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The point

Let (X ,d) be a Polish space equipped with a reference measure
m ∈P(X ).

Our goal is to define the Sobolev space W 1,2(X ,d ,m).



Few things which is better to realize soon

I The space W 1,2(X ,d ,m) in general will not be an Hilbert space,

I There is not really hope to define the distributional gradient ∇f of
a Sobolev function.

I Still, we may hope to give a good definition of |∇f |.

I Up to technicalities, we need to produce a notion of ‘norm of
weak gradient’ |∇f | such that

f 7→
∫
|∇f |2dm,

is lower semicontinuous in L2(X ,m)
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An incorrect way of defining the Cheeger energy

Given f : X → R the local Lipschitz constant lipf : X → [0,∞] is
defined as

lipf (x) := lim
y→x

|f (x)− f (y)|
d(x , y)

.

Wrong definition of Cheeger energy:

f 7→ 1
2

∫
lip2

f dm.
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The correct approach: relaxation

Ch(f ) := inf
(fn)

lim
n

1
2

∫
lip2

fn dm,

where the infimum is taken among all sequences of Lipschitz functions
(fn) converging to f in L2.

The map Ch : L2 → [0,∞] is:
I Convex
I Lower semicontinuos
I 2-homogeneous
I Typically not quadratic
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Vertical weak gradients

G : X → [0,∞] is a vertical weak gradient of f : X → R if there is a
sequence (fn) of Lipschitz functions, fn → f in L2(X ,m) and lip(fn)

weakly converges in L2(X ,m) to G̃, with G̃ ≤ G m-a.e..

Note: the set of all possible vertical weak gradients of f is:
I closed in L2(X ,m) (possibly empty),
I convex.

Hence, when non empty, there exists a unique element of minimal L2

norm. Call it |∇f |v



Basic properties of |∇f |v
1)

Ch(f ) =
1
2

∫
|∇f |2v dm

2) If (fn) is a sequence of Lipschitz functions converging to f in
L2(X ,m) such that

1
2

∫
lip2

fn dm → Ch(f ).

Then lipfn → |∇f | in L2(X ,m).

3) If G is a vertical weak gradient of f then

|∇f |v ≤ G m − a.e..

4) if u : R→ R is C1 it holds

|∇(u ◦ f )|v ≤ |u′ ◦ f ||∇f |v .

If u′ > 0 then we have equality
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The idea

For a C1 function f : Rd → R we have the inequality

|f (γ0)− f (γ1)| ≤
∫ 1

0
|∇f |(γt )|γ′t |dt ,

for any smooth curve γ : [0,1]→ Rd .

The point is that if f is Sobolev, then the same is true along ‘almost
any curve’.
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Absolutely continuous curves

A curve γ : [0,1]→ X is absolutely continuous if

d(γt , γs) ≤
∫ s

t
g(r)dr , ∀t ≤ s,

for some g ∈ L1(0,1).
In this case the limit

lim
h→0

d(γt+h, γt )

h
,

exists for a.e. t , and defines an L1 function denoted by |γ̇t |.
We will denote by AC2([0,1],X ) the set of abs.cont. curves γ such
that |γ̇t | ∈ L2(0,1).



Negligible set of curves

π ∈P(AC2([0,1],X )) is a test plan provided

(et )]π ≤ Cm, ∀t ∈ [0,1],

for some C > 0.

A set of curves A ⊂ AC2([0,1],X ) is negligible provided

π(A) = 0,

for any test plan π.
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Functions which are Sobolev along a.e. curve

Let f : X → R. We say that f is Sobolev along a.e. curve provided for
a.e. γ the function f ◦ γ coincides in {0,1} and a.e. in [0,1] with an
absolutely continuous map fγ .



Horizontal weak gradients

Let f : X → R be Sobolev along a.e. curve.
We say that G : X → [0,∞] is an horizontal weak gradient provided

|f (γ1)− f (γ0)| ≤
∫ 1

0
G(γt )|γ̇t |dt , for a.e. γ.



Invariance

Let f = f̃ , m-a.e. and G = G̃, m-a.e..
Assume that f is Sobolev along a.e. curve and that G is an horizontal
weak gradient.
Then f̃ is Sobolev along a.e. curve and G̃ is an horizontal weak
gradient.

Indeed for any test plan π it holds

π{γ : f (γi ) 6= f̃ (γi )} = (ei )]π(f 6= f̃ ) = 0, i = 0,1,

(π × L1)
{

(γ, t) : G(γt ) 6= G̃(γt )
}

= 0 ⇒ π
{

(γ :

∫
γ

G 6=
∫
γ

G̃)
}

= 0

(π × L1)
{

(γ, t) : f (γt ) 6= f̃ (γt )
}

= 0 ⇒ π
{

(γ : L1{t : f (γt ) 6= f̃ (γt )}
}

= 0
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Lower semicontinuity

Along the same lines, one can show that if fn → f m-a.e., fn is
Sobolev along a.e. curve, Gn is an horizontal weak gradient for fn and
(Gn) weakly converges in L2(X ,m) to G, then:

f is Sobolev along a.e. curve and G is an horizontal weak gradient.



