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Consider the initial boundary value problem :
∂tu + A ∂xu = F (t, x) , in [0,T ]× R+ ,

B u(t, 0) = g(t) , in [0,T ] ,

u|t=0 = f , on R+ .

Space domain : R+. Boundary : {x = 0}.
Linear system with constant coefficients : A ∈ MN(R), u ∈ RN ,
B ∈ Mp,N(R).

General problem

Which boundary conditions B give a well-posed problem ? The solution
and its trace should be estimated in the same functional spaces as the
data.
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The method of characteristics

We assume that the operator ∂t + A ∂x is hyperbolic : A is diagonalizable.
We introduce a set of eigenvalues and eigenvectors : λj , rj , j = 1, . . . ,N.
The solution u is decomposed on the basis (r1, . . . , rN) :

u(t, x) =
N∑

j=1

αj(t, x) rj ,

f (x) =
N∑

j=1

βj(x) rj ,

F (t, x) =
N∑

j=1

Fj(t, x) rj .
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The method of characteristics

The problem reads
∂tαj + λj ∂xαj = Fj(t, x) , in [0,T ]× R+ ,∑

j αj(t, 0) B rj = g(t) , in [0,T ] ,

αj |t=0 = βj , on R+ .

This system can be solved by the method of characteristics, separating
outgoing characteristics from incoming characteristics.
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The method of characteristics

Definition

The eigenvalue λj corresponds to an outgoing characteristic if λj < 0,
and to an incoming characteristic if λj > 0.

The analysis is in two steps. For simplicity, we shall assume that A is
invertible. This is the so-called noncharacteristic case.
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The method of characteristics

We start with outgoing characteristics : λj < 0. Then we find

αj(t, x) = βj(x − λj t) +

∫ t

0

Fj(s, x − λj (t − s))ds ,

and this formula defines αj in R+ × R+ since λj < 0.

In particular, the trace αj(t, 0) can be explicitly computed from the
data :

αj(t, 0) = βj(−λj t) +

∫ t

0

Fj(s,−λj (t − s))ds .
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The method of characteristics

We go on with incoming characteristics : λj > 0. We find

αj(t, x) = βj(x − λj t) +

∫ t

0

Fj(s, x − λj (t − s))ds ,

in the domain {(t, x) ∈ R+ × R+/x ≥ λj t}, and

αj(t, x) = αj(t − x/λj , 0) +

∫ t

t−x/λj

Fj(s, x − λj (t − s))ds ,

in the domain {(t, x) ∈ R+ × R+/x < λj t}.

The trace αj(t, 0) is not determined by the data !
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The method of characteristics

To determine the solution completely, the boundary condition

N∑
j=1

αj(t, 0) B rj = g(t) ,

should determine the trace of incoming characteristics in terms of the
source term g and of the trace of outgoing characteristics.

Conclusion

The problem can be well-posed only if

Rp = Span
(
B r1, . . . ,B rq

)
,

with the convention λ1, . . . , λq > 0, λq+1, . . . , λN < 0.
This implies p ≤ q.
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Conclusion

In the one-dimensional case, the initial boundary value problem is
well-posed (existence/uniqueness) if and only if

1 The number p of independent boundary conditions is equal to the
number of incoming characteristics (q = p),

2 There holds
Ker B ∩ Span

(
r1, . . . , rp

)
= {0} ,

where r1, . . . , rp span the eigenspace of A associated with positive
eigenvalues.

Observe that the latter relation is compatible with dimensions ! In
particular, there always exists a matrix B for which the problem is
well-posed.
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Consider the initial boundary value problem :
L(∂) u := ∂tu +

∑d
j=1 Aj ∂xj u = F , in [0,T ]× Rd

+ ,

B u|xd=0 = g , on [0,T ]× Rd−1 ,

u|t=0 = f , on Rd
+ .

Space domain : half-space Rd
+ = {xd > 0}.

Linear system with constant coefficients.

General problem

The differential operator L(∂) is given. Can we find/characterize the
boundary conditions B that give a well-posed problem ?

