Existence of algebraic vortex spirals and ill-posedness of inviscid flow

Volker Elling

S.I.S.S.A. Trieste, June 6-10, 2011

Compressible Navier-Stokes and Euler equations

$$
\begin{array}{rlrl}
\varrho_{t}+\nabla \cdot(\varrho \vec{v}) & & 0, & \text { [mass] } \\
(\varrho \vec{v})_{t}+\nabla \cdot(\varrho \vec{v} \otimes \vec{v}) & & +\nabla p & =\nabla^{T} S, \\
(\varrho e)_{t}+\underbrace{\nabla \cdot(\varrho e \vec{v})}_{\text {convection }}+\underbrace{\nabla \cdot(p \vec{v})}_{\text {pressure }} & =\underbrace{\nabla \cdot(S \vec{v})}_{\text {viscosity }}+\underbrace{\nabla \cdot(\kappa \nabla T)}_{\text {heat conduction }} & & \text { [momentum] } \\
& &
\end{array}
$$

where ϱ density, \vec{v} velocity, T temperature (functions of t, x)

$$
\begin{aligned}
S & =2 \mu\left(\frac{1}{2}\left(\nabla \vec{v}+\nabla \vec{v}^{T}\right)-\frac{1}{3} \nabla \cdot \vec{v}\right), \\
e & =q+\frac{1}{2}|\vec{v}|^{2}, \\
p, q, \kappa, \mu & =\text { functions of } \varrho, T .
\end{aligned}
$$

p pressure, q specific internal energy, e specific energy, S viscous stress. κ heat conductivity, μ viscosity coefficient.

Euler $=$ Navier-Stokes without the blue terms.

Pressure law ("equation of state") (ϱ mass density, q heat per mass): Polytropic:

$$
p(\varrho, q)=(\gamma-1) \varrho q=\frac{2}{F} \varrho q
$$

$\gamma=\frac{F+2}{F}$ where F is "number of degrees of freedom" per particle.
$\gamma=\frac{5}{3}$ for monatomic gas, $\gamma=\frac{7}{5}$ for diatomic gas, $\gamma=\frac{4}{3}$ otherwise (actual gas more complicated)

Boltzmann equipartition "theorem": equal time averages $\frac{1}{2} k T$ of kinetic energy $\frac{M}{2} v^{2}$ in each degree of freedom of each of N particles; only normal direction yields pressure on wall $\rightsquigarrow p$ formula

Entropy transport: consider smooth $\varrho, v, q ; e=q+\frac{1}{2}|v|^{2}$.

$$
\begin{aligned}
0 & =\varrho_{t}+\nabla \cdot(\varrho v)=\varrho_{t}+v \cdot \nabla \varrho+\varrho \nabla \cdot v \\
0 & =(\varrho v)_{t}+\nabla \cdot(\varrho v \otimes v)+\nabla p \\
& =\varrho v_{t}+v \varrho_{t}+\varrho v \cdot \nabla v+v \nabla \cdot(\varrho v)+\nabla p \\
\Rightarrow \quad 0 & =v_{t}+v \cdot \nabla v+\varrho^{-1} \nabla p \\
0 & =(\varrho e)_{t}+\nabla \cdot(\varrho e v)+\nabla \cdot(p v) \\
& =\varrho_{t}+e \varrho_{t}+\varrho v \cdot \nabla e+e \nabla \cdot(\varrho v)+\nabla \cdot(p v) \\
\Rightarrow \quad 0 & =e_{t}+v \cdot \nabla e+\varrho^{-1} \nabla \cdot(p v) \\
& =q_{t}+v_{t} \cdot v+v \cdot \nabla q+v \cdot \nabla v \cdot v+\varrho^{-1} p \nabla \cdot v+\varrho^{-1} \nabla p \cdot v \\
\Rightarrow \quad 0 & =q_{t}+v \cdot \nabla q+\varrho^{-1} p(\varrho, q) \nabla \cdot v \\
s(\varrho, q)_{t}+v \cdot \nabla s(\varrho, q) & =s_{\varrho}\left(\varrho_{t}+v \cdot \nabla \varrho\right)+s_{q}\left(q_{t}+v \cdot \nabla q\right) \\
& =-\nabla \cdot v\left(s_{\varrho}(\varrho, q) \varrho+s_{q}(\varrho, q) \varrho^{-1} p(\varrho, q)\right)
\end{aligned}
$$

First-order PDE for $s(\varrho, q)$: method of characteristics. Example: most common choice $p=(\gamma-1) \varrho q$ yields gas-dynamic entropy

$$
s=C_{1}(\log q+(1-\gamma) \log \varrho)+C_{2}
$$

Isentropic Euler: if s is constant in x at $t=0$:

$$
s_{t}+v \cdot \nabla s=0
$$

hence same constant for all $t>0$.
(False for non-smooth flow: shocks produce (physical) entropy.)

