Mean field games and dynamic demand management in power grids

Fabio Bagagiolo
University of Trento

MFG2 Padova September 2013

- We consider a (large) population of cooling and/or heating appliances which we consider as agents.
- We consider a (large) population of cooling and/or heating appliances which we consider as agents.
- Every agents, at time t is characterized by its temperature $x(t) \in\left[X_{o n,}, X_{o f}\right]$, and acts by the control $u \in\{0,1\}$ which stays for OFF/ON respectively.
- We consider a (large) population of cooling and/or heating appliances which we consider as agents.
- Every agents, at time t is characterized by its temperature $x(t) \in\left[X_{o n,}, X_{o f}\right]$, and acts by the control $u \in\{0,1\}$ which stays for OFF/ON respectively.
- The goal is to induce a behavior of the agents in order to stabilize the power network around a reference state, in particular desynchronize (ON/OFF) the agents (Angeli-Kountouriotis, 2012)

$$
\left\{\begin{array}{l}
x^{\prime}(s)=\left\{\begin{array}{l}
-\alpha\left(x(s)-X_{O N}\right) \text { if } u(s)=1, t<s<T \\
-\alpha\left(x(s)-X_{O F F}\right) \text { if } u(s)=0, t<s<T
\end{array}\right. \\
x(t)=x
\end{array}\right.
$$

The rate $\alpha>0$ is given and $X_{\text {os }}<X_{\text {of }}$ are the steadystate temperatures of the appliances when in state ON or OFF, respectively

We make some hypotheses and passages

$$
\begin{aligned}
& \sigma=-\alpha\left(X_{O F F}-X_{O N}\right), \quad c=\alpha X_{\text {OFF }}, X_{O F F}=-X_{O N} \\
& \left\{\begin{array}{l}
x^{\prime}(s)=-\alpha x(s)+\sigma u(s)+c=f(x(s), u(s)), t<s<T, \\
x(t)=x
\end{array}\right.
\end{aligned}
$$

We make some hypotheses and passages

$$
\begin{aligned}
& \sigma=-\alpha\left(X_{O F F}-X_{O N}\right), \quad c=\alpha X_{O F F}, X_{O F F}=-X_{O N} \\
& \left\{\begin{array}{l}
x^{\prime}(s)=-\alpha x(s)+\sigma u(s)+c=f(x(s), u(s)), t<s<T, \\
x(t)=x
\end{array}\right.
\end{aligned}
$$

We convexify the set of controls $u \in[0,1]$ so u represents the probability of being ON

We make some hypotheses and passages

$$
\begin{aligned}
& \sigma=-\alpha\left(X_{O F F}-X_{O N}\right), \quad c=\alpha X_{O F F,}, X_{O F F}=-X_{O N} \\
& \left\{\begin{array}{l}
x^{\prime}(s)=-\alpha x(s)+\sigma u(s)+c=f(x(s), u(s)), t<s<T, \\
x(t)=x
\end{array}\right.
\end{aligned}
$$

We convexify the set of controls $u \in[0,1]$ so u represents the probability of being ON

Note that $\left[X_{o n,}, X_{o f f}\right]$ is invariant for the controlled trajectory, and that the extremes cannot be reached
$m(x, t)$ distribution function of agents at time t

$m(x, t)$ distribution function of agents at time t
We also allow for the presence of some concentrated masses (Dirac measures)