J.-F. Coulombel Fully discrete hyperbolic boundary value problems



Continuous hyperbolic boundary value problems : a brief introduction
Discretized problems : zero initial data

The one-dimensional case
The multi-dimensional case

Key points of the analysis

In the non-characteristic case (Ad invertible), the analysis relies on three
major assumptions :

1 A stability assumption for the Cauchy problem : hyperbolicity.

2 An additional structural assumption on the symbol associated with
the Cauchy problem (geometric regularity of eigenelements).

3 A compatibility condition between the boundary conditions and the
hyperbolic system : the Uniform Kreiss-Lopatinskii Condition.
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• Assumptions 1 and 2 only involve the operator L(∂) ! With these
assumptions, one can define a certain vector bundle E over a compact
basis Σ (a closed half-sphere).
Kreiss, Sakamoto (1970), Majda-Osher (1975), Métivier (2000),
Métivier-Zumbrun (2005)

The bundle E is first defined in the interior of Σ, and the difficult part of
the job is to extend continuously E to the boundary ∂Σ.

• The formulation of the UKLC is simpler once we have this first result :

UKLC

∀ ζ ∈ Σ , E (ζ) ∩ Ker B = {0}.

In one space dimension, E (ζ) = E+(A) for all ζ.
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The stability estimate

Theorem (a priori estimate in weighted L2 spaces)

If the UKLC is satisfied, then for all sufficiently smooth and decaying
solution u, there holds :

γ

∫ ∫
R×Rd

+

e−2 γ t |u(t, x)|2 dt dx +

∫
R×Rd−1

e−2 γ t |u(t, y , 0)|2 dt dy

.
1

γ

∫ ∫
R×Rd

+

e−2 γ t |F (t, x)|2 dt dx +

∫
R×Rd−1

e−2 γ t |g(t, y)|2 dt dy

for all γ ≥ 1.

The proof relies on the construction of symbolic symmetrizers, which is
based on a suitable block structure reduction. Kreiss, Sakamoto (1970),
Majda-Osher (1975)
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• The a priori estimate yields well-posedness (unique solvability +
estimate) for the boundary value problem with source terms F , g in L2

γ .

The solution and its trace belong to L2
γ and vanish in {t < 0} if the

source terms do so (zero initial data).

• If the system is either Friedrichs symmetrizable or hyperbolic with
constant multiplicity, one can incorporate non-zero initial data in L2,
and obtain semigroup estimates. Rauch (1972), Audiard (2011) ⇒ ibvp
on [0,T ].

• Regularity of the solution for smooth source terms. Rauch-Massey
(1974)

• There are also many results of the same kind in the characteristic case.
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Discretizing the equations

We consider one-dimensional boundary value problems, with zero initial
data.

We let Un
j denote the approximation of the solution u on the cell

[n ∆t, (n + 1)∆t[×[j ∆x , (j + 1)∆x [, with :

n ∈ N , j ∈ 1− r + N .

For 1− r ≤ j ≤ 0, the Un
j ’s approximate the trace of u : boundary cells.
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The mesh points (boundary and interior domain) :
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The numerical scheme

For simplicity only, we consider here a one time step scheme :
Un+1

j = Q Un
j + ∆t F n

j , j ≥ 1 ,

Un+1
j = Bj Un+1

1 + gn+1
j , j = 1− r , . . . , 0 ,

U0
j = 0 , j ≥ 1− r ,

with some operators

Q :=

p∑
`=−r

A` T ` , Bj :=

q∑
`=0

B`,j T ` .

It is possible to consider more complicated boundary operators, and the
theory works the same.
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The numerical scheme in the interior domain :
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The numerical scheme on the boundary :
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Definition of strong stability

An appropriate notion of stability is the following.

