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Euler-Poisson Equations

One dimensional Euler-Poisson equations:
ρt + (ρu)x = 0,

(ρu)t + (p(ρ) + ρu2)x = ρE ,

Ex = ρ− b(x).

(1)

Background: the propagation of electrons in submicron
semiconductor devices and plasmas, and the biological transport of
ions for channel proteins.
In the hydrodynamical model of semiconductor devices or plasma,
u, ρ and p represent the average particle velocity, electron density
and pressure, respectively, E is the electric filed, which is generated
by the Coulomb force of particles. b(x) > 0 stands for the density
of fixed, positively charged background ions.

Assumption on p:

p(0) = p′(0) = 0, p′(ρ) > 0, p′′(ρ) ≥ 0, for ρ > 0, p(+∞) = +∞.
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Steady Equations and Boundary Conditions

Steady Euler-Poisson equations:
(ρu)x = 0,

(p(ρ) + ρu2)x = ρE ,

Ex = ρ− b(x).

(2)

Boundary conditions:

(ρ, u,E )(0) = (ρl , ul ,El), (ρ, u)(L) = (ρr , ur ). (3)

We assume ul > 0 and ur > 0. By the first equation in (2), we
know that ρu(x) = constant(0 ≤ x ≤ L), so the boundary data
should satisfy

ρlul = ρrur .
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Alternative Equations and Boundary Conditions

If one denotes
ρlul = ρrur = J > 0,

then ρu(x) = J(0 ≤ x ≤ L) and the velocity is given by

u = J/ρ.

Thus the boundary value problem for system (2) reduces to{
(p(ρ) + J2

ρ )x = ρE ,

Ex = ρ− b(x),
(4)

with the boundary conditions:

(ρ,E )(0) = (ρl ,El), ρ(L) = ρr . (5)
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Transonic Shock Solutions

We use the terminology from gas dynamics to call c =
√
p′(ρ) the

sound speed. There is a unique solution ρ = ρs satisfying
p′(ρ) = J2/ρ2, which is the sonic state (recall that J = ρu). Later
on, the flow is called supersonic (subsonic) if

p′(ρ) < (>)J2/ρ2, i .e. ρ < (>)ρs .

Transonic shock solutions:

(ρ,E ) =

{
(ρsup,Esup)(x), 0 < x < x0,

(ρsub,Esub)(x), x0 < x < L,

satisfying the Rankine-Hugoniot conditions(
p(ρ) +

J2

ρ

)
(x0−) =

(
p(ρ) +

J2

ρ

)
(x0+), E (x0−) = E (x0+),

and is supersonic behind the shock and subsonic ahead of the
shock, i.e.,

ρsup(x0−) < ρs < ρsub(x0+).
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Known Results

I A boundary value problem for (4) was discussed for a linear
pressure function of the form p(ρ) = kρ with the boundary
condition ρ(0) = ρ(L) = ρ̄ where ρ̄ being a subsonic state and
the density of the background charge satisfied 0 < b < ρs
(Ascher et al).

I A phase plane analysis was given for system (4) without the
construction of the transonic shock solution (Rosini).

I The vanishing viscosity method was used to study (4). The
structure of the solutions is not clear(Gamba).

I Existence of transonic shock solution with constant
background charge (Luo and Xin).

I Asymptotic behavior of solutions for Euler-Poisson equations
with relaxations (Huang, Pan and Yu, etc)

I Formation of singularity of Euler-Poisson equations (Chen and
Wang)
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Structural Stability

Theorem 1 Let J > 0 be a constant, and let b0 be a constant
satisfying 0 < b0 < ρs and (ρl ,El) be a supersonic state
(0 < ρl < ρs), ρr be a subsonic state (ρr > ρs). If the boundary
value problem (4) and (5) admits a unique transonic shock
solution (ρ(0),E (0)) for the case when b(x) = b0 (x ∈ [0, L]) with a
single transonic shock locating at x = x0 ∈ (0, L) satisfying

E (0)(x0+) = E (0)(x0−) > 0,

then there exists ε0 > 0 such that if

‖b − b0‖C0[0,L] = ε ≤ ε0,

then the boundary problem (4) and (5) admits a unique transonic
shock solution (ρ̃, Ẽ ) with a single transonic shock locating at
some x̃0 ∈ [x0 − Cε, x0 + Cε] for some constant C > 0.
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Dynamical Stability

Theorem 2 Let (ρ̄, ū, Ē ) be a steady transonic shock solution.
Moreover, we assume that

Ē−(x0) = Ē+(x0) > 0.