- The control u has to satisfy the following requirements:
- minimization of power: $W_{\text {on }} u+W_{\text {off }}(1-u)$ where $W_{\text {on }}$ and $W_{\text {off }}$ are the power consumed when the appliance is ON or OFF respectively.
- The control u has to satisfy the following requirements:
- minimization of power: $W_{\text {on }} u+W_{\text {off }}(1-u)$ where $W_{\text {on }}$ and $W_{\text {off }}$ are the power consumed when the appliance is ON or OFF respectively.
- network frequency stabilization: denoting by w and $w_{\text {ref }}$ the current frequency and the reference frequency, respectively, frequency stabilization corresponds to a cost of type $u\left[w \text { - } W_{\text {ref }}\right]_{+}$ $+(1-u)\left[w-w_{r e f}\right]$ - The term $u(s)\left[w(s)-w_{\text {ref }}\right]+$ represents a penalty for all those agents that are ON when $w(s)>W_{\text {ref }} ;(1-u(s))\left[w(s)-w_{\text {ref }}\right]$. is a penalty for all those agents that are OFF when $w(s)<w_{\text {ref }}$
- The control u has to satisfy the following requirements:
- minimization of power: $W_{\text {on }} u+W_{\text {off }}(1-u)$ where $W_{\text {on }}$ and $W_{\text {off }}$ are the power consumed when the appliance is ON or OFF respectively.
- network frequency stabilization: denoting by w and $w_{\text {ref }}$ the current frequency and the reference frequency, respectively, frequency stabilization corresponds to a cost of type $u\left[w \text { - } W_{\text {ref }}\right]_{+}$ $+(1-u)\left[w-w_{\text {ref }}\right]$. The term $u(s)\left[w(s)-w_{\text {ref }}\right]$ represents a penalty for all those agents that are ON when $w(s)>w_{\text {ref }} ;(1-u(s))\left[w(s)-w_{\text {ref }}\right]$. is a penalty for all those agents that are OFF when $w(s)<w_{\text {ref }}$
- stabilization of the temperature around a comfortable value $X_{\text {ref }}$.
- The control u has to satisfy the following requirements:
- minimization of power: $W_{\text {on }} u+W_{\text {off }}(1-u)$ where $W_{\text {on }}$ and $W_{\text {off }}$ are the power consumed when the appliance is ON or OFF respectively.
- network frequency stabilization: denoting by w and $w_{\text {ref }}$ the current frequency and the reference frequency, respectively, frequency stabilization corresponds to a cost of type $u\left[w \text { - } W_{\text {ref }}\right]_{+}$ $+(1-u)\left[w-w_{\text {ref }}\right]$. The term $u(s)\left[w(s)-w_{\text {ref }}\right]$ represents a penalty for all those agents that are ON when $w(s)>w_{\text {ref }} ;(1-u(s))\left[w(s)-w_{\text {ref }}\right]$. is a penalty for all those agents that are OFF when $w(s)<w_{\text {ref }}$
- stabilization of the temperature around a comfortable value $X_{\text {ref }}$.
- Desynchronization: good proportion between ON and OFF agents
- We make some (simplifying) assumptions

$$
\begin{array}{ll}
w(s)-w_{r e f}=-\left(\bar{m}(s)-\bar{m}_{r e f}\right), & \text { where } \bar{m}(s)=\int_{X_{O N}}^{X_{O F F}} x m(x, s) d x \\
W_{\text {OFF }}=w_{r e f}=x_{r e f}=\bar{m}_{r e f}=0, \quad r=W_{O N}>0
\end{array}
$$

We consider the following running cost (for $h, k>0$ fixed), cost functional (for a given terminal cost Ψ) and value function (depending on the mean temperature)

$$
\begin{gathered}
g(x, u, \bar{m})=r u+q x^{2}+h[\bar{m}]_{+} u+k[\bar{m}]_{-}(1-u) \\
J(x, t, u(\cdot))=\int_{t}^{T} g(x(s), u(s), \bar{m}(s)) d s+\Psi(x(T)) \\
v(x, t)=\inf _{u(\cdot)} J(x, t, u(\cdot))
\end{gathered}
$$

Every agent wants to minimize J, where the mean \bar{m} is the mean of the actual distribution of temperatures, supposing that all agents optimally behave.
The net work manager wants to induce a behavior of the agents such that the mean temperature is as close as possible to the reference one $\bar{m}_{r e f}=0$.
Given the running cost g we want todesign the final cost Ψ such that the desired behavior is obtained.

Let $u^{*}(x, t)$ be the optimal feedback, then the actual distribution m
"satisfies" $m_{t}(x, t)+\left(f\left(x, u^{*}(x, t)\right) m(x, t)\right)_{x}=0$.