Definition (strong stability), Gustafsson-Kreiss-Sundström (1972)

The numerical scheme is strongly stable if there exists a constant C > 0
such that for all γ > 0 and all ∆t ∈ ]0, 1], there holds :

γ

γ ∆t + 1

∑
n≥0

∑
j≥1−r

∆t ∆x e−2 γ n ∆t |Un
j |2

+
∑
n≥0

p∑
j=1−r

∆t e−2 γ n ∆t |Un
j |2 ≤ C

(
γ ∆t + 1

γ
‖F‖2

`2
γ

+ ‖g‖2
`2

γ

)
.
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The definition is “compatible” with two obvious asymptotic cases.
• In the limit ∆t → 0, the estimate formally reduces to

γ

∫ ∫
R+×R+

e−2 γ t |u(t, x)|2 dt dx +

∫
R+

e−2 γ t |u(t, 0)|2 dt

≤ C

{
1

γ

∫ ∫
R+×R+

e−2 γ t |F (t, x)|2 dt dx +

∫
R+

e−2 γ t |g(t)|2 dt

}
.

• In the limit γ → +∞, the estimate formally reduces to

1

λ

∑
j≥1−r

|U1
j |2 +

p∑
j=1−r

|U1
j |2 ≤ C

 1

λ
∆t2

∑
j≥1

|F 0
j |2 +

0∑
j=1−r

|g1
j |2

 ,

and this estimate is trivially satisfied (recall U0
j = 0).
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General problem

The finite difference operator Q is given. Can we find/characterize the
boundary operators B1−r , . . . ,B0 that give a strongly stable scheme ?

Remark : Consistency is “supposed” to be an easier problem. When both
strong stability and consistency hold, the numerical scheme converges.
Gustafsson (1975). This is in the spirit of “Lax’ theorem”.

In what follows, we are first going to characterize strong stability in terms
of an estimate for the resolvent equation. This characterization makes
the definition relevant for practical purposes. Other notions of stability
are not so easy to handle.
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The resolvent equation

The normal modes analysis consists in performing a Laplace transform
(Z-transform) in the time variable, or equivalently in looking for solutions
of the form

Un
j = zn Wj , z ∈ U , (Wj) ∈ `2 ,

when the source terms F n
j , gn

j have the same form.

Observe that such a sequence does not vanish for n = 0 ! Nevertheless,
one can forget about the initial condition, perform the transformation
and compute the equation satisfied by the sequence (Wj).
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The resolvent equation

The sequence (Wj) should satisfy the resolvent equation{
Wj − z−1 Q Wj = Fj , j ≥ 1 ,

Wj − Bj W1 = gj , j = 1− r , . . . , 0 ,

with given source terms (Fj), g1−r , . . . , g0.

The first crucial point of the theory is the following characterization.
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Characterization of strong stability

Theorem, Gustafsson-Kreiss-Sundström (1972)

The numerical scheme is strongly stable if and only if there exists a
constant C > 0 such that for all z ∈ U , for all (Fj) ∈ `2 and for all
vectors g1−r , . . . , g0 ∈ CN , the resolvent equation has a unique solution
(Wj) ∈ `2 and this solution satisfies

|z | − 1

|z |
∑

j≥1−r

|Wj |2 +

p∑
j=1−r

|Wj |2 ≤ C

 |z |
|z | − 1

∑
j≥1

|Fj |2 +
0∑

j=1−r

|gj |2
 .

This result reduces the problem of one space dimension, to the price of
introducing a complex parameter.
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The Godunov-Ryabenkii condition

An immediate consequence of the Theorem is the following

Corollary (Godunov-Ryabenkii condition)

If the numerical scheme is strongly stable, then for all z ∈ U , the only
sequence (Wj) ∈ `2 solution to{

Wj − z−1 Q Wj = 0 , j ≥ 1 ,

Wj − Bj W1 = 0 , j = 1− r , . . . , 0 ,

is zero.

This property is called the Godunov-Ryabenkii condition. It is a
necessary condition for strong stability but unfortunately it is not a
sufficient condition.
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Some words on the proof of the Theorem. We first assume that the
numerical scheme is strongly stable.

Let us consider (Wj) ∈ `2 and z ∈ U . We test the definition of strong
stability on the sequence of solutions :

∀ j ≥ 1− r , ∀ n ≥ 0 , Un
j (ν) :=

{
zn Wj/

√
ν , if 1 ≤ n ≤ ν,

0 , otherwise.

