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* We consider a (large) population of cooling
and/or heating appliances which we consider as
agents.

* Every agents, at time t is characterized by its
temperature x(t) €[X.,X--], and acts by the control
u €{0,1} which stays for OFF/ON respectively.

* The goal is to induce a behavior of the agents in
order to stabilize the power network around a
reference state, in particular desynchronize
(ON/OFF) the agents (Angeli-Kountouriotis, 2012)
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o [Falx(s) = Xgy) if u(s) =1, t<s<T,
<X(S)_<\—Of(x(3)—xopp) if u(s)=0, t<s<T
X(t) =X

The rate a>0 is given and X.. <X« are the steady-
state temperatures of the appliances when in
state ON or OFF, respectively
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We make some hypotheses and passages

0 =—a(Xoer = Xon )y C=0Koee, Xopr =—Xon

(X'(s) =—ax(s)+ou(s)+c = f(x(s),u(s)), t<s<T,
ix(t) = X

We convexify the set of controls u<[0,1]
so u represents the probability of being ON

Note that [Xoy, Xor] is invariant for the controlled trajectory,
and that the extremes cannot be reached



m(x,t) distribution function of agents at time

XoFF
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m(x,t) distribution function of agents at time

We also allow for the presence of

some concentrated masses
(Dirac measures)

XoFF ®
j m(x,t)dx=1 Wt
XON
°
//'\
|
Xon
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The control u has to satisfy the following requirements:

minimization of power: Wowu + Worr (1-u) where Wov and Worr are
the power consumed when the appliance is ON or OFF
respectively.

network frequency stabilization: denoting by w and wres the
current frequency and the reference frequency, respectively,
frequency stabilization corresponds to a cost of type uf/w-wres [+
+(1-u)[w-wres |- The term u(s)[w(s)-w.s |. represents a penalty for
all those agents that are ON when w(s) > wer; (1-u(s))[w(s)-W:r |-
is a penalty for all those agents that are OFF when w(s) < w.y

stabilization of the temperature around a comfortable value x.r.

Desynchronization: good proportion between ON and OFF
agents



 We make some (simplifying) assumptions

w(s)—w.  =—(m(s)—m ), where m(s)= (_)[F;(m(x, s)dx

WOFF — Wref — Xref — mref — O’ r :WON > O



We consider the following running cost (for
h, k>0 fixed), cost functional (for a given
terminal cost ) and value function
(depending on the mean temperature)

g(X,u, M) = ru+qx’ +h[m], u+k[m]_({1-u)

J(x,t,u()) = f g(x(s),u(s),m(s))ds + ¥ (x(T))

V(X,t) = |un(1; J(x,t,u(")



Every agent wants to minimize J, wherethemean m

IS the mean of theactual distribution of temperatures,

supposingthat all agents optimally behave.

The network manager wantstoinduce a

behavior of theagents such that the mean temperature
IS as close as possibleto the reference one m_, =0.

Given the running cost g we want todesign the final cost W
such that the desired behavior Is obtained.



Let u (x,t) be theoptimal feedback, then theactual distribution m
"satisfies" m, (x,t)+(f (x,u (x,t))m(x,1)), = 0.

Denoting the optimal mean control by

u(t) = ].F:J*(x,t)m(x,t)dx
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Let u (x,t) be theoptimal feedback, then theactual distribution m
"satisfies" m, (x,t)+(f (x,u (x,t))m(x,1)), = 0.

Denoting the optimal mean control by

u(t) = ].F:J*(x,t)m(x,t)dx

XON

then the mean temperaturem "satisfies" theequation
Mm'=—am +olU +c = f(m,U).

The network manager is interested in controlling
the mean temperature, hence we regard the
mean temperature as the solution of the
following mean field system which formally
results in
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uel[0,1]

V(X,T)Z\P(X), in [XON’XOFF]l
u”(x,t) =arg max{- f (x,u)v, (x,t)—g(x,u,m(t)}

uel[0,1]
m, (x,8)+ (f (x,u”(x,))m(x,1)), =0, in 1X oy, Xoe [XI0, T,
M(Xgy 1) =mM(X e, 1) =0, in te[0,T],
m(x,0) =my(x), In Xe[Xoy, Xoee ],

{—Vt(x,t)Jr sup {~ f (x,u)v, (x,) =g (x,u, M)} =0, in [Xoy Xore IXI0,T],

.