Denoting the optimal mean control by
$\bar{u}(t)=\int_{X_{\text {ON }}}^{X_{\text {OFF }}} u^{*}(x, t) m(x, t) d x$
then the mean temperature \bar{m} "satisfies" the equation
$\bar{m}^{\prime}=-\alpha \bar{m}+\sigma \bar{u}+c=f(\bar{m}, \bar{u})$.

Let $u^{*}(x, t)$ be the optimal feedback, then the actual distribution m
"satisfies" $m_{t}(x, t)+\left(f\left(x, u^{*}(x, t)\right) m(x, t)\right)_{x}=0$.

Denoting the optimal mean control by
$\bar{u}(t)=\int_{X_{O N}}^{X_{\text {OFF }}} u^{*}(x, t) m(x, t) d x$
then the mean temperature \bar{m} "satisfies" the equation
$\bar{m}^{\prime}=-\alpha \bar{m}+\sigma \bar{u}+c=f(\bar{m}, \bar{u})$.

- The network manager is interested in controlling the mean temperature, hence we regard the mean temperature as the solution of the following mean field system which formally results in

$$
\begin{aligned}
& \left\{\left\{-v_{t}(x, t)+\sup _{u \in[0,1]}\left\{-f(x, u) v_{x}(x, t)-g(x, u, \bar{m}(t)\}=0 \text {, in }\left[X_{\text {ON },} X_{\text {OFF }}\right] \times\right] 0, T\right]\right. \text {, } \\
& v(x, T)=\Psi(x) \text {, in }\left[X_{O N}, X_{O F F}\right], \\
& u^{*}(x, t)=\arg \max \left\{-f(x, u) v_{x}(x, t)-g(x, u, \bar{m}(t)\},\right. \\
& u \in[0,1] \\
& \left.\int m_{t}(x, t)+\left(f\left(x, u^{*}(x, t)\right) m(x, t)\right)_{x}=0, \text { in }\right] X_{O N}, X_{O F F}[\times] 0, T[, \\
& m\left(X_{\text {ON }}, t\right)=m\left(X_{\text {OFF }}, t\right)=0 \text {, in } t \in[0, T], \\
& \left\{m(x, 0)=m_{0}(x), \text { in } x \in\left[X_{\text {ON }}, X_{\text {OFF }}\right]\right. \text {, } \\
& X_{\text {OFF }} \\
& \int_{X_{O N}} m(x, t) d x=1, \text { in }[0, T], \\
& \bar{u}(t)=\int_{X_{O N}}^{X_{\text {OFF }}} u^{*}(x, t) m(x, t) d x, \text { in }[0, T], \\
& \int \bar{m}^{\prime}(t)=-\alpha \bar{m}(t)+\sigma \bar{u}(t)+c, \text { in }[0, T] \\
& \left\{\bar{m}(0)=\bar{m}_{0}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left\{-v_{t}(x, t)+\sup _{u \in[0,1]}\left\{-f(x, u) v_{x}(x, t)-g(x, u, \bar{m}(t)\}=0 \text {, in }\left[X_{O N,} X_{\text {OFF }}\right] \times\right] 0, T\right],\right. \\
& \downarrow(x, T)=\Psi(x) \text {, in }\left[X_{O N}, X_{O F F}\right], \\
& u^{*}(x, t)=\arg \max \left\{-f(x, u) v_{x}(x, t)-g(x, u, \bar{m}(t)\},\right. \\
& u \in[0,1] \\
& \left.\int m_{t}(x, t)+\left(f\left(x, u^{*}(x, t)\right) m(x, t)\right)_{x}=0, \text { in }\right] X_{O N}, X_{O F F}[\times] 0, T[\text {, } \\
& m\left(X_{\text {ON }}, t\right)=m\left(X_{\text {OFF }}, t\right)=0 \text {, in } t \in[0, T] \text {, } \\
& \left\{m(x, 0)=m_{0}(x), \text { in } x \in\left[X_{O N}, X_{O F F}\right]\right. \text {, } \\
& X_{O F F} \\
& \int_{X_{O N}}^{x_{\text {OFF }}} m(x, t) d x=1 \text {, in }[0, T], \\
& \bar{u}(t)=\int_{X_{O N}}^{X_{\text {OFF }}} u^{*}(x, t) m(x, t) d x \text {, in }[0, T], \\
& \int \bar{m}^{\prime}(t)=-\alpha \bar{m}(t)+\sigma \bar{u}(t)+c \text {, in }[0, T] \\
& \bar{m}(0)=\bar{m}_{0} \\
& \bar{m} \rightarrow v \rightarrow u^{*} \rightarrow m \rightarrow \bar{u} \rightarrow \bar{m}
\end{aligned}
$$