For a fixed ν, (Un
j (ν)) is a solution with appropriate source terms. When

ν is large, the solution behaves more and more as a pure normal mode.
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The proof relies on computing the limits, as ν tends to +∞, of the sums∑
n≥0

∑
j≥1

e−2 γ (n+1) |F n
j (ν)|2 ,

∑
n≥1

0∑
j=1−r

e−2 γ n |gn
j (ν)|2 ,

with γ := ln |z | > 0.

These sums with respect to n are transformed into integrals by applying
Plancherel’s Theorem. Then one applies more or less standard arguments
of convolution theory (in the spirit of Féjer’s Theorem).
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This provides an a priori estimate for solutions of the resolvent
equation :

|z | − 1

|z |
∑

j≥1−r

|Wj |2 +

p∑
j=1−r

|Wj |2

≤ C

 |z |
|z | − 1

∑
j≥1

|(L(z) W )j |2 +
0∑

j=1−r

|(L(z) W )j |2
 ,

with

(L(z) W )j :=

{
Wj − z−1 Q Wj , if j ≥ 1,
Wj − Bj W1 , if 1− r ≤ j ≤ 0.
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The conclusion follows from an observation and an abstract argument of
functional analysis.

Lemma

There exists R0 ≥ 1 such that for all z ∈ C with |z | > R0, the operator
L(z) is an isomorphism on `2.

Lemma

Let E be a Banach space, and let T denote a nonempty connected set.
Let L be a continuous function on T with values in the space of bounded
operators on E . Assume moreover that the two following conditions are
satisfied :

there exists a constant M > 0 such that for all t ∈ T and for all
x ∈ E , we have ‖x‖E ≤ M ‖L(t) x‖E ,

there exists some t0 ∈ T such that L(t0) is an isomorphism.

Then L(t) is an isomorphism for all t ∈ T .
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The conclusion follows from an observation and an abstract argument of
functional analysis.

Lemma

There exists R0 ≥ 1 such that for all z ∈ C with |z | > R0, the operator
L(z) is an isomorphism on `2.

Lemma

Let E be a Banach space, and let T denote a nonempty connected set.
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operators on E . Assume moreover that the two following conditions are
satisfied :

there exists a constant M > 0 such that for all t ∈ T and for all
x ∈ E , we have ‖x‖E ≤ M ‖L(t) x‖E ,

there exists some t0 ∈ T such that L(t0) is an isomorphism.

Then L(t) is an isomorphism for all t ∈ T .
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We now assume that the resolvent equation is uniquely solvable with a
good estimate.
We consider some source terms (F n

j ), (gn
j ) with compact support, and we

let (Un
j ) denote the solution to the numerical scheme.

Very crude estimates yield∑
n≥s+1

∑
j≥1−r

e−2 γ n |Un
j |2 < +∞ ,

for γ large enough. We can thus define the Laplace transform of (Un
j ) for

every fixed j . These are holomorphic functions on a half-plane
{Re τ > γ0}.
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The sequence (Ûj(τ)) is a solution to the resolvent equation for Re τ
large enough, and we would like it to solve the resolvent equation for all
Re τ > 0. Is it well-defined ?

The conclusion follows from :

1 the unique continuation principle for holomorphic functions (Ûj

coincides with a function Wj that is holomorphic on the half-plane
Re τ > 0),

2 the Paley-Wiener Theorem (Wj is the Laplace transform of some
function),

3 Plancherel’s Theorem (which makes the link between estimates for
the numerical scheme and estimates for the resolvent equation).
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A technical refinement

For technical reasons, we shall need the following refined version.

Theorem

The numerical scheme is strongly stable if and only if for all R ≥ 2,
there exists a constant CR > 0 such that for all z ∈ U with |z | ≤ R, for
all (Fj) ∈ `2 and for all vectors g1−r , . . . , g0 ∈ CN , the resolvent equation
has a unique solution (Wj) ∈ `2 and this solution satisfies

|z | − 1

|z |
∑

j≥1−r

|Wj |2+
p∑

j=1−r

|Wj |2 ≤ CR

 |z |
|z | − 1

∑
j≥1

|Fj |2 +
0∑

j=1−r

|gj |2
 .
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We are going to give a quantitative version of the Godunov-Ryabenkii
condition, meaning an estimate that will be satisfied for strongly stable
schemes.