T;n(x,t)dx ~1 in [0,T],

L Xon

ut) = Ta*(x,t)m(x,t)dx, in [0,T],
m'(t)=—am(t)+ol(t)+c, in [0,T]
K{m(o):mo

u (x,t)=y(t)x, T(t)= T;/(t)xm(x,t)dx = y(t)m(t)

XON
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V(X1T) :\I’(X), in [XON’XOFF]l
u”(x,t) = arg max{- f (x,u)v, (x,t) — g(x,u, m(t)},

uel[0,1]

{—Vt(x,t)+ SUp {_ f(X,U)VX(X,t)—g(X,U,m(t)}: O’ in [XON,XOFF ]X]O’T]’

'm, (%, 1)+ (f (U™ (x,1)m(x, 1), =0, in TXoy: Xome [¥10, T
M(Xgy ) =m(Xgee,t) =0, in te[0,T],
m(X,0) =my(x), In X e[Xoy, Xoge |,

.

T;n(x,t)dx ~1, in [0,T],

L Xon

u(t) = Ta*(x,t)m(x,t)dx, in [0,T1,

XON

{m'(t)z—am(t)ma(t)m, in [0,T]
|m(0) =m,
g(x,u,m) =ru+gx’ +h[m], u+k[m]_(1-u)

m not separated, non - monotonein m;
bounded controls and states



Let ¢ bethesetof positiveprobability measures on [ Xy, Xoee ]
endowed with theweak - star topobgy. A weak solution of

‘m, (x,t)+ (f O, U™ (6 0)M(x, 1), =0, in 1Xoy» Xope [XI0, T
M(Xgy 1) =m(Xoee, 1) =0, In t€[0,T],

m(x,0) =my(X), IN X e[Xoy, Xoee ],

.

T;n(x,t)dx:l, in [0,T],

L Xon

IS a continuous function m:[0,T]— g, t— m[t], such that

X]-FF§0(X,0)dmo +]' X]'FF [got(x,t) + f (X, u*(x,t))gox(x,t)]dm[t]dt =0,

XON XON

Ve Cg([XON , Xore IX[0,T])



We expect solutions of the form

yi (1)

14
mlt] = (., t)+ X 7, (1)S
with m,y, e L', y, continuous. Hence, we have to give a meaning to

the following duality - integral, when the optimal feedback u” is
dicontinuous
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We expect solutions of the form

] = 1)+ 2 7, (05

y; (t)
with m,y, e L', y, continuous. Hence, we have to give a meaning to

the following duality - integral, when the optimal feedback u” is
dicontinuous

T Xorr

| o, (x, 1) +  (x,u" (%, 1)), (%, 1) Im[t]clt

We require thatu” is defined almost everywhereby
u”(x,t) =arg max{— f (x,u)v, (x,t) — g(x,u, m(t)}

uel0,1]
and that, where the formula does not define,
It can be anyway defined in a uniguely manner
In such a way thatthe optimal trajectory exists for all time.
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V(X’T) = ‘P(X)’ in [XON 1 XOFF]’
u"(x,t) = arg max{— f (x,u)v, (x,t) — g(x,u, m(t)},

uel0,1]
(m, (x,8) + (f (U ()M, D), =0, i IXoy, Xore 10, TL
M(Xgy,t) =m(Xgee,t) =0, in te[0,T],
Im(x,0) =m,(x), in xe[Xoys Xoee s

T;n(x,t)dx:l, in [0,T],

XON

{—vt(x,t)+ sup {~ f (X, u)v, (X, 1) = g(x,u, M)} =0, in [Xoy Xoee 110, T],

a(t) = Ta*(x,t)m(x,t)dx, in [0,T],

M (t) = —am(t) + ot (t) +¢, in [0,T]
m(O) = mo

A solution is a continuous function m : [0, T] — [0,+o0]
which is a fixed pointof the procedure

moVoUuU >m—Uu—m
where u” is as required.
Notethat thelast ODE is also solved in a distributional sense.



* Now, we want to construct a suitable terminal
cost ¥ such that, at least starting from some
initial data, there is a solution m constantly
equal to zero.



Take m =0 and consider the corresponding Bellman equation
—V, +aV, X—cv, —qx° +[-ov, —r], =0, v(X,T)=¥(X)
consider the stationary equation
¥ x—c¥, —qgx’ +[-o¥, —r], =0
2

—oV, - r<0=VY, = i N [Xon Xoeel,
aX—C |

2
o _r<0 Take¥’ a primitive.
oX—C

OxX° +r
axX +C

—GLPX—I’>0:>\PX= In ]XON,XOFF]’

Ox° +r
aX+C

el —r>0. Take¥' aprimitive.