$$
\begin{aligned}
s & =\text { constant }=C_{1}(\log q+(1-\gamma) \log \varrho)+C_{2} \\
q & =C(s) \varrho^{\gamma-1}, \quad p(\varrho, q)=C \varrho q=C \varrho^{\gamma} \\
0 & =\varrho_{t}+\nabla \cdot(\varrho v) \\
0 & =(\varrho v)_{t}+\nabla \cdot(\varrho v \otimes v)+\nabla(p(\varrho))
\end{aligned}
$$

Smooth solutions are full (non-isentropic) Euler solutions. Weak solutions are not; but close if shocks weak.

$$
\begin{gathered}
0=v_{t}+v \cdot \nabla v+\varrho^{-1} \nabla(p(\varrho))=v_{t}+v \cdot \nabla v+\nabla(\pi(\varrho)) \\
\pi_{\varrho}=\frac{p_{\varrho}}{\varrho} \quad, \quad \pi(\varrho)=C^{\prime} \varrho^{\gamma-1}
\end{gathered}
$$

Potential flow (compressible)

Assume $\nabla \times v=0$. Then $v=\nabla \phi$ (velocity potential ϕ). $\nabla^{2}=\nabla \nabla^{T}$
$0=v_{t}+v \cdot \nabla v+\nabla(\pi(\varrho))=\nabla \partial_{t} \phi+\nabla^{2} \phi \nabla \phi+\nabla(\pi(\varrho))=\nabla\left(\partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}+\pi(\varrho)\right)$

$$
\begin{gathered}
\Rightarrow \partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}+\pi(\varrho)=\text { const (Bernoulli) } \\
\varrho=\pi^{-1}\left(C-\partial_{t} \phi-\frac{1}{2}|\nabla \phi|^{2}\right), \quad 0=\varrho_{t}+\nabla \cdot(\varrho \nabla \phi) \\
0=\left(\pi^{\prime}\right)^{-1}\left(-\phi_{t t}-\nabla \phi \cdot \nabla \phi_{t}\right)+\left(\pi^{\prime}\right)^{-1} \nabla \phi \cdot\left(-\nabla \phi_{t}-\nabla^{2} \phi \nabla \phi\right)+\varrho \Delta \phi
\end{gathered}
$$

$$
0=-\phi_{t t}-2 \nabla \phi \cdot \nabla \phi_{t}-\nabla \phi^{T} \nabla^{2} \phi \nabla \phi+(\underbrace{\frac{d \pi}{d \varrho}}_{c^{2}}) \Delta \phi
$$

$0=\left[\begin{array}{cc}c^{2} I-\nabla \phi \nabla \phi^{T} & -\nabla \phi \\ -\nabla \phi^{T} & -1\end{array}\right]: \hat{\nabla}^{2} \phi, \quad \hat{\nabla}=\left(\nabla, \partial_{t}\right), \quad A: B=\operatorname{tr}\left(A^{T} B\right)$
Hyperbolic (if $c>0$, true unless vacuum or strange pressure law):
Symmetric coefficient matrix, 1 negative, n positive eigenvalues

Symmetries

1. Rotation/reflection: Q orthogonal,

$$
x^{\prime}=Q x, \quad v^{\prime}\left(x^{\prime}, t\right)=Q v(x, t), \quad \varrho^{\prime}\left(x^{\prime}, t\right)=\varrho(x, t), \quad q^{\prime}\left(x^{\prime}, t\right)=q(x, t)
$$

Exercise: if v, ϱ, q solution, then $v^{\prime}, \varrho^{\prime}, q^{\prime}$ also.
2. Change of inertial frame: new origin at speed w relative to old,

$$
x^{\prime}=x-w t, \quad v^{\prime}=v-w, \quad \varrho^{\prime}=\varrho, \quad q^{\prime}=q
$$

Both combined: Galilean invariance (non-relativistic) Navier-Stokes, Euler (compressible/not), potential flow \checkmark (including weak/entropy solutions later). For some p (polytropic): additional symmetries involving ρ, q.

Checking hyperbolic

$0=\left[\begin{array}{cc}c^{2} I-\nabla \phi \nabla \phi^{T} & -\nabla \phi \\ -\nabla \phi^{T} & -1\end{array}\right]: \hat{\nabla}^{2} \phi, \quad \hat{\nabla}=\left(\nabla, \partial_{t}\right), \quad A: B=\operatorname{tr}\left(A^{T} B\right)$
Change to coordinates of observer travelling with velocity $v=\nabla \phi$ \rightsquigarrow his equation

$$
0=\left[\begin{array}{cc}
c^{2} I & 0 \\
0 & -1
\end{array}\right]: \hat{\nabla}^{2} \phi, \quad \hat{\nabla}=\left(\nabla, \partial_{t}\right), \quad A: B=\operatorname{tr}\left(A^{T} B\right)
$$

Now obvious: n eigenvalues c^{2}, one eigenvalue -1 .

