Sobolev spaces over metric measure spaces

Nicola Gigli

Université de Nice gigli@unice.fr

June 01, 2011, SISSA
From a joint work with L.Ambrosio and G.Savaré

Content

- Introduction
- The vertical approach
- The horizontal approach
- Identification of the two
- Who is $|\nabla f|$?
- Applications: the heat flow
- Open problems

Content

- Introduction
- The vertical approach
- The horizontal approach
- Identification of the two
- Who is $|\nabla f|$?
- Applications: the heat flow
- Open problems

The point

Let (X, d) be a Polish space equipped with a reference measure $\boldsymbol{m} \in \mathscr{P}(X)$.

Our goal is to define the Sobolev space $W^{1,2}(X, d, \boldsymbol{m})$.

Few things which is better to realize soon

- The space $W^{1,2}(X, d, \boldsymbol{m})$ in general will not be an Hilbert space,
- There is not really hope to define the distributional gradient ∇f of a Sobolev function.
- Still, we may hope to give a good definition of $|\nabla f|$.
- Up to technicalities, we need to produce a notion of 'norm of weak gradient' $|\nabla f|$ such that

$$
f \quad \mapsto \quad \int|\nabla f|^{2} d \boldsymbol{m}
$$

is lower semicontinuous in $L^{2}(X, \boldsymbol{m})$

Content

- Introduction
- The vertical approach
- The horizontal approach
- Identification of the two
- Who is $|\nabla f|$?
- Applications: the heat flow
- Open problems

An incorrect way of defining the Cheeger energy

Given $f: X \rightarrow \mathbb{R}$ the local Lipschitz constant lip $_{f}: X \rightarrow[0, \infty]$ is defined as

$$
\operatorname{lip}_{f}(x):=\varlimsup_{y \rightarrow x} \frac{|f(x)-f(y)|}{d(x, y)}
$$

An incorrect way of defining the Cheeger energy

Given $f: X \rightarrow \mathbb{R}$ the local Lipschitz constant lip $_{f}: X \rightarrow[0, \infty]$ is defined as

$$
\operatorname{lip}_{f}(x):=\varlimsup_{y \rightarrow x} \frac{|f(x)-f(y)|}{d(x, y)}
$$

Wrong definition of Cheeger energy:

$$
f \quad \mapsto \quad \frac{1}{2} \int \operatorname{lip}_{f}^{2} d m
$$

The correct approach: relaxation

$$
\mathrm{Ch}(f):=\inf _{\left(f_{n}\right)} \frac{\lim }{n} \frac{1}{2} \int \operatorname{lip}_{f_{n}}^{2} d \boldsymbol{m}
$$

where the infimum is taken among all sequences of Lipschitz functions $\left(f_{n}\right)$ converging to f in L^{2}.

The correct approach: relaxation

$$
\mathrm{Ch}(f):=\inf _{\left(f_{n}\right)} \frac{\lim }{n} \frac{1}{2} \int \operatorname{lip}_{f_{n}}^{2} d \boldsymbol{m}
$$

where the infimum is taken among all sequences of Lipschitz functions $\left(f_{n}\right)$ converging to f in L^{2}.

The map $\mathrm{Ch}: L^{2} \rightarrow[0, \infty]$ is:

- Convex
- Lower semicontinuos
- 2-homogeneous
- Typically not quadratic

Vertical weak gradients

$G: X \rightarrow[0, \infty]$ is a vertical weak gradient of $f: X \rightarrow \mathbb{R}$ if there is a sequence $\left(f_{n}\right)$ of Lipschitz functions, $f_{n} \rightarrow f$ in $L^{2}(X, \boldsymbol{m})$ and $\operatorname{lip}\left(f_{n}\right)$ weakly converges in $L^{2}(X, \boldsymbol{m})$ to \tilde{G}, with $\tilde{G} \leq G \boldsymbol{m}$-a.e..

Note: the set of all possible vertical weak gradients of f is:

- closed in $L^{2}(X, \boldsymbol{m})$ (possibly empty),
- convex.