If the initial data (ρ0, u0,E0) satisfy and the k + 2-th (k ≥ 15)
order compatibility conditions at x = 0, x = x0 and x = L, then
the initial boundary value problem (1) and (3) admits a unique
piecewise smooth solution (ρ, u,E )(x , t) for
(x , t) ∈ [0, L]× [0,∞), which contains a single transonic shock
x = s(t) (0 < s(t) < L) satisfying the Rankine-Hugoniot condition
and the Lax geometric shock condition for t ≥ 0 provided that

‖(ρ0, u0,E0)− (ρ̄, ū, Ē )‖Hk+2 = ε

is suitably small.
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Decay of the Solutions

Let

(ρ, u,E ) =

{
(ρ−, u−,E−), if 0 < x < s(t),

(ρ+, u+,E+), if s(t) < x < L.

Then there exists T0 > 0 and α > 0 such that

(ρ−, u−,E−)(t, x) = (ρ̄−, ū−, Ē−)(x), for 0 ≤ x < s(t),

for t > T0 and

‖(ρ+, u+,E+)(·, t)− (ρ̄+, ū+, Ē+)(·)‖W k−6,∞(s(t),L) ≤ Cεe−αt ,

k−6∑
m=0

|∂mt (s(t)− x0)| ≤ Cεe−αt ,

for t ≥ 0, where we have extended (ρ̄±, ū±, Ē±) to be the solutions
of the Euler-Poisson equations in the associated regions.
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Instability and Some Remarks

I There exist L > 0 and a linearly unstable transonic shock
solution (ρ̄, ū, Ē ) satisfying

Ē−(x0) = Ē+(x0)<0.

I In Theorem 2, the results are also true if we impose small
perturbations for the boundary conditions (5).

I It follows from the results by Luo and Xin and Theorem 1, the
background transonic shock solution does exist. Moreover, we
do not assume that b(x) is a small perturbation of a constant
in Theorem 2, which may have large variation.

I In Theorem 2, the regularity assumption is not optimal. By
adapting the methods by Metivier, less regularity assumptions
will be enough . However, our proof only involves the
elementary weighted energy estimates rather than
paradifferential calculus.
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Monotone Relation

Lemma 3 Let (ρ(1),E (1)) and (ρ(2),E (2)) be two transonic shock
solutions of (4), and (ρ(i),E (i))(i = 1, 2) are defined as follows

(ρ(i),E (i)) =

{
(ρ

(i)
sup,E

(i)
sup), for 0 < x < xi ,

(ρ
(i)
sub,E

(i)
sub), for xi < x < L,

where
ρ

(i)
sup < ρs < ρ

(i)
sub for i = 1, 2.

Moreover, they satisfy the same upstream boundary conditions,

ρ(1)(0) = ρ(2)(0) = ρl , E
(1)(0) = E (2)(0) = El .

If b < ρs , x1 < x2 and E
(2)
sup(x1) > 0, then

ρ(1)(L) > ρ(2)(L).
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Proof of Structural Stability

I A priori estimates for subsonic and supersonic flows via
multiplier method

I Monotone relation implies uniqueness of shock position

I Continuous dependence on shock positions for the exit
pressures
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Local Solutions

T

x=l

x=s(t)

fastest characteristic

x=L
x

t

determined from
left hand values

values

Chunjing XIE Stability of Transonic Shock Solutions



RH Conditions Revisited

(J+ − J̄)(t, s(t)) =−
(p′(ρ̄+)− J̄2

ρ̄2
+

)(x0)

2J̄/ρ̄+
(ρ+ − ρ̄+)(t, s(t))

− (ρ̄+ − ρ̄−)Ē+(x0)

2J̄/ρ̄+
(s(t)− x0) + quadratic terms

s ′(t) =−
p′(ρ̄+)− J̄2/ρ2

+

2ū+(ρ̄+ − ρ̄−)
(x0)(ρ+ − ρ̄+)

− Ē+(x0)

2ū+(x0)
(s(t)− x0) + quadratic terms.

s(t)− x0 =
1

ρ̄−(x0)− ρ̄+(x0)
(E − Ē+) + quadratic terms
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The Second Order Equation

Set
Y = E+(x , t)− Ē+(x).

Then
Yt = J̄ − J+, Yx = ρ+ − ρ̄+.