We rewrite the resolvent equation as an induction of the first order. We
start from {

Wj − z−1 Q Wj = Fj , j ≥ 1 ,

Wj − Bj W1 = gj , j = 1− r , . . . , 0 ,

which we rewrite as{∑p
`=−r A`(z) Wj+` = Fj , j ≥ 1 ,

Wj − Bj W1 = gj , j = 1− r , . . . , 0 .
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The matrices A` depend holomorphically on z 6= 0.
From now on, we make the following assumption.

Assumption (Noncharacteristic discrete boundary)

The matrices A−r (z) and Ap(z) are invertible for all z ∈ U .

We can thus introduce the matrix

M(z) :=


−Ap(z)−1 Ap−1(z) . . . . . . −Ap(z)−1 A−r (z)

I 0 . . . 0

0
. . .

. . .
...

0 0 I 0

 .
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The resolvent equation equivalently reads{
Wj+1 = M(z)Wj + Fj , j ≥ 1 ,

BW1 = G ,

with Wj := (Wj+p−1, . . . ,Wj−r ) ∈ CN (p+r), j ≥ 1, and new source
terms.

The new boundary conditions apply to the vector W1 for q < p.

In the case q ≥ p, there is another equivalent formulation.

The characterization of strong stability transposes to this equivalent form
of the resolvent equation.
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Characterization of strong stability

Theorem (Characterization of strong stability for q < p)

The numerical scheme is strongly stable if and only if for all R ≥ 2,
there exists a constant CR > 0 such that for all z ∈ U with |z | ≤ R, for
all (Fj) ∈ `2 and for all G ∈ CNr , the new resolvent equation has a
unique solution (Wj) ∈ `2 and this solution satisfies

|z | − 1

|z |
∑

j≥1−r

|Wj |2 + |W1|2 ≤ CR

 |z |
|z | − 1

∑
j≥1

|Fj |2 + |G|2
 .
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Stable eigenvalues

We take a closer look at the case Fj = 0. Then `2 solutions to

Wj+1 = M(z)Wj ,

correspond to eigenvalues of M(z) in the unit disk. They are uniquely
determined by W1.

Lemma, Kreiss (1968)

Let the discretization of the Cauchy problem be stable. Then for z ∈ U ,
M(z) has no eigenvalue on S1. Its stable eigenspace associated with
eigenvalues in the unit disk is denoted E s(z) ; it depends holomorphically
on z ∈ U and its dimension equals N r .
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The UKLC

Proposition

Let the discretization of the Cauchy problem be stable. If the numerical
scheme is strongly stable, then for all R ≥ 2, there exists a constant
CR > 0 such that for all z ∈ U with |z | ≤ R, there holds

∀W ∈ E s(z) , |W| ≤ CR |BW| .

In other words, the mapping

Φ(z) : W ∈ E s(z) 7−→ BW ∈ CNr ,

is an isomorphism for all z ∈ U . Moreover for all R ≥ 2, the inverse
Φ(z)−1 is uniformly bounded with respect to z ∈ U , |z | ≤ R.
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Observe that the Godunov-Ryabenkii condition asks that Φ(z) be an
isomorphism for all z ∈ U , but there is no control of the norm of the
inverse mapping as z approaches the boundary of U . This norm may
explode !

This is a main gap, and it it the analogue of the gap between the
Lopatinskii condition and the uniform Lopatinskii condition for PDEs.

The Godunov-Ryabenkii condition with a uniform control of the inverse
mapping will be called the Uniform Kreiss-Lopatinskii Condition. It is a
necessary condition for strong stability, and it can be checked on some
specific examples.
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Assumption (`2-stability for the discretized Cauchy problem)

The amplification matrix Q̂(κ) is uniformly power bounded for
κ = eiξ ∈ S1.

Gustafsson-Kreiss-Sundström (1972) : characterization of strong stability
by the UKLC under strong structural assumptions on the
eigenelements of Q̂ (either regular contact point with the circle, or
unitary behavior as in the leap-frog scheme).