Hence, when non empty, there exists a unique element of minimal L^{2} norm. Call it $|\nabla f|_{v}$

Basic properties of $|\nabla f|_{v}$

1)

$$
\operatorname{Ch}(f)=\frac{1}{2} \int|\nabla f|_{V}^{2} d m
$$

Basic properties of $|\nabla f|_{v}$

1)

$$
\operatorname{Ch}(f)=\frac{1}{2} \int|\nabla f|_{V}^{2} d m
$$

2) If $\left(f_{n}\right)$ is a sequence of Lipschitz functions converging to f in $L^{2}(X, \boldsymbol{m})$ such that

$$
\frac{1}{2} \int \operatorname{lip}_{f_{n}}^{2} d \boldsymbol{m} \quad \rightarrow \quad \mathrm{Ch}(f)
$$

Then $\operatorname{lip}_{f_{n}} \rightarrow|\nabla f|$ in $L^{2}(X, \boldsymbol{m})$.

Basic properties of $|\nabla f|_{v}$

1)

$$
\operatorname{Ch}(f)=\frac{1}{2} \int|\nabla f|_{V}^{2} d m
$$

2) If $\left(f_{n}\right)$ is a sequence of Lipschitz functions converging to f in $L^{2}(X, \boldsymbol{m})$ such that

$$
\frac{1}{2} \int \operatorname{lip}_{f_{n}}^{2} d \boldsymbol{m} \quad \rightarrow \quad \operatorname{Ch}(f)
$$

Then $\operatorname{lip}_{f_{n}} \rightarrow|\nabla f|$ in $L^{2}(X, \boldsymbol{m})$.
3) If G is a vertical weak gradient of f then

$$
|\nabla f|_{v} \leq G \quad \boldsymbol{m}-\text { a.e.. }
$$

Basic properties of $|\nabla f|_{v}$

1)

$$
\operatorname{Ch}(f)=\frac{1}{2} \int|\nabla f|_{V}^{2} d m
$$

2) If $\left(f_{n}\right)$ is a sequence of Lipschitz functions converging to f in $L^{2}(X, \boldsymbol{m})$ such that

$$
\frac{1}{2} \int \operatorname{lip}_{t_{n}}^{2} d \boldsymbol{m} \quad \rightarrow \quad \mathrm{Ch}(f)
$$

Then $\operatorname{lip}_{f_{n}} \rightarrow|\nabla f|$ in $L^{2}(X, \boldsymbol{m})$.
3) If G is a vertical weak gradient of f then

$$
|\nabla f|_{v} \leq G \quad \boldsymbol{m}-\text { a.e.. }
$$

4) if $u: \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} it holds

$$
|\nabla(u \circ f)|_{v} \leq\left|u^{\prime} \circ f\right||\nabla f|_{v} .
$$

If $u^{\prime}>0$ then we have equality

Content

- Introduction
- The vertical approach
- The horizontal approach
- Identification of the two
- Who is $|\nabla f|$?
- Applications: the heat flow
- Open problems

The idea

For a C^{1} function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ we have the inequality

$$
\left|f\left(\gamma_{0}\right)-f\left(\gamma_{1}\right)\right| \leq \int_{0}^{1}|\nabla f|\left(\gamma_{t}\right)\left|\gamma_{t}^{\prime}\right| d t
$$

for any smooth curve $\gamma:[0,1] \rightarrow \mathbb{R}^{d}$.

The idea

For a C^{1} function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ we have the inequality

$$
\left|f\left(\gamma_{0}\right)-f\left(\gamma_{1}\right)\right| \leq \int_{0}^{1}|\nabla f|\left(\gamma_{t}\right)\left|\gamma_{t}^{\prime}\right| d t
$$

for any smooth curve $\gamma:[0,1] \rightarrow \mathbb{R}^{d}$.

The point is that if f is Sobolev, then the same is true along 'almost any curve'.

Absolutely continuous curves

A curve $\gamma:[0,1] \rightarrow X$ is absolutely continuous if

$$
d\left(\gamma_{t}, \gamma_{s}\right) \leq \int_{t}^{s} g(r) d r, \quad \forall t \leq s
$$

for some $g \in L^{1}(0,1)$.
In this case the limit

$$
\lim _{h \rightarrow 0} \frac{d\left(\gamma_{t+h}, \gamma_{t}\right)}{h}
$$

exists for a.e. t, and defines an L^{1} function denoted by $\left|\dot{\gamma}_{t}\right|$. We will denote by $A C^{2}([0,1], X)$ the set of abs.cont. curves γ such that $\left|\dot{\gamma}_{t}\right| \in L^{2}(0,1)$.

