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GENERAL COMMENTS

Mean �eld games reduces to a standard control problem and
an equilibrium (�xed point)

Dynamic Programming: coupled HJB and FP equations

Mean �eld type control is a non standard control problem.

Stochastic Maximum Principle ( time inconsistency)

Time inconsistency

Major Playor

Coalitions
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MODEL

Probability space Ω,A ,P , �ltration F t generated by an
n-dimensional standard Wiener process w(t).

The state space is Rn and the control space is Rd .

g(x ,m,v) : Rn×L1(Rn)×Rd → Rn; σ(x) : Rn→L (Rn;Rn)

f (x ,m,v) : Rn×L1(Rn)×Rd → R; h(x ,m) : Rn×L1(Rn)→ R

(1)

σ(x),σ−1(x) bounded (2)

m is a probability density on Rn
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STATE EQUATION

m(t) ∈ C (0,T ;L1(Rn)) given . Feedback control v(x , t).

state of the system

dx = g(x(t),m(t),v(x(t))dt + σ(x(t))dw(t) (3)

x(0) = x0

x0 is a random variable independent of the Wiener process,
probability density m0 = m(0).

To the pair v(.),m(.) we associate the control objective

J(v(.),m(.)) = E [
∫ T

0
f (x(t),m(t),v(x(t))dt +h(x(T ),m(T )]

(4)
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MEAN FIELD GAME

Find a pair v̂(.),m(.) such that, denoting by x̂(.) the solution
of

dx̂ = g(x̂(t),m(t), v̂(x̂(t)))dt + σ(x̂(t))dw(t) (5)

x̂(0) = x0

then

m(t) is the probability distribution of x̂(t),∀t ∈ [0,T ] (6)

J(v̂(.),m(.))≤ J(v(.),m(.))∀v(.)
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MEAN FIELD TYPE CONTROL PROBLEM

For any feedback v(.), let x(t) = xv(.)(t) be the solution of (3)
with m(t) =probability distribution of xv(.)(t). So (3) becomes
a McKean-Vlasov equation. Denote by mv(.)(t) =probability
distribution of xv(.)(t), we thus have

dxv(.) = g(xv(.)(t),mv(.)(t),v(xv(.)(t))dt + σ(xv(.)(t))dw(t) (7)

x(0) = x0

mv(.)(t) = probability distribution of xv(.)(t) (8)

Find v̂(.) such that

J(v̂(.),mv̂(.)(.))≤ J(v(.),mv(.)(.)) ∀v(.) (9)
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NOTATION

Set

a(x) =
1

2
σ(x)σ

∗(x) (10)

and the 2nd order di�erential operator

Aϕ(x) =−tr a(x)D2
ϕ(x) (11)

The Dual Operator is

A∗ϕ(x) =−
n

∑
k,l=1

∂ 2

∂xk ∂xl

(akl (x)ϕ(x)) (12)
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GATEAUX DIFFERENTIABILITY

Assume that the

m→ f (x ,m,v), g(x ,m,v), h(x ,m) (13)

are di�erentiable inm ∈ L2(Rn)

Notation
∂ f

∂m
(x ,m,v)(ξ ) to represent the derivative, so that

d

dθ
f (x ,m+ θm̃,v)|θ=0 =

∫
Rn

∂ f

∂m
(x ,m,v)(ξ )m̃(ξ )dξ
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OBJECTIVE FUNCTIONAL I

Consider a feedback v(x) and the corresponding trajectory
de�ned by (7), the probability distribution mv(.)(t) of xv(.)(t)
is solution of the FP equation

∂mv(.)

∂ t
+A∗mv(.) +div (g(x ,mv(.),v(x))mv(.)) = 0 (14)

mv(.)(x ,0) = m0(x)

and the objective functional J(v(.),mv(.)) can be expressed as
follows
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OBJECTIVE FUNCTIONAL II

J(v(.),mv(.)(.)) =
∫ T

0

∫
Rn

f (x ,mv(.)(x),v(x))mv(.)(x)dxdt + (15)

+
∫
Rn

h(x ,mv(.)(x ,T ))mv(.)(x ,T )dx
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FURTHER DIFFERENTIABILITY I

Consider an optimal feedback v̂(x) and the corresponding
probability density mv̂(.)(x) = m(x).Let then v(.) be any
feedback and v̂(x) + θv(x). We want to compute

dmv̂(.)+θv(.)(x)

dθ
|θ=0 = m̃(x)

We can check that
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FURTHER DIFFERENTIABILITY II

∂ m̃

∂ t
+A∗m̃+div (g(x ,m, v̂(x))m̃) +

(16)

+div([
∫

∂g

∂m
(x ,m, v̂(x))(ξ )m̃(ξ )dξ +

∂g

∂v
(x ,m, v̂(x))v(x)]m(x)) = 0

m̃(x ,0) = 0
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COST DIFFERENTIABILITY I

dJ(v̂(.) + θv(.),mv̂(x)+θv(x)(.))