$$
u^{*}(x, t)=\gamma(t) x, \quad \bar{u}(t)=\int_{X_{O N}}^{X_{O F F}} \gamma(t) x m(x, t) d x=\gamma(t) \bar{m}(t)
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left.-v_{t}(x, t)+\sup _{u \in[0,1]}\left\{-f(x, u) v_{x}(x, t)-g(x, u, \bar{m}(t)\}=0 \text {, in }\left[X_{O N}, X_{O F F}\right] \times\right] 0, T\right], \\
v(x, T)=\Psi(x),
\end{array}\right. \\
& v(x, T)=\Psi(x), \text { in }\left[X_{O N}, X_{O F F}\right], \\
& u^{*}(x, t)=\underset{u \in[0,1]}{\arg \max }\left\{-f(x, u) v_{x}(x, t)-g(x, u, \bar{m}(t)\}\right. \text {, } \\
& \left.\int m_{t}(x, t)+\left(f\left(x, u^{*}(x, t)\right) m(x, t)\right)_{x}=0, \text { in }\right] X_{O N}, X_{O F F}[\times] 0, T[, \\
& m\left(X_{\text {ON }}, t\right)=m\left(X_{\text {OFF }}, t\right)=0 \text {, in } t \in[0, T], \\
& \left\{m(x, 0)=m_{0}(x) \text {, in } x \in\left[X_{O N}, X_{\text {OFF }}\right],\right. \\
& \int_{X_{O N}}^{X_{\text {OFF }}} m(x, t) d x=1 \text {, in }[0, T], \\
& \bar{u}(t)=\int_{X_{O N}}^{X_{O F F}} u^{*}(x, t) m(x, t) d x \text {, in }[0, T], \\
& \left\{\begin{array}{l}
\bar{m}^{\prime}(t)=-\alpha \bar{m}(t)+\sigma \bar{u}(t)+c, \text { in }[0, T] \\
\bar{m}(0)=\bar{m}_{0}
\end{array}\right.
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\left.-v_{t}(x, t)+\sup _{u \in[0,1]}\left\{-f(x, u) v_{x}(x, t)-g(x, u, \bar{m}(t)\}=0, \text { in }\left[X_{O N} X_{O F F}\right] \times\right] 0, T\right], \\
v(x, T)=\Psi(x), \text { in }\left[X_{O N}, X_{O F F}\right],
\end{array}\right. \\
u^{*}(x, t)=\underset{u \in[0,1]}{\arg \max }\left\{-f(x, u) v_{x}(x, t)-g(x, u, \bar{m}(t)\},\right. \\
\left\{\begin{array}{l}
\begin{array}{l}
\left.m_{t}(x, t)+\left(f\left(x, u^{*}(x, t)\right) m(x, t)\right)_{x}=0, \text { in }\right] X_{O N}, X_{O F F}[\times] 0, T[, \\
m\left(X_{O N}, t\right)=m\left(X_{O F F}, t\right)=0, \text { in } t \in[0, T], \\
m(x, 0)=m_{0}(x), \text { in } x \in\left[X_{O N}, X_{O F F}\right], \\
x_{\text {OFF }} \\
\int_{X_{O N}} m(x, t) d x=1, \text { in }[0, T],
\end{array} \\
\begin{array}{l}
\bar{u}(t)=\int_{X_{O N}} u^{*}(x, t) m(x, t) d x, \text { in }[0, T], \\
\left\{\begin{array}{l}
\bar{m}_{\text {OFF }}(t)=-\alpha \bar{m}(t)+\sigma \bar{u}(t)+c, \text { in }[0, T] \\
\bar{m}(0)=\bar{m}_{0} \quad g(x, u, \bar{m})=r u+q x^{2}+h[\bar{m}]_{+} u+k[\bar{m}]_{-}(1-u)
\end{array}\right. \\
\quad m \text { not separated, non }- \text { monotone in } m ;
\end{array} \\
\text { bounded controls and states }
\end{array}\right.
\end{array}\right.
$$