Negligible set of curves

$\pi \in \mathscr{P}\left(A C^{2}([0,1], X)\right)$ is a test plan provided

$$
\left(\mathrm{e}_{t}\right)_{\sharp} \pi \leq \boldsymbol{\pi} \boldsymbol{m}, \quad \forall t \in[0,1],
$$

for some $C>0$.

Negligible set of curves

$\pi \in \mathscr{P}\left(A C^{2}([0,1], X)\right)$ is a test plan provided

$$
\left(\mathrm{e}_{t}\right)_{\sharp} \boldsymbol{\pi} \leq \mathrm{Cm}, \quad \forall t \in[0,1],
$$

for some $C>0$.

A set of curves $A \subset A C^{2}([0,1], X)$ is negligible provided

$$
\pi(A)=0
$$

for any test plan π.

Functions which are Sobolev along a.e. curve

Let $f: X \rightarrow \mathbb{R}$. We say that f is Sobolev along a.e. curve provided for a.e. γ the function $f \circ \gamma$ coincides in $\{0,1\}$ and a.e. in $[0,1]$ with an absolutely continuous map f_{γ}.

Horizontal weak gradients

Let $f: X \rightarrow \mathbb{R}$ be Sobolev along a.e. curve.
We say that $G: X \rightarrow[0, \infty]$ is an horizontal weak gradient provided

$$
\left|f\left(\gamma_{1}\right)-f\left(\gamma_{0}\right)\right| \leq \int_{0}^{1} \boldsymbol{G}\left(\gamma_{t}\right)\left|\dot{\gamma}_{t}\right| d t, \quad \text { for a.e. } \gamma .
$$

Invariance

Let $f=\tilde{f}, \boldsymbol{m}$-a.e. and $G=\tilde{G}$, \boldsymbol{m}-a.e..
Assume that f is Sobolev along a.e. curve and that G is an horizontal weak gradient.
Then \tilde{f} is Sobolev along a.e. curve and \tilde{G} is an horizontal weak gradient.

Invariance

Let $f=\tilde{f}, \boldsymbol{m}$-a.e. and $G=\tilde{G}$, \boldsymbol{m}-a.e..
Assume that f is Sobolev along a.e. curve and that G is an horizontal weak gradient.
Then \tilde{f} is Sobolev along a.e. curve and \tilde{G} is an horizontal weak gradient.

Indeed for any test plan π it holds

$$
\begin{aligned}
\boldsymbol{\pi}\left\{\gamma: f\left(\gamma_{i}\right) \neq \tilde{f}\left(\gamma_{i}\right)\right\} & =\left(\mathrm{e}_{i}\right)_{\sharp} \boldsymbol{\pi}(f \neq \tilde{f})=0, \quad i=0,1, \\
\left(\boldsymbol{\pi} \times \mathcal{L}^{1}\right)\left\{(\gamma, t): \boldsymbol{G}\left(\gamma_{t}\right) \neq \tilde{\boldsymbol{G}}\left(\gamma_{t}\right)\right\} & =0 \Rightarrow \boldsymbol{\pi}\left\{\left(\gamma: \int_{\gamma} \boldsymbol{G} \neq \int_{\gamma} \tilde{G}\right)\right\}=0 \\
\left(\boldsymbol{\pi} \times \mathcal{L}^{1}\right)\left\{(\gamma, t): f\left(\gamma_{t}\right) \neq \tilde{f}\left(\gamma_{t}\right)\right\} & =0 \Rightarrow \boldsymbol{\pi}\left\{\left(\gamma: \mathcal{L}^{1}\left\{t: f\left(\gamma_{t}\right) \neq \tilde{f}\left(\gamma_{t}\right)\right\}\right\}=0\right.
\end{aligned}
$$

Lower semicontinuity

Along the same lines, one can show that if $f_{n} \rightarrow f \boldsymbol{m}$-a.e., f_{n} is Sobolev along a.e. curve, G_{n} is an horizontal weak gradient for f_{n} and $\left(G_{n}\right)$ weakly converges in $L^{2}(X, \boldsymbol{m})$ to G, then:
f is Sobolev along a.e. curve and G is an horizontal weak gradient.