Locality

If f is Sobolev along a.e. curve and G1,G2 are horizontal weak
gradients, then so is min{G1,G2}.

It follows that there exists a minimal function |∇f |h such that

|∇f |h ≤ G, m − a.e.,

for any horizontal weak gradient G.

Rmk. If f is Lipschitz, then it is Sobolev along a.e. curve and lipf is an
horizontal weak gradient. In particular

|∇f |h ≤ lipf , m − a.e..
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The result

Theorem Let (X ,d ,m) be a Polish space with m locally finite.

Then for any f ∈ L2(X ,m) it holds

|∇f |v = |∇f |h, m − a.e.



The easy inequality

Let f ∈ D(Ch). Then it is Sobolev along a.e. curve and

|∇f |h ≤ |∇f |v

Indeed, pick a sequence (fn) of Lipschitz functions converging in L2 to
f such that (lipfn ) converges to |∇f |v in L2(X ,m). Then we conclude
by the lower semicontinuity of |∇f |h.



What we need to conclude

To conclude it is sufficient to prove that∫
|∇f |2v

f
dm ≤

∫ |∇f |2h
f

dm,

for f ≥ 0 far from 0 and∞ with
∫

fdm = 1.



Laplacian and gradient flow of Ch

We say that f ∈ D(∆) if ∂−Ch(f ) 6= 0. In this case we define
∆f := −v , where v is the element of minimal norm in ∂−Ch(f ).
For any f0 ∈ L2(X ,m) there exists a unique map t 7→ ft ∈ L2(X ,m)
such that

d+

dt
ft = ∆ft , ∀t ≥ 0.



Maximum/minimum principle

We claim that for any f ∈ L2 such that f ≥ c and any τ > 0 the
minimum of

g 7→ 1
2

∫
|∇g|2v dm +

‖f − g‖2
L2

2τ
,

satisfies g ≥ c.

If not, the function max{g, c} provides a better competitor.

The conclusion follows from the convergence of the implicit Euler
scheme to the Gradient Flow

A similar argument shows that the mass is preserved in time
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Integration by parts

For f ∈ D(∆) and g ∈ D(Ch) it holds∣∣∣∣∫ g∆f dm
∣∣∣∣ ≤ ∫ |∇g|v |∇f |v dm.

For a C1 map u : f (X )→ R we have∫
u(f )∆f dm = −

∫
u′(f )|∇f |2v dm.



Entropy dissipation

Let f0 ∈ D(Ch) be such that 0 < c ≤ f0 ≤ C <∞ and (ft ) the gradient
flow of Ch starting from f .
Then

− d
dt

∫
ft log(ft ) dm =

∫
|∇ft |2v

ft
dm, ∀t ≥ 0.



Hamilton-Jacobi semigroup alias Hopf-Lax formula
alias Moreau-Yosida approximation alias
inf-convolution

Let (X ,d) be a metric space.
For ψ : X → R Lipschitz and bounded t > 0 we define Qtψ : X → R
by

Qtψ(x) := inf
y∈X

ψ(y) +
d2(x , y)

2t

Then:
I Qtψ is Lipschitz for every t > 0,
I t 7→ Qtψ is a Lipschitz curve w.r.t. the sup distance (Q0ψ := ψ),
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Subsolutions of Hamilton-Jacobi equation

For any x ∈ X the map t 7→ Qtϕ(x) is locally Lipschitz and it holds

d
dt

Qtϕ(x) +
lip2

Qtϕ
(x)

2
≤ 0,

for every t ≥ 0 with the possible exception of a countable set.



Estimating W2(ftm, ft+sm) by duality

1
2

W 2
2 (ftm, ft+sm) = sup

ϕ∈CLip

∫
ϕftdm +

∫
ϕc ft+sdm

= sup
ψ∈CLip

∫
Q1ψft+sdm −

∫
ψftdm



Key computation

r 7→ Qrψ and r 7→ ft+rs are Lipschitz curves with values in L2(X ,m).