Linear wave equation

$$
0=-\phi_{t t}-2 \nabla \phi \cdot \nabla \phi_{t}-\nabla \phi^{T} \nabla^{2} \phi \nabla \phi+c^{2} \nabla^{2} \phi
$$

Linearize around $v=\nabla \phi \approx 0$: linear wave equation

$$
0=-\tilde{\phi}_{t t}-0-0+c^{2} \Delta \tilde{\phi}
$$

Models sound waves ("acoustics")

Linearize around $\nabla \phi \approx v=$ const:

$$
0=-\tilde{\phi}_{t t}-2 v \cdot \nabla \tilde{\phi}_{t}+\left(c^{2}-v v^{T}\right): \nabla^{2} \tilde{\phi}
$$

(Can obtain from $0=c^{2} \Delta \tilde{\phi}-\tilde{\phi}_{t t}$ by "change of observer".)

Subsonic/supersonic flow, Mach number

Given Euler solution, localized perturbation at $t=0$, linearize:

Subsonic flow ($M<1$): disturbances propagate in all directions Supersonic: propagate (in linearization) only inside the Mach cone

$$
\alpha=\arcsin \frac{c t}{|v| t}=\arcsin \frac{1}{M}
$$

α Mach angle

$$
\frac{y}{x}=\frac{\sin \alpha}{\cos \alpha}=\frac{1 / M}{\sqrt{1-(1 / M)^{2}}}=\frac{1}{\sqrt{M^{2}-1}}
$$

Incompressible limit

$$
p(\varrho)=\epsilon^{-1} \tilde{p}(\varrho) \quad \epsilon \downarrow 0
$$

(Air: $c=340 \frac{m}{s}, \gg v$ in many applications)

$$
\begin{gathered}
c^{2}=\frac{d p}{d \varrho}(\varrho)=\epsilon^{-1} \frac{d \tilde{p}}{d \varrho}(\varrho) \quad, \quad \pi(\varrho)=\epsilon^{-1} \tilde{\pi}(\varrho) \\
\varrho=\varrho_{0}+\epsilon \varrho_{1}+\ldots, \quad v=v_{0}+\epsilon v_{1}+\ldots \quad \rightsquigarrow \quad \tilde{\pi}(\varrho)=\pi_{0}+\pi_{1} \epsilon+\ldots \\
0=\rho_{t}+\nabla \cdot(\rho v) \quad, \quad 0=v_{t}+\nabla \cdot(v \otimes v)+\epsilon^{-1} \nabla \tilde{\pi}
\end{gathered}
$$

Order $\epsilon^{-1}: \quad \nabla \tilde{\pi}_{0}=0 \Rightarrow \varrho_{0}=$ const >0
Order $\epsilon^{0}: \quad 0=\varrho_{0 t}+\nabla \cdot\left(\varrho_{0} v_{0}\right) \quad \Rightarrow \quad 0=\nabla \cdot v_{0}$

$$
0=v_{0 t}+\nabla \cdot\left(v_{0} \otimes v_{0}\right)+\nabla \pi_{1}
$$

(requires smoothness; details: e.g. Klainerman/Majda, CPAM 1982)
Loosely speaking: Isentropic Euler = potential flow+ incompressible Euler
With viscosity: incompressible Navier-Stokes

$$
v_{t}+\nabla \cdot(v \otimes v)+\varrho^{-1} \nabla \pi=\nu \Delta v
$$

Scaling

Consider steady incompressible Navier-Stokes:

$$
\begin{gathered}
\nabla \cdot(v \otimes v)+\nabla \pi=\nu \Delta v \quad, \quad \nabla \cdot v=0 \\
v=0 \quad \text { on surface }, \quad v \rightarrow v_{\infty} \quad \text { as } x \rightarrow \infty
\end{gathered}
$$

Three parameters ($L, \nu, v_{\infty}>0$) reduced to one: Reynolds number:

$$
\operatorname{Re}=\frac{\left|v_{\infty}\right| L}{\nu} \quad \text { dimensionless }
$$

Interesting limits: $\left|v_{\infty}\right| \rightarrow \infty$, or $L \rightarrow \infty$, or $\nu \downarrow 0$ all lead to incompressible Euler (formally)

Similar technique for compressible (more parameters)

Euler as a scaling limit

System of conservation laws for $U=(\varrho, \varrho \vec{v}, \varrho q)$:

$$
\underbrace{\nabla \cdot \vec{f}(U)}_{\text {first-order }}=\nabla \cdot(A(U) \nabla U)
$$