Locality

If f is Sobolev along a.e. curve and G_{1}, G_{2} are horizontal weak gradients, then so is $\min \left\{G_{1}, G_{2}\right\}$.

It follows that there exists a minimal function $|\nabla f|_{h}$ such that

$$
|\nabla f|_{h} \leq G, \quad \boldsymbol{m}-\text { a.e. },
$$

for any horizontal weak gradient G.

Locality

If f is Sobolev along a.e. curve and G_{1}, G_{2} are horizontal weak gradients, then so is $\min \left\{G_{1}, G_{2}\right\}$.

It follows that there exists a minimal function $|\nabla f|_{h}$ such that

$$
|\nabla f|_{h} \leq G, \quad \boldsymbol{m}-\text { a.e. },
$$

for any horizontal weak gradient G.

Rmk. If f is Lipschitz, then it is Sobolev along a.e. curve and lip_{f} is an horizontal weak gradient. In particular

$$
|\nabla f|_{h} \leq \operatorname{lip}_{f}, \quad \boldsymbol{m}-\text { a.e.. }
$$

Content

- Introduction
- The vertical approach
- The horizontal approach
- Identification of the two
- Who is $|\nabla f|$?
- Applications: the heat flow
- Open problems

The result

Theorem Let (X, d, \boldsymbol{m}) be a Polish space with \boldsymbol{m} locally finite.
Then for any $f \in L^{2}(X, \boldsymbol{m})$ it holds

$$
|\nabla f|_{v}=|\nabla f|_{h}, \quad \boldsymbol{m}-\text { a.e. }
$$

The easy inequality

Let $f \in D(\mathrm{Ch})$. Then it is Sobolev along a.e. curve and

$$
|\nabla f|_{h} \leq|\nabla f|_{v}
$$

Indeed, pick a sequence (f_{n}) of Lipschitz functions converging in L^{2} to f such that $\left(\operatorname{lip}_{f_{n}}\right)$ converges to $|\nabla f|_{v}$ in $L^{2}(X, \boldsymbol{m})$. Then we conclude by the lower semicontinuity of $|\nabla f|_{h}$.

What we need to conclude

To conclude it is sufficient to prove that

$$
\int \frac{|\nabla f|_{v}^{2}}{f} d \boldsymbol{m} \leq \int \frac{|\nabla f|_{h}^{2}}{f} d \boldsymbol{m}
$$

for $f \geq 0$ far from 0 and ∞ with $\int f d \boldsymbol{m}=1$.

Laplacian and gradient flow of Ch

We say that $f \in D(\Delta)$ if $\partial^{-} \operatorname{Ch}(f) \neq 0$. In this case we define $\Delta f:=-v$, where v is the element of minimal norm in $\partial^{-} \operatorname{Ch}(f)$. For any $f_{0} \in L^{2}(X, \boldsymbol{m})$ there exists a unique map $t \mapsto f_{t} \in L^{2}(X, \boldsymbol{m})$ such that

$$
\frac{d^{+}}{d t} f_{t}=\Delta f_{t}, \quad \forall t \geq 0
$$

Maximum/minimum principle

We claim that for any $f \in L^{2}$ such that $f \geq c$ and any $\tau>0$ the minimum of

$$
g \mapsto \frac{1}{2} \int|\nabla g|_{v}^{2} d m+\frac{\|f-g\|_{L^{2}}^{2}}{2 \tau}
$$

satisfies $g \geq c$.

Maximum/minimum principle

We claim that for any $f \in L^{2}$ such that $f \geq c$ and any $\tau>0$ the minimum of

$$
g \mapsto \frac{1}{2} \int|\nabla g|_{v}^{2} d m+\frac{\|f-g\|_{L^{2}}^{2}}{2 \tau}
$$

satisfies $g \geq c$.

If not, the function $\max \{g, c\}$ provides a better competitor.

Maximum/minimum principle

We claim that for any $f \in L^{2}$ such that $f \geq c$ and any $\tau>0$ the minimum of

$$
g \mapsto \frac{1}{2} \int|\nabla g|_{V}^{2} d m+\frac{\|f-g\|_{L^{2}}^{2}}{2 \tau}
$$

satisfies $g \geq c$.

If not, the function $\max \{g, c\}$ provides a better competitor.