Thus∫
Q1ψft+s−ψftdm

=

∫∫ 1

0

d
dr

(
Qrψft+rs

)
drdm

=

∫∫ 1

0
−

lip2
Qrψ

2
ft+rs + sQrψ∆ft+rsdrdm

≤
∫∫ 1

0
−

lip2
Qrψ

2
ft+rs + |∇Qrψ|v

s|∇ft+rs|2v
ft+rs

ft+rsdrdm

≤
∫∫ 1

0
−

lip2
Qrψ

2
ft+rs +

|∇Qrψ|2v
2

ft+rs +
s2

2
|∇ft+rs|2v

ft+rs
drdm

≤ s2

2

∫ ∫ 1

0

|∇ft+rs|2v
ft+rs

drdm.
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Conclusion of the argument

From

W 2
2 (ftm, ft+sm) ≤ s2

∫ 1

0

∫
|∇ft+rs|2v

ft+rs
dmdr

≤ s2

c

∫ 1

0

∫
|∇ft+rs|2v dmdr

≤ s2

c

∫
|∇ft |2v dm,

we get that (ftm) is locally Lipschitz.
We also have the estimate

lim
s↓0

1
s2

∫ s

0
| ˙fr m|2dr ≤

∫
|∇f0|2v

f0
dm



An existence result

Theorem (Lisini) Let (µt ) ⊂P2(X ) be a curve in AC2([0,1], (P2(X ),W2)).
Then there exists π ∈P(AC2([0,1],X )) such that

(et )]π = µt ,

|µ̇t |2 =

∫
|γ̇t |2dπ(γ), a.e. t .



Entropy dissipation and horizontal weak gradients
Let (ft ) be the gradient flow of Ch starting from f0 ∈ D(Ch), bounded
away from 0 and infinity with mass 1. Also, let π be a plan associated
to (ftm).

Then∫
f0 log(f0)− ft log(ft )dm

≤
∫

log(f0)(f0 − ft )dm

=

∫
log(f0)(γ0)− log(ft )(γt )dπ(γ)

≤
∫ ∫ t

0

|∇f0|h
f0

(γs)|γ̇s|ds dπ(γ)

≤ 1
2

∫ ∫ t

0

|∇f0|2h
f 2
0

(γs)ds dπ(γ) +
1
2

∫ ∫ t

0
|γ̇s|2ds dπ(γ)

=
1
2

∫ ∫ t

0

|∇f0|2h
f 2
0

fs ds dm +
1
2

∫ t

0
|µ̇s|2ds



Entropy dissipation and horizontal weak gradients
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Conclusion of the identification

Dividing by t and letting t ↓ 0 we get

− d
dt |t=0

∫
ft log(ft )dm ≤ 1

2

∫ |∇f0|2h
f0

dm +
1
2

∫
|∇f0|2v

f0
dm.

Since we knew that

− d
dt |t=0

∫
ft log(ft )dm =

∫
|∇f0|2v

f0
dm,

we conclude.



Content

I Introduction

I The vertical approach

I The horizontal approach

I Identification of the two

I Who is |∇f |?

I Applications: the heat flow

I Open problems



Everything could be trivial

Let (X ,d ,m) be R with the Euclidean distance and m = δx .
Then |∇f | = 0 for any f .

Let (X ,d ,m) be R with the Euclidean distance and m =
∑n

i=1 αiδxi .
Then |∇f | = 0 for any f .

Let (X ,d ,m) be R with the Euclidean distance and m a measure
concentrated on Q.
Then |∇f | = 0 for any f .

In general we only know that for f Lipschitz it holds

|∇f | ≤ lipf , m − a.e.
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Cheeger’s result

Theorem Let (X ,d ,m) be a locally compact metric measure space
and assume that m is doubling and the space supports a local
Poincaré inequality.
Then for any f : X → R Lipschitz it holds

lipf (x) = |∇f |(x), m − a.e.x



Our result: a metric Brenier theorem

Theorem Let (X ,d ,m) be a Polish geodesic space, µ, ν ∈ P2(X ),
(µt ) a geodesic connecting them and ϕ a Kantorovich potential.
Assume that ∥∥∥∥dµt

dm

∥∥∥∥
L∞
≤ C, for t ∈ [0, ε].

Then
lip+
ϕ = |∇ϕ|, m − a.e..

Furthermore, if γ ∈ Opt(µ, ν), then

d(x , y) = |∇ϕ|(x), γ − a.e.(x , y).
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Heat flow

Theorem Assume that Ric((X ,d ,m)) ≥ K . Then the gradient flow of
Ch is L2 coincides with the gradient flow of Entm in (P2(X ),W2)



A particular case

Theorem The following are equivalent:
1. Ric

(
(X ,d ,m)

)
≥ K in the strong sense and the Heat Flow is

linear.
2. Ric

(
(X ,d ,m)

)
≥ K in the strong sense and Ch is a quadratic

functional.
3. The functional Entm has Gradient Flows in the EVI sense relative

to K .

Definition We say that (X ,d ,m) has Riemannian Ricci curvature
bounded from below by K if (one of) the three conditions above is
fulfilled.
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Properties of Riemannian Ricci bounds

Compatibility with the Riemannian case

Stability w.r.t. measured-GH convergence

Locality

Tensorizability

 for non branching spaces
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Some open questions

I What about W 1,p?

I What about fractals?
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