If U solution, then $U_{\epsilon}(\vec{x}):=U\left(\frac{\vec{x}}{\epsilon}\right)$ [= considering large scale] solves

$$
\begin{aligned}
\epsilon \nabla \cdot \vec{f}\left(U_{\epsilon}\right) & =\epsilon^{2} \nabla \cdot\left(A\left(U_{\epsilon}\right) \nabla U_{\epsilon}\right) \\
\nabla \cdot \vec{f}\left(U_{\epsilon}\right) & =\epsilon \nabla \cdot\left(A\left(U_{\epsilon}\right) \nabla U_{\epsilon}\right)
\end{aligned}
$$

Same principle for other higher-order terms (dispersive, ...).

At large scales, least-order terms "dominate"

Conservation Iaws:

$U=\left(\varrho, \varrho v^{x}, \varrho v^{y}, \varrho v^{z}, \varrho e\right)$ densities of mass, momentum, energy.

$$
U_{t}+\nabla \cdot(f(U, \nabla U))=0
$$

Formally: $\int d x \rightarrow$

$$
0=\frac{d}{d t} \int U(t, x) d x+\int \nabla \cdot(f(U)) d x=\frac{d}{d t} \int U(t, x) d x+0
$$

on compact boundary-less manifolds, e.g. \mathbb{T}^{d} torus.

Complications:

1. boundaries (solid: no flow of mass, but flow of momentum; flow of energy if moving)
2. unbounded domains (mass infinite, must consider local conservation carefully)
3. source terms (gravitation in momentum/energy equation, ...):

$$
U_{t}+\nabla \cdot(f(U))=g(U)
$$

Balance laws

Discontinuity formation for compressible flow:

Shock waves: discontinuity in $\varrho, q, v \cdot n$.
Vortex sheets: discontinuity in $v \cdot t$.

"It is not clear whether singularities form."
Not for incompressible Euler, but for compressible it is clear.
Long term goal: well-posedness theory for Euler and convergence theory for numerics.
\rightarrow Must deal with vortex sheets and shock waves.

Supersonic flow onto wedges

Concorde, military jets, space shuttle:

Challenge: find a notion of solution that includes non-differentiable and even discontinuous functions. Compressible Euler:

$$
U_{t}+\nabla \cdot f(U)=0 \quad t \geq 0, x \in \mathbb{R}^{d}
$$

Multiply with smooth compactly supported ϕ, integrate:
$0=\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \phi U_{t}+\phi \nabla \cdot f(U) d x d t=-\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \phi_{t} U+f(U) \cdot \nabla \phi d x d t-\int_{\mathbb{R}^{d}}(U \phi)_{\mid t=0} d x$
U "weak solution" if satisfied for all ϕ.

Discontinuities as weak solutions

For moving shocks (speed σ): $\left(f\left(U_{+}\right)-f\left(U_{-}\right)\right) \cdot n=\sigma\left(U_{+}-U_{-}\right)$.

$$
[f(U) \cdot n]=\sigma[U]
$$

Traffic jams:

Whitham traffic flow model: car density $\varrho \geq 0$ (scalar), velocity $v(\varrho)=\max \{1-\varrho, 0\}$, flux $f(\varrho)=\varrho v(\varrho)$

$$
0=\varrho_{t}+f(\varrho)_{x}=\varrho_{t}+f_{\varrho}(\varrho) \varrho_{x}
$$

\rightsquigarrow characteristics wave speed $f_{\varrho}(\varrho)=1-2 \varrho \quad(\varrho \in[0,1])$
Wave speed depends on state of medium \rightarrow discontinuities may form
Compressible Euler (1d): wave speeds $v-c(\varrho), v, v+c(\varrho)$

Contact discontinuities. 2-d flow:

$v^{x}=v^{z}=0, v^{y}=v^{y}(x)$ in incompressible Navier-Stokes:

$$
v_{t}^{y}=\epsilon v_{x x}^{y} \quad \Rightarrow \quad v^{y}(t, x)=v^{y}\left(\frac{1}{\sqrt{t \epsilon}} x\right) .
$$

Compressible flow: analogous viscous profiles (more complicated) Another type of contact: entropy jumps: $p \sim \varrho T,[p]=0,[\varrho],[T] \neq 0$

Compression and expansion shocks

Shock wave: "width" scales like $\frac{1}{\epsilon}$.

Admissibility conditions

Fluid dynamics main/only source of justifications for definitions.
[Arnold: geodesics on Diffo; Slemrod et al: link between Euler, isometric embedding] Justification is informal, rigorous arguments only supporting role.