The conclusion follows from the convergence of the implicit Euler scheme to the Gradient Flow

Maximum/minimum principle

We claim that for any $f \in L^{2}$ such that $f \geq c$ and any $\tau>0$ the minimum of

$$
g \mapsto \frac{1}{2} \int|\nabla g|_{V}^{2} d m+\frac{\|f-g\|_{L^{2}}^{2}}{2 \tau}
$$

satisfies $g \geq c$.

If not, the function $\max \{g, c\}$ provides a better competitor.

The conclusion follows from the convergence of the implicit Euler scheme to the Gradient Flow

A similar argument shows that the mass is preserved in time

Integration by parts

For $f \in D(\Delta)$ and $g \in D(\mathrm{Ch})$ it holds

$$
\left|\int g \Delta f d m\right| \leq \int|\nabla g|_{v}|\nabla f|_{v} d m
$$

For a C^{1} map $u: f(X) \rightarrow \mathbb{R}$ we have

$$
\int u(f) \Delta f d \boldsymbol{m}=-\int u^{\prime}(f)|\nabla f|_{v}^{2} d \boldsymbol{m} .
$$

Entropy dissipation

Let $f_{0} \in D(\mathrm{Ch})$ be such that $0<c \leq f_{0} \leq C<\infty$ and $\left(f_{t}\right)$ the gradient flow of Ch starting from f.
Then

$$
-\frac{d}{d t} \int f_{t} \log \left(f_{t}\right) d \boldsymbol{m}=\int \frac{\left|\nabla f_{t}\right|_{v}^{2}}{f_{t}} d \boldsymbol{m}, \quad \forall t \geq 0
$$

Hamilton-Jacobi semigroup alias Hopf-Lax formula alias Moreau-Yosida approximation alias inf-convolution

Let (X, d) be a metric space.
For $\psi: X \rightarrow \mathbb{R}$ Lipschitz and bounded $t>0$ we define $Q_{t} \psi: X \rightarrow \mathbb{R}$ by

$$
Q_{t} \psi(x):=\inf _{y \in X} \psi(y)+\frac{d^{2}(x, y)}{2 t}
$$

Hamilton-Jacobi semigroup alias Hopf-Lax formula alias Moreau-Yosida approximation alias inf-convolution

Let (X, d) be a metric space.
For $\psi: X \rightarrow \mathbb{R}$ Lipschitz and bounded $t>0$ we define $Q_{t} \psi: X \rightarrow \mathbb{R}$ by

$$
Q_{t} \psi(x):=\inf _{y \in X} \psi(y)+\frac{d^{2}(x, y)}{2 t}
$$

Then:

- $Q_{t} \psi$ is Lipschitz for every $t>0$,
- $t \mapsto Q_{t} \psi$ is a Lipschitz curve w.r.t. the sup distance ($Q_{0} \psi:=\psi$),

Subsolutions of Hamilton-Jacobi equation

For any $x \in X$ the map $t \mapsto Q_{t} \varphi(x)$ is locally Lipschitz and it holds

$$
\frac{d}{d t} Q_{t} \varphi(x)+\frac{\operatorname{lip}_{Q_{t \varphi}}^{2}(x)}{2} \leq 0
$$

for every $t \geq 0$ with the possible exception of a countable set.

Estimating $W_{2}\left(f_{t} \boldsymbol{m}, f_{t+s} \boldsymbol{m}\right)$ by duality

$$
\begin{aligned}
\frac{1}{2} W_{2}^{2}\left(f_{t} \boldsymbol{m}, f_{t+s} \boldsymbol{m}\right) & =\sup _{\varphi \in C^{L i p}} \int \varphi f_{t} d \boldsymbol{m}+\int \varphi^{c} f_{t+s} d \boldsymbol{m} \\
& =\sup _{\psi \in C^{L i p}} \int Q_{t} \psi f_{t+s} d \boldsymbol{m}-\int \psi f_{t} d \boldsymbol{m}
\end{aligned}
$$

Key computation

$r \mapsto Q_{r} \psi$ and $r \mapsto f_{t+r s}$ are Lipschitz curves with values in $L^{2}(X, \boldsymbol{m})$.