dθ
|θ=0 = (17)∫ T

0

∫
Rn

f (x ,m, v̂(x))m̃(x)dtdx+∫ T

0

∫
Rn

∫
Rn

∂ f

∂m
(x ,m, v̂(x))(ξ )m̃(ξ )m(x)dtdξdx+∫ T

0

∫
Rn

∂ f

∂v
(x ,m, v̂(x))v(x)m(x)dtdx+
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COST DIFFERENTIABILITY II

+
∫
Rn

h(x ,m(T ))m̃(x ,T )dx

+
∫
Rn

∫
Rn

∂h

∂m
(x ,m(T ))(ξ )m̃(ξ ,T )m(x ,T )dξdx
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FUNCTION u(x , t)

Introduce the function u(x , t) solution of

−∂u

∂ t
+Au−g(x ,m, v̂(x)).Du−

∫
Rn

Du(ξ ).
∂g

∂m
(ξ ,m, v̂(ξ ))(x)m(ξ )dξ

= f (x ,m, v̂(x))+
∫
Rn

∂ f

∂m
(ξ ,m, v̂(ξ ))(x)m(ξ )dξ

(18)

u(x ,T ) = h(x ,m(T ))+
∫
Rn

∂h

∂m
(ξ ,m(T ))(x)m(ξ ,T )dξ
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NECESSARY CONDITION I

dJ(v̂(.) + θv(.),mv̂(x)+θv(x)(.))

dθ
|θ=0 =∫ T

0

∫
Rn

∂ f

∂v
(x ,m, v̂(x))v(x)m(x)dtdx+

+
∫ T

0

∫
Rn

Du(x).
∂g

∂v
(x ,m, v̂(x))v(x)m(x)dtdx

Since v̂(.) is optimal, this expression must vanish for any v(.).
Hence necessarily

∂ f

∂v
(x ,m, v̂(x)) +

∂g

∂v

∗
(x ,m, v̂(x))Du(x) = 0 (19)
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REWRITING I

It follows that ( at least with convexity assumptions)

v̂(x) = v̂(x ,m,Du(x)) (20)

We note that

f (x ,m, v̂(x)) +g(x ,m, v̂(x)).Du = H(x ,m,Du) (21)

∫
Rn

[
∂ f

∂m
(ξ ,m, v̂(ξ ))(x) +Du(ξ ).

∂g

∂m
(ξ ,m, v̂(ξ ))(x)]m(ξ )dξ =

(22)∫
Rn

∂H

∂m
(ξ ,m,Du(ξ ))(x)m(ξ )dξ
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REWRITING II

g(x ,m, v̂(x)) = g(x ,m, v̂(x ,m,Du(x))) = G (x ,m,Du) (23)
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HJB-FP SYSTEM

We can �nally write the system of HJB-FP P.D.E.

−∂u

∂ t
+Au = H(x ,m,Du) +

∫
Rn

∂H

∂m
(ξ ,m,Du(ξ ))(x)m(ξ )dξ

u(x ,T ) = h(x ,m(T )) +
∫
Rn

∂h

∂m
(ξ ,m(T ))(x)m(ξ ,T )dξ (24)

∂m

∂ t
+A∗m+div (G (x ,m,Du)m) = 0

m(x ,0) = m0(x)
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SPIKE MODIFICATION I

Instead of changing v̂(x , t) into v̂(x , t) + θv(x , t) one can use
a spike modi�cation

v̄(x ,s) =

∣∣∣∣ v s ∈ (t, t + ε)
v̂(x ,s) s 6∈ (t, t + ε)

similar to the proof of Pontryagin maximum principle.

One proves directly that v̂(x , t) minimizes the Lagrangian in v ,
instead of simply being a stationary point
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NOTATION

From the optimal feedback v̂(x) and the probability distribution
m(t) we construct stochastic processes X (t) ∈ Rn , V (t) ∈ Rd ,
Y (t) ∈ Rn, Z (t) ∈L (Rn;Rn) which are adapted, de�ned as follows

X (t) = x̂(t), m(t) = PX (t)

We next de�ne

Y (t) = Du(X (t), t), V (t) = v̂(X (t),PX (t),Y (t))

and �nally

Z (t) = D2uσ(X (t), t)

24/110 Alain Bensoussan, Jens Frehse, Phillip Yam Di�erential games, Nash equilibrium, Mean Field, Hamiltonian, Lagrangian, Bellman system, 24/110



INTRODUCTION
GENERAL PRESENTATION

DISCUSSION OF THEMEAN FIELD TYPE CONTROL PROBLEM
DIFFERENT POPULATIONS

COALITIONS

HJB-FP APPROACH
STOCHASTIC MAXIMUM PRINCIPLE
TIME CONSISTENCY APPROACH
THE MEAN VARIANCE PROBLEM
TIME CONSISTENCY

STOCHASTIC MAXIMUM PRINCIPLE I

dX =g(X (t),PX (t),V (t))dt + σ(X (t))dw(t)