Vanishing viscosity condition: admissible $=\epsilon \downarrow 0$ limit (in some sense) of solutions of

Euler $+\epsilon \cdot$ perturbation (Navier-Stokes, Boltzmann, ...)
Entropy condition: $\eta, \vec{\psi}$ entropy-entropy flux pair if

$$
\frac{\partial \eta}{\partial U}(U) \frac{\partial \vec{f}}{\partial U}(U)=\frac{\partial \vec{\psi}}{\partial U}(U) .
$$

\Rightarrow for smooth solutions U of $U_{t}+\nabla \cdot(f(U))$:

$$
\eta(U)_{t}+\nabla \cdot(\vec{\psi}(U))=0
$$

Weak solution U satisfies entropy condition if

$$
\forall \text { convex } \eta: \eta(U)_{t}+\nabla \cdot(\vec{\psi}(U)) \leq 0
$$

Motivation: true for uniform viscosity ΔU, true for Navier-Stokes with $\eta=-\varrho s, s$ entropy per mass (second law of thermodynamics).

Entropy condition for shock waves

For all smooth entropy-flux pairs $(\eta, \vec{\psi})$ with convex η :

$$
\eta(U)_{t}+\nabla \cdot(\vec{\psi}(U)) \leq 0
$$

For n pointing from - to + and for $[A]=A_{+}-A_{-}$:

$$
[\vec{\psi}(U) \cdot n] \leq \sigma[\eta(U)]
$$

Check: satisfied ($<$) for compression shocks, violated ($>$) for expansion shocks.

Shock waves not truly "inviscid": a distributional "ghost" of the viscous/heat conduction terms remains in the zero viscosity/heat conduction coefficient limit

Known uniqueness results

Scalar multi-dimensional conservation laws (..., Kružkov (1970)): uniqueness, vanishing viscosity \Leftrightarrow entropy condition

1-d compressible Euler, small BV/closely related classes: uniqueness (Bressan/Crasta/Piccoli, Bressan/LeFloch, ...), vanishing uniform viscosity limit (Bianchini/Bressan 2005), vanishing Navier-Stokes viscosity limit (Chen/Perepelitsa 2010)

Dafermos/DiPerna: weak-strong uniqueness:
If \exists classical ($\varrho, \vec{v}, T \in$ Lip) solution of multi-d compressible Euler, then no other weak entropy solutions for same initial data.

Piecewise smooth weak solutions

Regions R_{i} separated by C^{1} hypersurfaces S_{j}, meeting in isolated points P_{k}.
$f \in C^{1}\left(R_{i}\right), g \in C^{0}\left(R_{i}\right)$, $\lim f \exists$ on each side in each point of S_{j} except P_{k}.

Fact: $\nabla \cdot f=g$ satisfied in weak sense

$$
0 \stackrel{!}{=} \int_{\Omega} f \cdot \nabla \phi+g \phi d x
$$

a. if satisfied in classical sense in R_{i},
b. f satisfies Rankine-Hugoniot condition at S_{j},
c. f, g not too singular in P_{k} : nearby, with $r=\operatorname{dist}\left(x, P_{k}\right)$,

$$
f(x)=o\left(r^{1-d}\right) \quad, \quad g(x)=O\left(r^{\delta-d}\right) \quad(\delta>0)
$$

Piecewise smooth weak solutions - isolated points

Consider one of the P_{k}. Assume $P_{k}=0$ (coordinate change).

$$
0 \stackrel{!}{=} \int_{\Omega} \nabla \phi \cdot f+\phi g d x
$$

Choose $\theta^{\epsilon}(x)=\theta^{\epsilon}(|x|), \theta^{\epsilon} \in C^{\infty}[0, \infty), \theta^{\epsilon}(r)= \begin{cases}1, & 0 \leq r \leq \frac{\epsilon}{2} \\ 0, & \epsilon \leq r<\infty,\end{cases}$ $\theta^{\epsilon}=O(1), \nabla \theta^{\epsilon}=O\left(\epsilon^{-1}\right)$.

$$
\begin{gathered}
\phi(x)=\underbrace{\phi(x)\left(1-\theta^{\epsilon}(x)\right)}_{P_{k} \notin \text { supp }}+\phi(x) \theta^{\epsilon}(x) \\
\int_{B_{\epsilon}(0)} \nabla\left(\theta^{\epsilon} \phi\right) \cdot f d x=\int_{0}^{\epsilon}\left|\partial B_{r}\right| O\left(\epsilon^{-1}\right) o\left(r^{1-d}\right) d r=o(1) \quad \text { as } \epsilon \downarrow 0 \\
\int_{B_{\epsilon}(0)} \theta^{\epsilon} \phi g d x=\int_{0}^{\epsilon}\left|\partial B_{r}\right| O(1) O\left(r^{\delta-d}\right) d r=O\left(\epsilon^{\delta}\right) \quad \text { as } \epsilon \downarrow 0
\end{gathered}
$$

$$
\Rightarrow \text { may remove } B_{\epsilon}\left(P_{k}\right) \text { from supp } \phi \text {, at } o(1)_{\epsilon \downarrow \bigcirc} \text { cost! }
$$

(Points have Hausdorff dimension $<d-1$, below hypersurfaces. Flux significant only through surface measure >0, unless very singular.)