Key computation

$r \mapsto Q_{r} \psi$ and $r \mapsto f_{t+r s}$ are Lipschitz curves with values in $L^{2}(X, \boldsymbol{m})$. Thus
$\int Q_{1} \psi f_{t+s}-\psi f_{t} d m$

$$
\begin{aligned}
& =\iint_{0}^{1} \frac{d}{d r}\left(Q_{r} \psi f_{t+r s}\right) d r d \boldsymbol{m} \\
& =\iint_{0}^{1}-\frac{\operatorname{lip}_{Q_{, \psi}}^{2}}{2} f_{t+r s}+s Q_{r} \psi \Delta f_{t+r s} d r d \boldsymbol{m} \\
& \leq \iint_{0}^{1}-\frac{\operatorname{lip}_{Q_{r} \psi}^{2}}{2} f_{t+r s}+\left|\nabla Q_{r} \psi\right|_{v} \frac{s\left|\nabla f_{t+r s}\right|_{v}^{2}}{f_{t+r s}} f_{t+r s} d r d \boldsymbol{m} \\
& \leq \iint_{0}^{1}-\frac{\operatorname{lip}_{Q_{r} \psi}^{2}}{2} f_{t+r s}+\frac{\left|\nabla Q_{r} \psi\right|_{v}^{2}}{2} f_{t+r s}+\frac{s^{2}}{2} \frac{\left|\nabla f_{t+r s}\right|_{v}^{2}}{f_{t+r s}} d r d \boldsymbol{m} \\
& \leq \frac{s^{2}}{2} \iint_{0}^{1} \frac{\left|\nabla f_{t+r s}\right|_{v}^{2}}{f_{t+r s}} d r d \boldsymbol{m} .
\end{aligned}
$$

Conclusion of the argument

From

$$
\begin{aligned}
W_{2}^{2}\left(f_{t} \boldsymbol{m}, f_{t+s} \boldsymbol{m}\right) & \leq s^{2} \int_{0}^{1} \int \frac{\left|\nabla f_{t+r s}\right|_{V}^{2}}{f_{t+r s}} d \boldsymbol{m} d r \\
& \leq \frac{s^{2}}{c} \int_{0}^{1} \int\left|\nabla f_{t+r s}\right|_{v}^{2} d \boldsymbol{m} d r \\
& \leq \frac{s^{2}}{c} \int\left|\nabla f_{t}\right|_{v}^{2} d \boldsymbol{m}
\end{aligned}
$$

we get that $\left(f_{t} \boldsymbol{m}\right)$ is locally Lipschitz.
We also have the estimate

$$
\overline{\lim }_{s \downarrow 0} \frac{1}{s^{2}} \int_{0}^{s}\left|f_{r} \boldsymbol{m}\right|^{2} d r \leq \int \frac{\left|\nabla f_{0}\right|_{v}^{2}}{f_{0}} d \boldsymbol{m}
$$

An existence result

Theorem (Lisini) Let $\left(\mu_{t}\right) \subset \mathscr{P}_{2}(X)$ be a curve in $A C^{2}\left([0,1],\left(\mathscr{P}_{2}(X), W_{2}\right)\right)$. Then there exists $\pi \in \mathscr{P}\left(A C^{2}([0,1], X)\right)$ such that

$$
\begin{aligned}
\left(\mathrm{e}_{t}\right)_{\sharp} \pi & =\mu_{t}, \\
\left|\dot{\mu}_{t}\right|^{2} & =\int\left|\dot{\gamma}_{t}\right|^{2} d \pi(\gamma), \quad \text { a.e. } t .
\end{aligned}
$$

Entropy dissipation and horizontal weak gradients

Let $\left(f_{t}\right)$ be the gradient flow of Ch starting from $f_{0} \in D(\mathrm{Ch})$, bounded away from 0 and infinity with mass 1 . Also, let π be a plan associated to $\left(f_{t} \boldsymbol{m}\right)$.