Therefore, it follows from the second equation in the Euler-Poisson
system (1) that

∂ttY + ∂x

(
p(ρ̄+) +

J̄2

ρ̄+
− p(ρ̄+ + Yx)− (J̄ − Yt)

2

ρ̄+ + Yx

)
+ Ē+∂xY + ρ̄+Y + YYx = 0.

Chunjing XIE Stability of Transonic Shock Solutions



The Linearized Problem

Introducing the transformation

t̃ = t, x̃ = (L− x0)
x − s(t)

L− s(t)
+ x0, σ(t̃) = s(t)− x0,

to transform the problem in the fixed domain [x0, L]. After
removing all˜away, the linearized equation is

∂ttY − ∂x((p′(ρ̄+)− J̄2

ρ̄2
+

)∂xY ) + ∂x(
2J̄

ρ̄+
∂tY )

+ Ē+∂xY + ρ̄+Y = 0.

(6)

The associated boundary conditions are

∂xY =
2ū+(x0)

c2(ρ̄+)(x0)− ū2
+(x0)

∂tY +
Ē+(x0)

c2(ρ̄+)(x0)− ū2
+(x0)

Y (7)

at x = x0 and
∂xY = 0 at x = L. (8)
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Decay of the Linearized Problem

Theorem 4 Assume that Ē+ satisfies

Ē+(x0) > 0.

Let Y be a smooth solution of the linearized problem (6)-(8).
Then there exist α0 ∈ (0, 1) and T > 0 such that

ϕ(Y , t + T ) < α0ϕ(Y , t),

where ϕ is defined as follows

ϕ(Y , t) =
Ē+

ρ̄+
(x0)Y 2(t, x0) +

∫ L

x0

1

ρ̄+

{
(∂tY )2

+

(
p′(ρ̄+)−

J̄2
+

ρ̄2
+

)
(∂xY )2 + ρ̄+Y

2

}
(t, x)dx .
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Proof-Energy Estimate

Multiplying the equation (6) with 1
ρ̄+(x)∂tY on both sides,

integrating by parts, and applying the boundary conditions to get

ϕ(Y , t) + D(Y , t) = ϕ(Y , 0), (9)

where

D(Y , t) = 2

(∫ t

0

J̄

ρ̄2
+

(∂tY )2(s, L)ds +

∫ t

0

J̄

ρ̄2
+

(∂tY )2(s, x0)ds

)
.
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Proof-Rauch-Taylor type estimates

Following from an argument by Rauch and Taylor, there exists a
T > 0 such that∫ T

0
(Y 2

t + Y 2
x )(x0, t)dt ≥

∫ T
2

+δ

T
2
−δ

ϕ(Y , s)ds − C

∫ T

0
Y 2(x0, t)dt

≥Cδϕ(Y ,T )− C

∫ T

0
Y 2(x0, t)dt

Using the boundary conditions and the fact that
c2(ρ̄+)−ū+

2u+
(x0) ≥ C for some constant C > 0, one has

ϕ(Y , t)+C1

∫ t

0
(Y 2

t +Y 2
x )(s, x0)ds ≤ ϕ(Y , 0)+C2

∫ t

0
Y 2(s, x0)ds.

Thus

(1 + C3)ϕ(Y ,T ) ≤ ϕ(Y , 0) + C4

∫ T

0
Y 2dt,

for some positive constants C3 and C4, independent of t.
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Proof-Spectrum Estimates I

Define a new norm ‖ · ‖X for the function
h = (h1, h2) ∈ H1 × L2([x0, L]),

‖h‖2
X =

Ē+

ρ̄+
(x0)|h1|2(x0) +

∫ L

x0

1

ρ̄+

{
|h2|2 +

(
p′(ρ̄+)−

J̄2
+

ρ̄2
+

)
|h′1|2

+ρ̄+|h1|2
}

(x)dx .

The associated complex Hilbert space will be denoted by
(X, ‖ · ‖X). Define the solution operator St : X 7→ X as

St(h) = (Y (t, ·),Yt(t, ·))

where Y is the solution of the problem (6)-(8) with initial data
h = (h1, h2). By (9), we can see that St is bounded and satisfies

‖St‖ ≤ 1.

It follows from the spectrum radius theorem that |σ(St)| ≤ 1.
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Proof-Spectrum Estimates II

Furthermore, we can define a map K : X 7→ L2([0,T ]) as

K (h) = Y (t, x0).

