are ‘crazy’.”

What else if not L∞? Compressible Euler requires space with dis-

continuities; BV too narrow for multi-d (Rauch 1986).

“Nuisance for theory, but no practical relevance.”

Problem has shown up in numerics and even physics, but underesti-

mated →
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Initial data (and steady entropy solution)

September 2002:

M ≫ 1
shock

solid

Experiment (easier due to Cartesian uni-

form grid):

M ≫ 1
shock

contact

same ρ, T
v = 0
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Second solution nuqst-jpg

Essentially same numerical solution for:

X Lax-Friedrichs, Godunov, Solomon-Osher, local Lax-Friedrichs

X plain first-order, or second-order corrections (slope limiter)

X isentropic and non-isentropic Euler, γ = 7/5, 5/3, ...

X Cartesian or adaptive aligned grids

X (t, x) and (t, x/t) coordinates

Same initial data, but

numerical solution 6≈ theoretical solution

⇒ Non-uniqueness not a mere mathematical curiosity, but affects

numerics and applications

Note: solution piecewise smooth, unlike de Lellis/Szekelyhidi exam-

ples
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Lax-Wendroff theorem

Lax-Wendroff theorem: numerical scheme

1. conservative,

2. consistent,

3. has discrete entropy inequality,

4. converges as grid becomes infinitely fine,

then limit is entropy solution.

Godunov scheme: 1-3 known to be satisfied, 4 seems to apply

Ã If convergence, then second solution is entropy, too.
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Trouble for popular numerical schemes
Cell

t

uℓ

x = 0
ur

x

boundary

On this grid, Godunov scheme (with exact arithmetic) converges

(trivially) to theoretical solution.

On other grids (with realistic arithmetic): convergence to different

solution observed.

(Proof? Even if wrong, no convergence on reasonably fine grids)

Forget about convergence theory in ≥ 2 dimensions

“The theoretical (steady) solution is ‘unstable’ and we may expect

the second solution to be the unique physically correct one?”
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Carbuncles

[Peery/Imlay 1988]

M ≫ 1

Shock

blunt
body
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Triggering carbuncles reliably

Carbuncles: present in Godunov scheme, Roe scheme, higher-order

schemes, apparently absent in Lax-Friedrichs.

Hard to suppress, or trigger, reliably

Trick: generate a thin filament of reduced horizontal velocity

dyncarb-jpg

Result: impinges on shock, produces large-scale perturbation

Similar to initial data in non-uniqueness example
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[Kalkhoran/Sforza/Wang 1991]
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Conclusions

1. “Non-uniqueness will be cured by better analysis and numerics”

2. “Numerical schemes with enough dissipation (Lax-Friedrichs) will

not produce carbuncles. Challenge is merely to minimize dissipation

while preserving correctness.”

Kalkhoran/Sforza/Wang 1991, Ramalho/Azevedo 2009, Elling 2009:

carbuncle physically meaningful

3. “If we have uniqueness in Hs, but not in Hs−ǫ, then Hs is the

right space.”

Planar shocks more regular than carbuncle, but sometimes carbuncle

is correct.
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[Colella/Woodward 1983]
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Pullin (1989) separated sheet ssbr/manymany.vs splitsheet

Vortex

sheet

t = 0

t > 0

t > 0

x ∼ t growth

Current state: gap between two groups of counterexamples,

rigorous but irregular vs. piecewise smooth but unproven.

“De Lellis/Szekelyhidi solutions ‘crazy’. Non-uniqueness can proba-

bly be avoided by narrowing function space or finding stronger ad-

missibility condition.”

→ Pullin solution contains only physically reasonable features
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Pullin (1989) separated sheet

Vortex

sheet

t = 0

t > 0

t > 0

x ∼ t growth

Non-uniqueness example for (incompressible) Euler.

My main research focus: get a rigorous proof.

[⊲ flv]
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Lopes/Lowengrub/Lopes/Zheng (2006)
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Conjectures/conclusions

Navier-Stokes/Boltzmann/...: Near-instability. Consider

ǫ ↓ 0

(limit of zero heat conduction and viscosity µ/mean free path/...).

For each ǫ ' 0 have solution Wǫ so that

d(U(0), Wǫ(0))→0 but d(U(t), Wǫ(t)) 6→0 as ǫ ↓ 0

⇓

Euler: Nonuniqueness: ∃ solution W0 so that

d(U(0), W0(0))=0 but d(U(t), W0(t)) 6=0.
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(Near-)Instability — philosophical considerations

“Only stable solutions matter: unstable ones are destroyed by ran-

domness/measurement errors.”

Water (liquid)

Vapor

Surface tensionEvaporation

→ worst of all worlds: instabilities are sometimes triggered.

Paradox: turbulent flow may be easier to compute than laminar?

Source of randomness (?) triggers instabilities.
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Numerics: why Euler?
y

~v

y

~v
Boundary layer
d ∼ 1mm − 1cm

SolidSolid

Physical domain ∼ 10m, boundary layer ∼ 1mm, ratio 104

Three space dimensions Ã 1012 grid cells

Plus: time stepping (CFL constraint ∆t . ∆x)

or: iteration to equilibrium (if any)

⇒ let’s pray a coarse grid is enough
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How to rescue Euler/large-Reynolds-number numerics?

Subgrid (turbulence) models? Extreme adaptivity? Anisotropic

grids/front tracking?

1. Quantify instability, randomness

2. Obtain statistical averages

3. Will fail for some applications (forecasting hourly weather 100

days from now):

give up

The “unreasonable effectiveness of mathematics” (E. Wigner) ends

here.

Modelling with differential equations requires that the space-time

continuum limit is valid:

no propagation of errors from infinitely small to large scales.
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My projects

1. Prove

a. existence of sheet separation as incompressible Euler solution,

b. generalize to compressible Euler,

c. then Navier-Stokes

Goal: find non-uniqueness examples that are

$ rigorously proven, and

☼ cannot be criticized as unphysical

(contain only physically observed features)

2. Vorticity is cause of non-uniqueness — try compressible potential

flow? Conjecture: uniqueness, stability, existence at least for small

data. (Admissibility condition?!)
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