Let \wp be the set of positive probability measures on [$X_{\text {ON }}, X_{\text {OFF }}$] endowed with the weak - star topobgy. A weak solution of

$$
\left\{\begin{array}{l}
\left.m_{t}(x, t)+\left(f\left(x, u^{*}(x, t)\right) m(x, t)\right)_{x}=0, \text { in }\right] X_{O N}, X_{O F F}[\times] 0, T[, \\
m\left(X_{O N}, t\right)=m\left(X_{O F F}, t\right)=0, \text { in } t \in[0, T], \\
m(x, 0)=m_{0}(x), \text { in } x \in\left[X_{O N}, X_{O F F}\right], \\
\int_{X_{O N}}^{x_{O F F}} m(x, t) d x=1, \text { in }[0, T],
\end{array}\right.
$$

is a continuous function $m:[0, T] \rightarrow \wp, t \mapsto m[t]$, such that
$\int_{X_{O N}}^{X_{O F F}} \varphi(x, 0) d m_{0}+\int_{0}^{T} \int_{X_{O N}}^{X_{O F F}}\left[\varphi_{t}(x, t)+f\left(x, u^{*}(x, t)\right) \varphi_{x}(x, t)\right] d m[t] d t=0$,
$\forall \varphi \in C_{c}^{1}\left(\left[X_{\text {ON }}, X_{O F F}\right] \times[0, T[)\right.$

We expect solutions of the form
$m[t]=\widetilde{m}(\cdot, t)+\sum_{i=1}^{\ell} \gamma_{i}(t) \delta_{y_{i}(t)}$
with $\tilde{m}, \gamma_{i} \in L^{1}, y_{i}$ continuous. Hence, we have to give a meaning to the following duality - integral, when the optimal feedback u^{*} is dicontinuous

$$
\int_{0}^{T} \int_{X_{\text {ON }}}^{X_{\text {OFF }}}\left[\varphi_{t}(x, t)+f\left(x, u^{*}(x, t)\right) \varphi_{x}(x, t)\right] d m[t] d t
$$

We expect solutions of the form
$m[t]=\tilde{m}(\cdot, t)+\sum_{i=1}^{\ell} \gamma_{i}(t) \delta_{y_{i}(t)}$
with $\tilde{m}, \gamma_{i} \in L^{1}, y_{i}$ continuous. Hence, we have to give a meaning to the following duality - integral, when theoptimal feedback u^{*} is dicontinuous
$\int_{0}^{T} \int_{X_{\text {ON }}}^{X_{\text {OFF }}}\left[\varphi_{t}(x, t)+f\left(x, u^{*}(x, t)\right) \varphi_{x}(x, t)\right] d m[t] d t$
We require that u^{*} is defined almost every where by

$$
u^{*}(x, t)=\underset{u \in[0,1]}{\arg \max }\left\{-f(x, u) v_{x}(x, t)-g(x, u, \bar{m}(t)\}\right.
$$

and that, where the formula does not define,
it can be anyway defined in a uniquely manner in such a way that the optimal trajectory exists for all time.