Proof (piecewise smooth weak solutions)

Given $\phi \in C^{\infty}(\Omega)$, supp ϕ compact, $P_{k} \notin \operatorname{supp} \phi$.

Choose finite cover U_{j} of supp ϕ so that each U_{j} meets exactly one S_{j} and therefore exactly two R_{i}.

Smoothly partition $\phi=\sum_{j} \phi_{j}$ so that $\operatorname{supp} \phi_{j} \subset U_{j}$.

$$
0 \stackrel{!}{=} \int_{\Omega} f \cdot \nabla \phi+g \phi d x=\sum_{j} \int_{U_{j}} f \cdot \nabla \phi_{j}+g \phi_{j} d x
$$

Sufficient to check "weak solution" in each U_{j} separately.

Rankine-Hugoniot

$f_{ \pm}$limits on $R_{ \pm}$side.

$$
0 \stackrel{!}{=} \int_{U_{j}} f \cdot \nabla \phi+g \phi d x=\sum_{\sigma= \pm} \int_{R_{\sigma}} f \cdot \nabla \phi+g \phi d x
$$

$$
\int_{R_{ \pm}} f \cdot \nabla \phi+g \phi d x=\int_{R_{ \pm}} \underbrace{(-\nabla \cdot f+g)}_{=0} \phi d x+\int_{S} \phi f_{ \pm} \cdot n_{ \pm} d S
$$

$n_{ \pm}$unit normal to S in $x \in S$, outer to $R_{ \pm}$. Note $n_{-}=-n_{+}$.

$$
\sum_{\sigma= \pm} \int_{S} \phi f_{ \pm} \cdot n_{ \pm} d S=\int_{S} \phi \underbrace{\left(f_{+}-f_{-}\right) \cdot n_{+}}_{=0} d S
$$

if Rankine-Hugoniot condition

$$
\left(f_{+}-f_{-}\right) \cdot n=0
$$

Initial condition

$$
e_{t}+\nabla \cdot f=g, \quad e=e_{0} \text { given at } t=0
$$

Multiply with test function $\phi, \int d x, \int d t$ by parts:

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{d}} e \phi_{t}+f \cdot \nabla \phi+g \phi d x d t+\int_{\mathbb{R}^{d}} e_{0} \phi_{\mid t=0} d x=0
$$

Fact: sufficient to check for supp $\phi \Subset(0, \infty) \times \mathbb{R}^{d}$ and

$$
e(t, \cdot) \rightarrow e_{0} \quad \text { in } L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right) \text { as } t \downarrow 0 .
$$

as well as $f, g \in L_{t}^{\infty}\left([0, \infty) ; L_{x}^{1}(K)\right)$ for compact K. (assumptions lazy)
$\theta^{\epsilon}(t) \in C^{\infty}[0, \infty), \theta^{\epsilon}=\left\{\begin{array}{ll}=1, & 0 \leq t \leq \frac{\epsilon}{2}, \\ =0, & \epsilon \leq t<\infty,\end{array} \quad \theta^{\epsilon}=O(1), \theta_{t}^{\epsilon}=O\left(\epsilon^{-1}\right)\right.$.

$$
\phi=\underbrace{\phi\left(1-\theta^{\epsilon}\right)}_{t=0 \notin \text { supp }}+\phi \theta^{\epsilon} .
$$

Sufficient to check

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{d}} e\left(\theta^{\epsilon} \phi\right)_{t}+f \cdot \nabla\left(\theta^{\epsilon} \phi\right)+g \theta^{\epsilon} \phi d x d t+\int_{\mathbb{R}^{d}} e \phi_{\mid t=0} d x=0
$$

$\left(\theta^{\epsilon} \phi\right)_{t}=\theta_{t}^{\epsilon} \phi+O(1)_{\epsilon \downarrow 0}$, and $\mu_{(t, x)} \operatorname{supp}\left(\theta^{\epsilon} \phi\right)=O(\epsilon)$, so

$$
\begin{gathered}
\int_{0}^{\infty} \int_{\mathbb{R}^{d}} e \partial_{t}\left(\theta^{\epsilon} \phi\right) d x d t=O(\epsilon)+\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \underbrace{e(t, x)}_{\substack{L_{l o c}^{1}}} e_{t}^{\epsilon}(t) \underbrace{\phi(t, x)}_{\xrightarrow{L_{0}^{\infty} \phi(0, x)}} d x d t \\
\rightarrow \int_{0}^{\infty} \theta_{t}^{\epsilon} \cdot \int_{\mathbb{R}^{n}} e_{0}(x) \phi(0, x) d x d t=-\int_{\mathbb{R}^{n}} e_{0} \phi_{\mid t=0} d x
\end{gathered}
$$