It can be then seen that W' is the value function
of thecontrol problemin [ X, Xoe ] With cost
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It can be then seen that W' is the value function
of thecontrol problemin [ X, Xoe ] With cost

] g(x(s),u(s),0)ds +¥' (x(T))

1.

¥Y'=u =0 ¥V'=u



Yo F(x)

PO(x) if x<O
Y(x)={Px) if x>0
P (0)=(0)=0

We use this as terminal cost Iin our originary problem.




T he value function is

(P (x) if T—t<t"(x),
V(X,t) =5

W (x) +%(T _t"(x)—t) otherwise

where t”(x) is thearrival timeat x =0,
under the optimal feedback control

-

1 1f x>0
u (x,t)=<0 if x<0
1

— 1f x=0

L
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1 if x>0
u(x,t)=40 if x<0

E if x=0

Xx>0= f(x,1) <0, x<0= f(x,0)>0, f(O,%):O

For every intial state x theoptimal trajectory exists for all time
and coverges to zero, remaining there, when reached;

If theinitial distribution of temperatures m,

Is symmetricwith respect tox =0 (and hence zero-mean m,=0)
then it remains symmetricand the mean optimal control U

: 1

Is constantly equal to E;

If theinitial distribution m, is symmetricthen thesolution of
m'= —am+%+c, m(0) =0,

IS m=0.



Let m, besymmetricand absolutely continuous.
Then agents accumulate at x = 0.
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Let m, besymmetricand absolutely continuous.
Then agents accumulate at x = 0.

Let m(-,-) be the solution of
M, (x, 1)+ (f(x,0)m(x,t)), =0 in [Xy, O[x]O,TI,

m, (x,t) + (f (x)m(x,t)), =0 in ]0, X Ix]0, T[
\M(x,0) =my(x)

N\

The weak solution of the Kolomogorov equation is
the zero- mean function

m[t] = (. t) + ¥(t)S,, where »(t) =1— ]'FFr'ﬁ(x,t)dx,

XON

f(x,0)=—f(x1), f(O,u"(0,1)=7f(01/2)=0
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All agents tend to the reference
temperature x = 0. For x = 0, the optimal
feedback u=1/2 stabilizes the optimal
trajectories and the mean in 0 and means
that the agents at x = 0 are in the state ON
with probability 1/2.




* At a macroscopic level the agents are not all in
the ON or OFF state at the same time
(desynchronized). At a microscopic level,
looking at every single agent, this induces a
fast switching ON/OFF infinitely many times.
Such a behavior is undesirable as well as
unrealizable in reality. We then change the
terminal cost in order to force the agents to
avoid fast switching while maintaining the
desynchronization.



* The fast switching behavior is due to
the fact that in the terminal cost ¥
we have only one threshold, x =0,
where the agents switch from O to 1
and back. Hence we split such
threshold in two different thresholds,
one determining the switches from O
to 1 and the other one for the
switches in the opposite direction.
That is we insert a hysteretic
thermostatic rule in the
mathematical model




m




The new statevariable is (X, z,77,,,77,,)
where 77,, Is the number of switches from 0 to1,
1, the number of switches from1toO0.
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The feedback law u(Xx, z,77,,,77,,,t) = Z 1S optimal.
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The feedback law u(Xx, z,77,,,77,,,t) = Z 1S optimal.

So1

PX(TY, 2(T), 7701 (T, 7710 (T)) = P2 (X(T)) = &0 7701 (T) — Ev7o (T)

Thermostatic control problem, B. et al., some previous works
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* Does this kind of evolution of the distribution
satisfy a suitable (Kolmogorov, transport)
differential equation?
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t

m(0,t)=mo(X1]+mo(x2)+mo(x3)+mo(Xa)+mo(xs)

| X1 X2 X3 \ Xa X5

Xon _¢ € Xorr



mo initial distribution of agents
switched OFF

mo initial distribution of agents
switched ON

|X1

X2

t

m(0,t)=mo(x1)

X3

\ %

X5

+mo(X2)+mo(X3)+mo(Xa)+mo(xs)

Xon

Xorr
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m (Xltl 1) 110)
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m (Xltlol 1’ 1)

\
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T

m(x,t,1,0,0)
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—£ e Xorr
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m(x,t,0,0,1)

Xon
e Xorr
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m (Xltl 1’ 1’ 1)
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