$$
\begin{aligned}
& \left\{\left\{-v_{t}(x, t)+\sup _{u \in[0,1]}\left\{-f(x, u) v_{x}(x, t)-g(x, u, \bar{m}(t)\}=0 \text {, in }\left[X_{\text {ON }} X_{\text {OFF }}\right] \times\right] 0, T\right]\right. \text {, } \\
& v(x, T)=\Psi(x) \text {, in }\left[X_{O N}, X_{O F F}\right], \\
& u^{*}(x, t)=\underset{u \in[0,1]}{\arg \max }\left\{-f(x, u) v_{x}(x, t)-g(x, u, \bar{m}(t)\},\right. \\
& \left.\int m_{t}(x, t)+\left(f\left(x, u^{*}(x, t)\right) m(x, t)\right)_{x}=0, \text { in }\right] X_{O N}, X_{O F F}[\times] 0, T[\text {, } \\
& m\left(X_{O N}, t\right)=m\left(X_{O F F}, t\right)=0 \text {, in } t \in[0, T] \text {, } \\
& \left\{m(x, 0)=m_{0}(x) \text {, in } x \in\left[X_{O N}, X_{O F F}\right],\right. \\
& { }^{X_{\text {OFF }}} \\
& \int_{X_{X_{O N}}} m(x, t) d x=1 \text {, in }[0, T], \\
& \bar{u}(t)=\int_{X_{\text {ON }}}^{X_{\text {OFF }}} u^{*}(x, t) m(x, t) d x \text {, in }[0, T], \\
& \left\{\begin{array}{l}
\bar{m}^{\prime}(t)=-\alpha \bar{m}(t)+\sigma \bar{u}(t)+c, \text { in }[0, T] \\
\bar{m}(0)=\bar{m}_{0}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left\{-v_{t}(x, t)+\sup _{u \in[0,1]}\left\{-f(x, u) v_{x}(x, t)-g(x, u, \bar{m}(t)\}=0 \text {, in }\left[X_{O N} X_{O F F}\right] \times\right] 0, T\right]\right. \text {, } \\
& v(x, T)=\Psi(x) \text {, in }\left[X_{O N}, X_{O F F}\right], \\
& u^{*}(x, t)=\underset{u \in[0,1]}{\arg \max }\left\{-f(x, u) v_{x}(x, t)-g(x, u, \bar{m}(t)\}\right. \text {, } \\
& \left.\int m_{t}(x, t)+\left(f\left(x, u^{*}(x, t)\right) m(x, t)\right)_{x}=0 \text {, in }\right] X_{O N}, X_{O F F}[\times] 0, T[, \\
& m\left(X_{\text {ON }}, t\right)=m\left(X_{\text {OFF }}, t\right)=0 \text {, in } t \in[0, T], \\
& \left\{m(x, 0)=m_{0}(x) \text {, in } x \in\left[X_{O N}, X_{O F F}\right]\right. \text {, } \\
& X_{\text {OFF }} \\
& \int_{X_{O N}}^{x_{O F F}} m(x, t) d x=1 \text {, in }[0, T], \\
& \bar{u}(t)=\int_{X_{\text {ON }}}^{X_{\text {OFF }}} u^{*}(x, t) m(x, t) d x \text {, in }[0, T], \\
& \left\{\begin{array}{l}
\bar{m}^{\prime}(t)=-\alpha \bar{m}(t)+\sigma \bar{u}(t)+c, \text { in }[0, T] \\
\bar{m}(0)=\bar{m}_{0}
\end{array}\right.
\end{aligned}
$$

A solution is a continuous function $\bar{m}:[0, T] \rightarrow[0,+\infty[$ which is a fixed point of the procedure
$\bar{m} \rightarrow v \rightarrow u^{*} \rightarrow m \rightarrow \bar{u} \rightarrow \bar{m}$
where u^{*} is as required.
Note that thelast ODE is also solved in a distributional sense.

- Now, we want to construct a suitable terminal cost Ψ such that, at least starting from some initial data, there is a solution \bar{m} constantly equal to zero.

Take $\bar{m} \equiv 0$ and consider the corresponding Bellman equation
$-v_{t}+\alpha v_{x} x-c v_{x}-q x^{2}+\left[-\sigma v_{x}-r\right]_{+}=0, \quad v(x, T)=\Psi(x)$
consider the stationary equation

$$
\begin{aligned}
& \alpha \Psi_{x} x-c \Psi_{x}-q x^{2}+\left[-\sigma \Psi_{x}-r\right]_{+}=0 \\
& -\sigma \Psi_{x}-r \leq 0 \Rightarrow \Psi_{x}=\frac{q x^{2}}{\alpha x-c} \text { in }\left[X_{O N,} X_{O F F}[,\right. \\
& -\sigma \frac{q x^{2}}{\alpha x-c}-r \leq 0 . \text { Take } \Psi^{0} \text { a primitive. } \\
& \left.\left.-\sigma \Psi_{x}-r>0 \Rightarrow \Psi_{x}=\frac{q x^{2}+r}{\alpha x+c} \text { in }\right] X_{O N,} X_{O F F}\right], \\
& -\sigma \frac{q x^{2}+r}{\alpha x+c}-r>0 . \quad \text { Take } \Psi^{1} \text { a primitive. }
\end{aligned}
$$