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \underbrace{f}_{=O(1)_{L_{t}^{\infty} L_{x}^{1}}}=\underbrace{\nabla\left(\theta^{\epsilon} \phi\right)}_{O(1)_{L_{t}^{\infty}} L_{x}^{\infty}}+\underbrace{g}_{=O(1)_{L_{t}^{\infty}}^{L_{x}^{1}}} \underbrace{\theta^{\epsilon} \phi}_{(1)_{L_{t}^{\infty}}^{L_{x}^{\infty}}} d x d t=O(\epsilon)
$$

All estimates combined, get

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{d}} e \phi_{t}+f \cdot \nabla \phi+g \phi d x d t+\int_{\mathbb{R}^{d}} e \phi_{\mid t=0} d x=0
$$

Scheffer non-uniqueness

V. Scheffer (1993): \exists incompressible Euler solutions $\vec{v} \in L^{2}\left(\mathbb{R}_{t} \times \mathbb{R}_{x}^{3}\right)$ with compact support in space-time:

A. Schnirelman (1996): Different, simpler proof for $\vec{v} \in L^{2}\left(\mathbb{R}_{t} \times \mathbb{T}_{x}^{3}\right)$.

Dafermos (1979), DiPerna (1979): cannot happen in compressible Euler flow (with entropy condition).
\leadsto possible misinterpretations:
"No problem if we require conservation of energy."
"No problem if we consider compressibility."

De Lellis/Szekelyhidi (ARMA 2008) [MUST READ]: non-uniqueness example also for compressible Euler, with entropy and energy conserved.

De Lellis/Szekelyhidi solutions:

\exists weak entropy solutions $U=(\varrho, \vec{v}, T) \in L^{\infty}\left(\mathbb{R}_{t} \times \mathbb{R}_{x}^{n}\right)$ with same initial data.

$$
\text { Compact support in space: } \bigcup_{t} \operatorname{supp} U(t, \cdot) \Subset \mathbb{R}^{3}
$$

Entropy and energy conserved, can be considered "shock-free".
\Rightarrow vorticity is the cause of non-uniqueness
"Hope: problem absent for 'most’ initial data."
De Lellis/Szekelyhidi: non-uniqueness for residual (complement countable union of nowhere dense sets in L^{2}) set of initial data.
"De Lellis/Szekelyhidi solutions are 'crazy'."
What else if not L^{∞} ? Compressible Euler requires space with discontinuities; BV too narrow for multi-d (Rauch 1986).
"Nuisance for theory, but no practical relevance."
Problem has shown up in numerics and even physics, but underestimated \rightarrow

Initial data (and steady entropy solution)

September 2002:

Second solution

Essentially same numerical solution for:
\checkmark Lax-Friedrichs, Godunov, Solomon-Osher, Iocal Lax-Friedrichs
\checkmark plain first-order, or second-order corrections (slope limiter)
\checkmark isentropic and non-isentropic Euler, $\gamma=7 / 5,5 / 3, \ldots$
\checkmark Cartesian or adaptive aligned grids
$\checkmark(t, x)$ and $(t, x / t)$ coordinates

Same initial data, but
numerical solution $\not \approx$ theoretical solution

\Rightarrow Non-uniqueness not a mere mathematical curiosity, but affects numerics and applications

Note: solution piecewise smooth, unlike de Lellis/Szekelyhidi examples

Lax-Wendroff theorem

Lax-Wendroff theorem: numerical scheme

1. conservative,
2. consistent,
3. has discrete entropy inequality,
4. converges as grid becomes infinitely fine, then limit is entropy solution.

Godunov scheme: 1-3 known to be satisfied, 4 seems to apply
\rightsquigarrow If convergence, then second solution is entropy, too.

Trouble for popular numerical schemes

On this grid, Godunov scheme (with exact arithmetic) converges (trivially) to theoretical solution.
On other grids (with realistic arithmetic): convergence to different solution observed.
(Proof? Even if wrong, no convergence on reasonably fine grids)

$$
\text { Forget about convergence theory in } \geq 2 \text { dimensions }
$$

"The theoretical (steady) solution is 'unstable’ and we may expect the second solution to be the unique physically correct one?"

Carbuncles

Triggering carbuncles reliably

Carbuncles: present in Godunov scheme, Roe scheme, higher-order schemes, apparently absent in Lax-Friedrichs.

