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These lectures are devoted to the analysis of stability and control of long
time behavior of PDE models described by nonlinear evolutions pf hyperbolic
type. Specific examples of the models under consideration include: (i) non-
linear systems of dynamic elasticity: von Karman systems, Berger’s equations,
Kirchhoff - Boussinesq equations, nonlinear waves (ii) nonlinear structure-flow
interactions, (iii) and nonlinear thermo-elasticity. A goal to accomplish is to re-
duce the asymptotic bahavior of the dynamics to a tractable finite dimensional
and possibly smooth sets. Then the methods of finite dimensional control theory
can be used in order to forge a desired outcome for the system.

A characteristic feature of the models under consideration is criticality or
super-criticality of sources (with respect to Sobolev’s embeddings ) along with
supecriticality of damping mechanisms which may be also geometrically con-
strained. This means the actuation takes place on a ”small” region only. Super-
criticality of the damping is often a consequence of the "rough” behavior of
nonlinear sources in the equation. Controlling supercritical potential energy
may require a calibrated nonlinear damping that is also supercritical. On the
other hand super-linearity of the potential energy provides beneficial effect on
the long time boundedness of semigroups. From this point of view, the non-
linearity does help controlling the system but, at the same time, it also does
raise a long list of mathematical issues starting with a fundamental question of
uniqueness and continuous dependence of solutions withe respect to the given
(finite energy) data. It is known that solutions to these issues can not be han-
dled by standard nonlinear analysis-PDE techniques. The aim of these lectures
is to present several methods of nonlinear PDE which include cancellations, har-
monic analysis and geometric methods which enable to handle super-criticality
in both sources and the damping. It turns out that if carefully analyzed the
nonlinearity can be taken ”advantage of” in order to produce implementable
control algorithms.

Another aspects that will be considered is the understanding of control mech-
anisms which are geometrically constrained. Here one would like to use minimal



sensing and minimal actuating (geometrically) in order to achieve the prescribed
goal. This is indeed possible, however analytical methods used are more sub-
tle. The final task boils down to showing that passively controlled system is
”quasi-stable” i.e attracted at the uniform rate to a compact set. Showing this
property- formulated as quasi-stability estimate -is the key and technically de-
manding issue. Much of the lecture time will be devoted to development of
suitable tools for proving quasi-stability. These include tools such as weighted
energy inequalities, compensated compactness, Carleman’s estimates and mi-
crolocal analysis.

1.

Presentation of several PDE control models and a general discussion of the
role of the source and the damping and their interaction as a mechanisms
of control.

. Wellposedness of control systems including control-theoretic properties of

the control-observation maps. Controllability, observability, stabilization
with full and partial observations.

e Cancellations-harmonic analysis and microlocal analysis methods

e Sharp control of Sobolev’s embeddings and duality scaling.

e Role of superllinear potential energy and superlinear damping
General tools for studying attractors

e Absorbing balls and attractors by weighted energy methods.

e Quasi-stability Inequality and its consequences. Finite dimensional-
ity of attractors, smoothness of attractors.

e Exponential attarctors and controlled decay rates to the equilibria.

. How to prove quasi-stability?

e Gradient systems and non-gradient systems.

e Interior nonlinear damping.

e Geometrically constrained damping. Carleman estimates, topological
methods, backward uniqueness, backward regularity.

PDE illustrations.

e Nonlinear waves and plates with nonlinear damping and supercritical
sources.

e Nonlinear waves and plates with geometrically constrained damping.

e Thermal-structure interactions.

e Flow-structure interactions.

e Fluid-structure interactions
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