Thus the Rauch-Taylor type estimate can be written as

(1 + C5)‖ST (h)‖X ≤ ‖h‖X + C2‖Kh‖L2([0,T ]),

for some positive constant C5. Note that for the initial data f ∈ X,
there exists a solution Y ∈ H1([0,T ]× [x0, L]), Note that K is
compact. One has the following proposition.
Proposition Outside the disk {|z | ≤ 1

1+C5
}, there are only finite

generalized eigenvalues for the operator ST in the annulus
{ 1

1+C5
< |z | ≤ 1} on the complex plane, each of these eigenvalues

has the finite multiplicity.
Proposition There is no generalized eigenvalues of ST on the circle
|z | = 1.
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A Priori Estimates for the Nonlinear Problem

I The energy estimates similar to those for the linearized
problem yield the boundedness of higher order energy.

I Contraction of lower order energy of Ŷ which is a solution of
linearized problem implies contraction of lower order energy of
Y , because Y − Ŷ (quadratic term) is much smaller than Ŷ .

Chunjing XIE Stability of Transonic Shock Solutions



Unstable Transonic Shock Solutions

Suppose that Ē+(x0) < 0. We look for the solutions for the
linearized problem of the form Y = eλtZ . Then

(p′(ρ̄+)− ū2
+)∂2

xZ + (∂x(p′(ρ̄+)− ū2
+)− 2ū+λ− Ē+)Zx

− (λ2 + 2λ∂x ū+ + ρ)Z = 0, for x0 < x < L,

∂xZ =
2ū+

p′(ρ̄+)− ū2
+

(x0)(
Ē+(x0)

2ū+
+ λ)Z , at x = x0,

∂xZ = 0, at x = L.

(10)

If Z (x0) = α > 0 and λ = 0, then Zx(x0) < 0. Therefore, there
exists L1 > x0 such that Zx(x) < 0 for x0 ≤ x ≤ L1.
If λ = −2 E

2ū+
(x0), then Zx(x0) > 0. then there exists L2 > x0 such

that Zx(x) > 0 for x0 ≤ x ≤ L2.
By the continuous dependence of ODE with respect to the initial
data and the parameters, there exist a 0 < λ < −2 E+

2ū+
(x0) and an

L > 0 such that the problem (10) admits a solution Z .
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Flows in quasi-one-dimensional nozzles

The governing equations are
ρt + (ρu)x = −a′(x)

a(x)
ρu,

(ρu)t + (ρu2 + p(ρ))x = −a′(x)

a(x)
ρu2.

(11)

The particular cases for a(x) are 1, x , and x2, which correspond to
one dimensional, two dimensional radially symmetric, three
dimensional spherical symmetric Euler equations.

Known results on stability and instability of transonic shock

I Glimm scheme (Liu),

I the characteristic method (Xin and Yin).

StableUnstable
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Dynamical Stability of Transonic Shocks

Theorem 5 Let (ρ̄, ū) be a steady transonic shock solution.
Assume that

a′(x0) > 0. (12)

If the initial data (ρ0, u0) satisfy and the k + 2-th (k ≥ 15) order
compatibility conditions at x = 0, x = x0 and x = L, then the
initial boundary value problem (11) with boundary conditions

ρ(0, t) = ρ̄(0), u(0, t) = ū(0), ρ(L, t) = ρ̄(L)

admits a unique piecewise smooth solution (ρ, u)(x , t) for
(x , t) ∈ [0, L]× [0,∞), which contains a single transonic shock
x = s(t) (0 < s(t) < L) satisfying the Rankine-Hugoniot condition
and the Lax geometric shock condition for t ≥ 0, and tend to the
steady solutions exponentially fast, if

‖(ρ0, u0)− (ρ̄, ū)‖Hk+2 = ε

is suitably small.
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Highlight of Stability and its Proof

Highlights:

I No assumptions on the smallness of |a′| and shock strength.

I Exponential decay of the shock fronts and the deviation of the
solutions.

Key ingredients of the proof

I Exponential decay of linearized problem via energy estimate,
Rauch-Taylor type estimate, and spectral analysis.

I A priori estimates for the nonlinear problem
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Summary and Prospects

Summary

I Structural stability of steady transonic shock solutions with
respect to the perturbations of the background charge for
Euler-Poisson system.

I Dynamical stability and instability of transonic shock solutions
for Euler-Poisson system.

I Dynamical stability of the transonic shock solutions for the
nozzle flows.

Prospects

I Non-isentropic flows

I Multidimensional wave patterns.
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Thanks!
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