It can be then seen that Ψ^{i} is the value function of the control problem in [$X_{\text {ON }}, X_{\text {OFF }}$] with cost

$$
\int^{T} g(x(s), u(s), 0) d s+\Psi^{i}(x(T))
$$

It can be then seen that Ψ^{i} is the value function of the control problem in [$X_{O N}, X_{O F F}$] with cost

$$
\int_{0}^{T} g(x(s), u(s), 0) d s+\Psi^{i}(x(T))
$$

$$
\Psi^{0} \Rightarrow u^{*} \equiv 0, \quad \Psi^{1} \Rightarrow u^{*} \equiv 1
$$

We use this as terminal cost in our originary problem.

The value function is
$v(x, t)= \begin{cases}\Psi(x) & \text { if } T-t<t^{*}(x), \\ \Psi(x)+\frac{r}{2}\left(T-t^{*}(x)-t\right) & \text { otherwise }\end{cases}$
where $t^{*}(x)$ is the arrival time at $x=0$, under the optimal feedback control
$u^{*}(x, t)=\left\{\begin{array}{lll}1 & \text { if } & x>0 \\ 0 & \text { if } & x<0 \\ \frac{1}{2} & \text { if } & x=0\end{array}\right.$
$u^{*}(x, t)=\left\{\begin{array}{lll} & & \\ 1 & \text { if } & x>0 \\ 0 & \text { if } & x<0 \\ \frac{1}{2} & \text { if } & x=0\end{array}\right.$
$x>0 \Rightarrow f(x, 1)<0, x<0 \Rightarrow f(x, 0)>0, f\left(0, \frac{1}{2}\right)=0$
For every intial state x the optimal trajectory exists for all time and coverges to zero, remaining there, when reached;
If the initial distribution of temperatures m_{0}
is symmetric with respect to $x=0$ (and hence zero-mean $\bar{m}_{0}=0$) then it remains symmetric and the mean optimal control \bar{u} is constantly equal to $\frac{1}{2}$;
If the initial distribution m_{0} is symmetric then the solution of
$\bar{m}^{\prime}=-\alpha \bar{m}+\frac{\sigma}{2}+c, \bar{m}(0)=0$,
is $\bar{m} \equiv 0$.

Let m_{0} be symmetric and absolutely continuous.
Then agents accumulate at $x=0$.

Let $\widetilde{m}(\cdot, \cdot)$ be the solution of

$$
\left\{\begin{array}{l}
\tilde{m}_{t}(x, t)+(f(x, 0) \tilde{m}(x, t))_{x}=0 \quad \text { in }\left[X_{\text {ON, }} 0[\times] 0, T[,\right. \\
\left.\left.\left.\widetilde{m}_{t}(x, t)+(f(x, 1) \tilde{m}(x, t))_{x}=0 \quad \text { in }\right] 0, X_{\text {OFF }}\right] \times\right] 0, T[\\
\tilde{m}(x, 0)=m_{0}(x)
\end{array}\right.
$$

Let m_{0} be symmetric and absolutely continuous.
Then agents accumulate at $x=0$.

Let $\tilde{m}(\cdot, \cdot)$ be the solution of

$$
\left\{\begin{array}{l}
\tilde{m}_{t}(x, t)+(f(x, 0) \tilde{m}(x, t))_{x}=0 \quad \text { in } \quad\left[X_{\text {ON }}, 0[\times] 0, T[,\right. \\
\left.\left.\left.\widetilde{m}_{t}(x, t)+(f(x, 1) \widetilde{m}(x, t))_{x}=0 \quad \text { in }\right] 0, X_{\text {OFF }}\right] \times\right] 0, T[\\
\tilde{m}(x, 0)=m_{0}(x)
\end{array}\right.
$$

The weak solution of the Kolomogorov equation is the zero-mean function
$m[t]=\tilde{m}(\cdot, t)+\gamma(t) \delta_{0}$, where $\gamma(t)=1-\int_{X_{\text {ON }}}^{X_{\text {OFF }}} \tilde{m}(x, t) d x$,

Let m_{0} be symmetric and absolutely continuous.
Then agents accumulate at $x=0$.