Goldberg-Tadmor (1978, ...) : convenient formulations of the UKLC using
simultaneous diagonalization of the matrices (scalar problems).

Michelson (1983) : characterization of strong stability by the UKLC in

multi-d under a strong dissipation assumption on Q̂.
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In these works, the dissipation assumption “seems” only to be technical
(sufficient, but not necessary). Moreover, it is not completely satisfactory
in view of applications. In multi-d, dissipation is not so common.

In some sense, `2-stability should be “close to” sufficient in order to
characterize strong stability (this is what the theory for PDEs tells us).

Main goal of the study

Characterize strong stability by the UKLC under the most general
structural assumptions on the eigenelements of Q̂. In particular :

→ Do not use simultaneous diagonalization of the matrices A`.
→ Preliminary work for the multi-d analysis.
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The resolvent equation

We recall that the resolvent equation is written as{
Wj+1 = M(z)Wj + Fj , j ≥ 1 ,

BW1 = G ,

where M is holomorphic on a neighborhood of {|z | ≥ 1}.

The stable eigenspace of M(z), associated with eigenvalues in the unit
disk, is denoted E s(z). It depends holomorphically on z ∈ U and its
dimension equals N r . In other words, E s defines a holomorphic bundle
over the open set U .
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Extending the stable subspace

Assumption (geometric regularity of eigenelements)

The operator Q is geometrically regular.

Theorem, C. (2009)

We assume that the numerical boundary is noncharacteristic, and that the
discretization of the Cauchy problem is stable and geometrically regular.
Then the stable bundle E s extends continuously to the circle {|z | = 1},
and the extended bundle is continuous on {|z | ≥ 1}.
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Extending the stable subspace

Assumption (geometric regularity of eigenelements)

The operator Q is geometrically regular.

Theorem, C. (2009)

We assume that the numerical boundary is noncharacteristic, and that the
discretization of the Cauchy problem is stable and geometrically regular.
Then the stable bundle E s extends continuously to the circle {|z | = 1},
and the extended bundle is continuous on {|z | ≥ 1}.
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The main stability result

Theorem, C. (2009)

Under the same assumptions as in the previous Theorem, the numerical
scheme is strongly stable if and only if there holds
E s(z) ∩ Ker B(z) = {0} for all |z | ≥ 1.

The latter condition is an equivalent -and more convenient- formulation
of the UKLC.

This result is in the same spirit as the work by Métivier-Zumbrun
(2004-2005) on PDEs, and gives an optimal generalization of the works
by Gustafsson-Kreiss-Sundström (1972).
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Outline of the proof : construction of K -symmetrizers, as in
Métivier-Zumbrun (2004). Both theorems follow from only one
argument !

Diagonalize M(z) with an appropriate discrete block structure, and
construct a symmetrizer for each block.

According to the behavior of the eigenvalues of Q̂(κ), the blocks of M(z)
have various behaviors (size, sign of the coefficients etc.).
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In the continuous case, the spectrum of the symbol A(ξ) is included in R
→ very good localization, and therefore precise information on the
block structure.

In the discrete case, the spectrum of Q̂(eiξ) is included in the closed unit
disk, a thick region. Less precise information because the scheme can
produce parabolic, dispersive etc. behavior at high frequencies. (This
behavior is independent of the consistency analysis.)

Classification of the blocks according to their size and to their dissipation
index. Construction of new symmetrizers. Unfortunately Kreiss’
construction does not work here ! The analysis in
Gustafsson-Kreiss-Sundström (1972) only considers two possible cases.
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• Two main assumptions on the discretized Cauchy problem :
stability and geometric regularity of eigenelements (stability is
equivalent to the von Neumann condition).

• Precise definition of the discrete block structure condition.

• We have not used any simultaneous diagonalization property on
the matrices of the numerical scheme !

• The analysis works in exactly the same way for multi-steps schemes
(e.g., leap-frog).

Awfully pessimistic conclusion (not entirely true)

Numerical schemes in 1d are worse than PDEs in multi-d...
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