Chapter 1

The Characteristic Matrix of Nonuniqueness for
First-Kind Equations

C. Constanda and D.R. Doty

1.1 Introduction

Let Sbe a finite domain iiR?, bounded by a simple, close@f curvedS. We denote
by x andy generic points irSUdS and by|x —y| the distance betweenandy in
the Cartesian metric. Also, 1€%%(9S) andC?(99), a € (0,1), be, respectively,
the spaces of Hélder continuous and Hélder continuousferdifitiable functions
on dS In what follows, Greek and Latin indices take the valuef and 12, 3,
respectively, and a superscriptienotes matrix transposition.

For any functionf continuous oS, we define the ‘calibration’ functionad by

pf:/fds.
S

Using the fundamental solution for the two-dimensionallhajan

1
g(x,y>——§rlnl><—yl,

we define the single-layer harmonic potential of dengityy

V)0 = [ gxy)9 ) dsty).
Js
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The proof of the following assertion can be found, for examh [Co94] or
[Co00].

Theorem 1. For any a < (0,1), there are a unique nonzero function @ € C%(9S)
and a unique number w such that

Vo=w ondS peP=1

It is easy to see thab andw depend org anddS.

The numbers fiw ande 2™ are calledRobin’s constant and thelogarithmic
capacity of 9S.

For a circle with the center at the origin and radRisboth @ and w can be

determined explicitly:
1 1

o= R’ w= 27_[InR.
For other boundary curve§) andw are practically impossible to determine analyt-
ically and must be computed by numerical methods.

If the solution of the Dirichlet problem iBwith data functionf on dSis sought
asu=V¢, theng is a solution of the (weakly singular) first-kind boundariegral
equation

V=1 ondS

This is a well-posed problem if and onlydé # 0. If w = 0, the above equation has
infinitely many solutions, which are expressed in termgof

1.2 Plane Elastic Strain

Consider a plate made of a homogeneous and isotropic matéhidamé constants
A andu which undergoes deformations in tha, x,)-plane. If the body forces are
negligible, then its (static) displacement vecior (up,up)" satisfies the equilib-
rium system of equations [Co00]

Au=0 in§

where
PA+ A+ )02 (A +p)0102 )

A(d1,0) =
(91,02) ( A+1)01ds  pA+ (A + 1)d2

It is not difficult to show [Co00] that the colummis?) of the matrix

o 10 x
F_(Ol—Xl)

form a basis for the space of rigid displacements.
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The ‘calibrating’ vector-valued functionglis defined for continuous:2 1 vector

functionsf by
pf:i/Fdes

s
A matrix of fundamental solutions fak is [Co00]

1

P Iy
2(x —y1)? 2(x1 —y1) (X2 — Y2)
2ylIn|x ;/|+2y+)1 |x)—y|2 X2
X1 — Y1) (X —
_2xa |>2/l_§/|§ Y2 2yIn|x—y|+2y+1—

2(X2 — )’2)2 ’
Ix—y|?

_ A+3u
At

The single-layer potential of densifyis defined by

(V)) = [ Dixy)d(y)dsty).
Js

The proof of the following assertion can be found in [Co00].

Theorem 2. There is a unique 2 x 3 matrix function ® € C%%(9S) and a unique
3 x 3 constant symmetric matrix % such that the columns @() of @ are linearly
independent and

VO=F% ondS pP=I,

where | isthe identity matrix.

Clearly,® and% depend oA, D, anddS.
In the so-called alternative indirect method [Co00], thiison of the Dirichlet
problem inSwith data functionf on dSis sought in the form

u=Vg. (1.1)
Then the problem reduces to the (weakly singular) bounddegral equation
V¢ =Ff onds (1.2)

Theorem 3. Equation (1.1)has a unique solution ¢ € C%%(9S), a < (0,1), for any
f € CL9(gS) if and only if det # 0. In this case, (1.2)isthe unique solution of the
Dirichlet problem.

If det¥ = 0, then the unique solution of the Dirichlet problem is obéal by
solving an ill-posed modified boundary integral equatioradinfinitely many so-
lutions are constructed with and¥’.
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In the so-called refined indirect method [Co00], the solutibthe Dirichlet prob-
lem is sought as a pafrp, c} such that

u=V¢—-Fc inS pp=s,

wheres a constant X 1 vector chosen (arbitrarily) a priori ards a constant % 1
vector. This leads to the system of boundary integral eqoati

V¢ —Fc=f ondS pp=s (2.3)

Theorem 4. System (1.3) has a unique solution {¢, ¢} with ¢ € C%9(9S) for any
f e CL9(99), a € (0,1), and any s.

It is important to evaluate the arbitrariness in the repreg@n of the solution
with respect to the prescribed ‘calibratia’

Theorem 5. If {¢V), ¢V}, {¢@, ¢(@} aretwo solutions of (1.3) constructed with
s and s?, respectively, then

6@ — o 1 p(s? _ gy,
C(Z) — C(l) + (5(3(2) _ S(l)).

Itis not easy to comput® and% analytically, or even numerically, in arbitrary
domainsS, but this can be accomplishedSfis a circular disk. Le?'S be the circle
with center at the origin and radil& In this case,® and% can be determined

analytically as
o L (10 R2x
S 2mMR\01-R %/’

1
T T amu(d +2p)Re
(A +3u)R(INR+1) 0 0
X 0 (A +3u)R(InR+1) 0

0 0 —(A+p)

Clearly, det’ = 0 if and only ifR= e 2.

Analytic computation of® and¥’ is practically impossible for non-circular do-
mains, and must be performed numerically.

We choose four X 1 constant vectors'?, si) such that the sefs) — 59} is
linearly independent, and form thex3 matrix = with columnss®) —s© . Also,
we choose an arbitrary functioh Next, we compute the solutiorfgp©, c(0},
{¢® c)} of (1.3) corresponding ta&®, s, respectively, and by the refined
indirect method, then form the 23 matrix function®’ with columnsg® — ¢(©
and the constant 8 3 matrix/™ with columnsc) — ¢(©),
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From Theorem 4 it follows that

or, what is the same,
o> =Y, €>=T;

hence,
o=wst g=rz"

A similar analysis can be performed for other two-dimenaldmear elliptic
systems with constant coefficients—for example, the systedeling bending of
elastic plates with transverse shear deformation [Co00].apparent connection
exists between the matrix and the characteristic constanf dS.

1.3 Numerical Examples

Consider a steel plate with scaled Lamé coefficients
A =115 u=17.69,
and letdS (see Fig. 1.1) be the curve of parametric equations

x1(t) = 2cogt) — § cog2mt) + L2,
X(t) =2sin(mt) +2, 0<t<2

X2
N

X1

Fig. 1.1 The boundary curvéS

We choose the vectors
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The approximating functions for computirgf® (t) and ¢()(t) are piecewise
cubic Hermite splines on 12 knots; that is, the intervat 0 < 2 is divided into
12 equal subintervals. Then the characteristic matrixh(eittries rounded off to 5
decimal places) is

—0.01627—-0.01083—-0.00370
% = | —0.01083—-0.00892 000542
—0.00370 000542 000185

Here,
det# = 1.08273x 106

The graphs of the componentg; of ®@ are shown in Fig. 1.2.

Fig. 1.2 Graphs of theby;.

As a second example, consider the ‘expanding’ elli@Sef parametric equa-
tions

x1(t) = 2kcog ),
Xo(t) =ksin(mt), 0<t<2

The graph of de¥’ as a function ok is shown in Fig. 1.3.
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Fig. 1.3 Graph of de¥.

Here, de¥ = 0 for k = 0.22546 andk = 0.26934.
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