Let $\tilde{m}(\cdot$,$) be the solution of$

$$
\left\{\begin{array}{l}
\tilde{m}_{t}(x, t)+(f(x, 0) \tilde{m}(x, t))_{x}=0 \quad \text { in }\left[X_{O N}, 0[\times] 0, T[,\right. \\
\left.\left.\left.\tilde{m}_{t}(x, t)+(f(x, 1) \widetilde{m}(x, t))_{x}=0 \quad \text { in }\right] 0, X_{\text {OFF }}\right] \times\right] 0, T[\\
\tilde{m}(x, 0)=m_{0}(x)
\end{array}\right.
$$

The weak solution of the Kolomogorov equation is the zero-mean function

$$
m[t]=\tilde{m}(\cdot, t)+\gamma(t) \delta_{0}, \quad \text { where } \gamma(t)=1-\int_{X_{O N}}^{X_{O F F}} \tilde{m}(x, t) d x,
$$

$$
f(x, 0)=-f(x, 1), \quad f\left(0, u^{*}(0, t)\right)=f(0,1 / 2)=0
$$

All agents tend to the reference temperature $x=0$. For $x=0$, the optimal feedback $u=1 / 2$ stabilizes the optimal trajectories and the mean in 0 and means that the agents at $x=0$ are in the state ON with probability $1 / 2$.

- At a macroscopic level the agents are not all in the ON or OFF state at the same time (desynchronized). At a microscopic level, looking at every single agent, this induces a fast switching ON/OFF infinitely many times. Such a behavior is undesirable as well as unrealizable in reality. We then change the terminal cost in order to force the agents to avoid fast switching while maintaining the desynchronization.
- The fast switching behavior is due to the fact that in the terminal cost Ψ we have only one threshold, $x=0$, where the agents switch from 0 to 1 and back. Hence we split such threshold in two different thresholds, one determining the switches from 0 to 1 and the other one for the switches in the opposite direction.
That is we insert a hysteretic thermostatic rule in the mathematical model

The new state variable is $\left(x, z, \eta_{01}, \eta_{10}\right)$
where η_{01} is the number of switches from 0 to 1 ,
η_{10} the number of switches from 1 to 0 .

The new state variable is $\left(x, z, \eta_{01}, \eta_{10}\right)$
where η_{01} is the number of switches from 0 to 1 , η_{10} the number of switches from 1 to 0 .

$\tilde{\Psi}\left(x(T), z(T), \eta_{01}(T), \eta_{10}(T)\right)=\Psi^{z(T)}(x(T))-\xi_{01} \eta_{01}(T)-\xi_{10} \eta_{10}(T)$

$\tilde{\Psi}\left(x(T), z(T), \eta_{01}(T), \eta_{10}(T)\right)=\Psi^{z(T)}(x(T))-\xi_{01} \eta_{01}(T)-\xi_{10} \eta_{10}(T)$

The feedback law $u\left(x, z, \eta_{01}, \eta_{10}, t\right)=z$ is optimal.

$\widetilde{\Psi}\left(x(T), z(T), \eta_{01}(T), \eta_{10}(T)\right)=\Psi^{z(T)}(x(T))-\xi_{01} \eta_{01}(T)-\xi_{10} \eta_{10}(T)$

The feedback law $u\left(x, z, \eta_{01}, \eta_{10}, t\right)=z$ is optimal.

$\widetilde{\Psi}\left(x(T), z(T), \eta_{01}(T), \eta_{10}(T)\right)=\Psi^{z(T)}(x(T))-\xi_{01} \eta_{01}(T)-\xi_{10} \eta_{10}(T)$

Thermostatic control problem, B. et al., some previous works

- Does this kind of evolution of the distribution satisfy a suitable (Kolmogorov, transport) differential equation?

Abstract