Entropy dissipation and horizontal weak gradients

Let $\left(f_{t}\right)$ be the gradient flow of Ch starting from $f_{0} \in D(\mathrm{Ch})$, bounded away from 0 and infinity with mass 1 . Also, let π be a plan associated to $\left(f_{t} \boldsymbol{m}\right)$. Then

$$
\begin{aligned}
& \int f_{0} \log \left(f_{0}\right)-f_{t} \log \left(f_{t}\right) d \boldsymbol{m} \\
& \leq \int \log \left(f_{0}\right)\left(f_{0}-f_{t}\right) d \boldsymbol{m} \\
& =\int \log \left(f_{0}\right)\left(\gamma_{0}\right)-\log \left(f_{t}\right)\left(\gamma_{t}\right) d \pi(\gamma) \\
& \leq \iint_{0}^{t} \frac{\left|\nabla f_{0}\right|_{h}}{f_{0}}\left(\gamma_{s}\right)\left|\dot{\gamma}_{s}\right| d s d \pi(\gamma) \\
& \leq \frac{1}{2} \iint_{0}^{t} \frac{\left|\nabla f_{0}\right|_{h}^{2}}{f_{0}^{2}}\left(\gamma_{s}\right) d s d \pi(\gamma)+\frac{1}{2} \iint_{0}^{t}\left|\dot{\gamma}_{s}\right|^{2} d s d \pi(\gamma) \\
& =\frac{1}{2} \iint_{0}^{t} \frac{\left|\nabla f_{0}\right|_{h}^{2}}{f_{0}^{2}} f_{s} d s d \boldsymbol{m}+\frac{1}{2} \int_{0}^{t}\left|\dot{\mu}_{s}\right|^{2} d s
\end{aligned}
$$

Conclusion of the identification

Dividing by t and letting $t \downarrow 0$ we get

$$
-\left.\frac{d}{d t}\right|_{t=0} \int f_{t} \log \left(f_{t}\right) d \boldsymbol{m} \leq \frac{1}{2} \int \frac{\left|\nabla f_{0}\right|_{h}^{2}}{f_{0}} d \boldsymbol{m}+\frac{1}{2} \int \frac{\left|\nabla f_{0}\right|_{v}^{2}}{f_{0}} d \boldsymbol{m} .
$$

Since we knew that

$$
-\left.\frac{d}{d t}\right|_{t=0} \int t_{t} \log \left(f_{t}\right) d \boldsymbol{m}=\int \frac{\left|\nabla f_{0}\right|_{V}^{2}}{f_{0}} d \boldsymbol{m}
$$

we conclude.

Content

- Introduction
- The vertical approach
- The horizontal approach
- Identification of the two
- Who is $|\nabla f|$?
- Applications: the heat flow
- Open problems

Everything could be trivial

Let $(X, \boldsymbol{d}, \boldsymbol{m})$ be \mathbb{R} with the Euclidean distance and $\boldsymbol{m}=\delta_{x}$. Then $|\nabla f|=0$ for any f.

Everything could be trivial

Let (X, d, \boldsymbol{m}) be \mathbb{R} with the Euclidean distance and $\boldsymbol{m}=\delta_{\chi}$. Then $|\nabla f|=0$ for any f.

Let $(X, \boldsymbol{d}, \boldsymbol{m})$ be \mathbb{R} with the Euclidean distance and $\boldsymbol{m}=\sum_{i=1}^{n} \alpha_{i} \delta_{x_{i}}$. Then $|\nabla f|=0$ for any f.

Everything could be trivial

Let $(X, \boldsymbol{d}, \boldsymbol{m})$ be \mathbb{R} with the Euclidean distance and $\boldsymbol{m}=\delta_{x}$. Then $|\nabla f|=0$ for any f.

Let $(X, \boldsymbol{d}, \boldsymbol{m})$ be \mathbb{R} with the Euclidean distance and $\boldsymbol{m}=\sum_{i=1}^{n} \alpha_{i} \delta_{x_{i}}$. Then $|\nabla f|=0$ for any f.

Let (X, d, \boldsymbol{m}) be \mathbb{R} with the Euclidean distance and \boldsymbol{m} a measure concentrated on \mathbb{Q}.
Then $|\nabla f|=0$ for any f.

Everything could be trivial

Let $(X, \boldsymbol{d}, \boldsymbol{m})$ be \mathbb{R} with the Euclidean distance and $\boldsymbol{m}=\delta_{x}$. Then $|\nabla f|=0$ for any f.

Let $(X, \boldsymbol{d}, \boldsymbol{m})$ be \mathbb{R} with the Euclidean distance and $\boldsymbol{m}=\sum_{i=1}^{n} \alpha_{i} \delta_{x_{i}}$. Then $|\nabla f|=0$ for any f.