Hard to suppress, or trigger, reliably

Trick: generate a thin filament of reduced horizontal velocity
dyncarb-jpg

Result: impinges on shock, produces large-scale perturbation

Similar to initial data in non-uniqueness example

[Kalkhoran/Sforza/Wang 1991]

Conclusions

1. "Non-uniqueness will be cured by better analysis and numerics"
2. "Numerical schemes with enough dissipation (Lax-Friedrichs) will not produce carbuncles. Challenge is merely to minimize dissipation while preserving correctness."

Kalkhoran/Sforza/Wang 1991, Ramalho/Azevedo 2009, Elling 2009: carbuncle physically meaningful
3. "If we have uniqueness in H^{s}, but not in $H^{s-\epsilon}$, then H^{s} is the right space."
Planar shocks more regular than carbuncle, but sometimes carbuncle is correct.
[Colella/Woodward 1983]

$d t=1.00 e-02 \quad$ cournt $=0.800$.

$$
30 \text { sontours: } 9.668 \%-0 t \text { to } 7.456 \mathrm{e}+00
$$

$$
\begin{array}{ll}
\text { dnvide } & \text { g. } 7 / 8 \mathrm{t}-\mathrm{C} \\
=424 \quad & t=4.015
\end{array}
$$

$$
\begin{aligned}
& \text { ganvide } \\
& n=42^{4}
\end{aligned}
$$

$$
t=-01555 t+00
$$

DENSITY $\quad d t=4.59 e-33 \quad$ cournt $n=0.800$:

$$
30 \text { contours: } 0.438 p-01 \text { to } \quad 6.578 e * 00
$$

DENSITY
Stx2 51e-03 courat $=0$. B00:
30 otxe. 51 E03 cournt $=0.800$: PPMLR

Pullin (1989) separated sheet

Current state: gap between two groups of counterexamples, rigorous but irregular vs. piecewise smooth but unproven.
"De Lellis/Szekelyhidi solutions 'crazy'. Non-uniqueness can probably be avoided by narrowing function space or finding stronger admissibility condition."
\rightarrow Pullin solution contains only physically reasonable features

Pullin (1989) separated sheet

Non-uniqueness example for (incompressible) Euler.

My main research focus: get a rigorous proof.
[$\triangleright \mathrm{flv}$]

Lopes/Lowengrub/Lopes/Zheng (2006)

Conjectures/conclusions

Navier-Stokes/Boltzmann/...: Near-instability. Consider

$$
\epsilon \downarrow 0
$$

(limit of zero heat conduction and viscosity $\mu /$ mean free path/...). For each $\epsilon \gtrsim 0$ have solution W_{ϵ} so that

$$
d\left(U(0), W_{\epsilon}(0)\right) \rightarrow 0 \quad \text { but } \quad d\left(U(t), W_{\epsilon}(t)\right) \nrightarrow 0 \quad \text { as } \epsilon \downarrow 0
$$

$$
\Downarrow
$$

Euler: Nonuniqueness: \exists solution W_{0} so that

$$
d\left(U(0), W_{0}(0)\right)=0 \quad \text { but } \quad d\left(U(t), W_{0}(t)\right) \neq 0
$$

(Near-)Instability - philosophical considerations

"Only stable solutions matter: unstable ones are destroyed by randomness/measurement errors."

\rightarrow worst of all worlds: instabilities are sometimes triggered.

Paradox: turbulent flow may be easier to compute than laminar? Source of randomness (?) triggers instabilities.

Numerics: why Euler?

Physical domain $\sim 10 \mathrm{~m}$, boundary layer $\sim 1 \mathrm{~mm}$, ratio 10^{4} Three space dimensions $\rightsquigarrow 10^{12}$ grid cells
Plus: time stepping (CFL constraint $\Delta t \lesssim \Delta x$)
or: iteration to equilibrium (if any)
\Rightarrow let's pray a coarse grid is enough

How to rescue Euler/large-Reynolds-number numerics?

Subgrid (turbulence) models? Extreme adaptivity? Anisotropic grids/front tracking?

1. Quantify instability, randomness
2. Obtain statistical averages
3. Will fail for some applications (forecasting hourly weather 100 days from now):
```
give up
```

The "unreasonable effectiveness of mathematics" (E. Wigner) ends here.

Modelling with differential equations requires that the space-time continuum limit is valid:
no propagation of errors from infinitely small to large scales.

My projects

1. Prove
a. existence of sheet separation as incompressible Euler solution,
b. generalize to compressible Euler,
c. then Navier-Stokes

Goal: find non-uniqueness examples that are
\$ rigorously proven, and
cannot be criticized as unphysical
(contain only physically observed features)
2. Vorticity is cause of non-uniqueness - try compressible potential flow? Conjecture: uniqueness, stability, existence at least for small data. (Admissibility condition?!)