Let (X, d, \boldsymbol{m}) be \mathbb{R} with the Euclidean distance and \boldsymbol{m} a measure concentrated on \mathbb{Q}.
Then $|\nabla f|=0$ for any f.

In general we only know that for f Lipschitz it holds

$$
|\nabla f| \leq \operatorname{lip}_{f}, \quad \boldsymbol{m}-\text { a.e. }
$$

Cheeger's result

Theorem Let (X, d, \boldsymbol{m}) be a locally compact metric measure space and assume that \boldsymbol{m} is doubling and the space supports a local Poincaré inequality.
Then for any $f: X \rightarrow \mathbb{R}$ Lipschitz it holds

$$
\operatorname{lip}_{f}(x)=|\nabla f|(x), \quad \boldsymbol{m}-\text { a.e. } x
$$

Our result: a metric Brenier theorem

Theorem Let (X, d, \boldsymbol{m}) be a Polish geodesic space, $\mu, \nu \in \mathscr{P}_{2}(X)$, $\left(\mu_{t}\right)$ a geodesic connecting them and φ a Kantorovich potential.
Assume that

$$
\left\|\frac{d \mu_{t}}{d \boldsymbol{m}}\right\|_{L_{\infty}} \leq C, \quad \text { for } t \in[0, \varepsilon] .
$$

Then

$$
\operatorname{lip}_{\varphi}^{+}=|\nabla \varphi|, \quad \boldsymbol{m}-\text { a.e.. }
$$

Furthermore, if $\gamma \in \operatorname{Opt}(\mu, \nu)$, then

$$
d(x, y)=|\nabla \varphi|(x), \quad \gamma-\text { a.e. }(x, y) .
$$

Content

- Introduction
- The vertical approach
- The horizontal approach
- Identification of the two
- Who is $|\nabla f|$?
- Applications: the heat flow
- Open problems

Heat flow

Theorem Assume that $\operatorname{Ric}((X, d, \boldsymbol{m})) \geq K$. Then the gradient flow of Ch is L^{2} coincides with the gradient flow of Ent_{m} in $\left(\mathscr{P}_{2}(X), W_{2}\right)$

A particular case

Theorem The following are equivalent:

1. $\operatorname{Ric}((X, d, \boldsymbol{m})) \geq K$ in the strong sense and the Heat Flow is linear.
2. $\operatorname{Ric}((X, d, \boldsymbol{m})) \geq K$ in the strong sense and Ch is a quadratic functional.
3. The functional Ent $_{\boldsymbol{m}}$ has Gradient Flows in the EVI sense relative to K.

A particular case

Theorem The following are equivalent:

1. $\operatorname{Ric}((X, d, \boldsymbol{m})) \geq K$ in the strong sense and the Heat Flow is linear.
2. $\operatorname{Ric}((X, d, \boldsymbol{m})) \geq K$ in the strong sense and Ch is a quadratic functional.
3. The functional Ent $_{m}$ has Gradient Flows in the EVI sense relative to K.

Definition We say that (X, d, m) has Riemannian Ricci curvature bounded from below by K if (one of) the three conditions above is fulfilled.

Properties of Riemannian Ricci bounds

Compatibility with the Riemannian case

Stability w.r.t. measured-GH convergence

Properties of Riemannian Ricci bounds

Compatibility with the Riemannian case

Stability w.r.t. measured-GH convergence
$\left.\begin{array}{l}\text { Locality } \\ \text { Tensorizability }\end{array}\right\}$ for non branching spaces

Content

- Introduction
- The vertical approach
- The horizontal approach
- Identification of the two
- Who is $|\nabla f|$?
- Applications: the heat flow
- Open problems

Some open questions

- What about $W^{1, p}$?
- What about fractals?

Bibliography

[1] L. Ambrosio, N. Gigli, and G. Savaré, Calculus and heat flow on metric measure spaces with application to spaces with Ricci curvature bounded below, Work in progress.
[2] J. Cheeger, Differentiability of Lipschitz functions in metric measure spaces, GAFA 2000
[3] K. Kuwada, N. Gigli, S.-I. Ohta, Heat Flow on Alexandrov spaces, submitted paper.
[4] N. Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Ibero. 2000.
[5] J. Heinonen, Non smooth calculus, Bull. AMS, 2007.