−dY =

(
∂H

∂x
(X (t),PX (t),V (t),Y (t))+ (25)

E [
∂ 2H

∂x∂m
(X (t),PX (t),V (t),Y (t))](X (t)) + tr

∂σ(X (t))

∂x

∗
Z (t)

)
dt|

−Z (t)dw(t) (26)

X (0) = x0,Y (T ) =
∂h(X (T ),PX (T ))

∂x
+E [

∂ 2h

∂x∂m
(X (T ),PX (T )] (X (T )
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STOCHASTIC MAXIMUM PRINCIPLE I

V (t)minimizesH(X (t),PX (t),v ,Y (t)) in v (27)

When we write

E [
∂ 2f

∂x∂m
(X (t),PX (t),V (t))](X (t))

we mean that we take the function
∂ f

∂m
(ξ ,m,v)(x), where ξ and v

are parameters and we take the gradient in x , denoted by
∂ 2f

∂x∂m
(ξ ,m,v)(x).

We then consider ξ = X (t), v = V (t) and take the expected value

E
∂ 2f

∂x∂m
(X (t),m,V (t))(x).
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STOCHASTIC MAXIMUM PRINCIPLE II

We take m = PX (t) (note that it is a deterministic quantity) and

thus get E
∂ 2f

∂x∂m
(X (t),PX (t),V (t))(x).

Finally, we take the argument x = X (t).
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POSSIBLE CONFUSION I

To emphasize the di�culty of confusion, consider
∂ f

∂x
(x ,m,v). If

we want to take the derivative with respect to m, then we should
consider x ,v as parameters, so change the notation to ξ and

compute
∂ 2f

∂m∂x
(ξ ,m,v)(x).

Clearly

∂ 2f

∂m∂x
(ξ ,m,v)(x) 6= ∂ 2f

∂x∂m
(ξ ,m,v)(x)
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PARTICULAR CASE I

We discuss here the following particular mean �eld type problem

dx = g(x(t),v(x(t))dt + σ(x(t))dw(t) (28)

x(0) = x0

J(v(.),m(.)) = E [
∫ T

0
f (x(t),v(x(t))dt +h(x(T ))] (29)

+
∫ T

0
F (Ex(t))dt + Φ(Ex(T ))

We consider a feedback v(x , t) and m(t) = mv(.)(t) is the
probability density of xv(.)(t) the solution of (28).
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PARTICULAR CASE II

The functional becomes J(v(.),mv(.)(.)). It is clearly a particular
case of mean �eld type control problem.
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NOTATION I

We have indeed

f (x ,m,v) = f (x ,v) +F (
∫

ξm(ξ )dξ )

h(x ,m) = h(x) + Φ(
∫

ξm(ξ )dξ )

Therefore

H(x ,m,q) = H(x ,q) +F (
∫

ξm(ξ )dξ )

where

H(x ,q) = inf
v

(f (x ,v) +q.g(x ,v))
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NOTATION II

Considering v̂(x ,q) which attains the in�mum in the de�nition of
H(x ,q) and setting

G (x ,q) = g(x , v̂(x ,q))
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HJB-FP SYSTEM I

The coupled system HJB-FP becomes , see (24),

−∂u

∂ t
+Au = H(x ,Du) +F (

∫
ξm(ξ )dξ ) +∑

k

∂F

∂xk
(
∫

ξm(ξ )dξ )xk

u(x ,T ) = h(x) + Φ(
∫

ξm(ξ )dξ ) +∑
k

∂ Φ

∂xk
(
∫

ξm(ξ )dξ )xk

(30)

∂m

∂ t
+A∗m+div (G (x ,Du)m) = 0

m(x ,0) = δ (x− x0)
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REWRITING I

We can reduce slightly this problem, using the following step:
introduce the vector function Ψ(x , t;s), t < s, solution of

−∂ Ψ

∂ t
+AΨ−DΨ.G (x ,Du) = 0, t < s (31)

Ψ(x ,s;s) = x

then ∫
ξm(ξ , t)dξ = Ψ(x0,0; t)

so (30) becomes
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REWRITING II

−∂u

∂ t
+Au = H(x ,Du) +F (Ψ(x0,0; t)) +∑

k

∂F

∂xk
(Ψ(x0,0; t))xk

u(x ,T ) = h(x) + Φ(Ψ(x0,0;T )) +∑
k

∂ Φ

∂xk
(Ψ(x0,0;T ))xk (32)
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PRECOMMITMENT

We now have the system (31), (32). We can also look at u(x , t) as
the solution of a non-local HJB equation, depending on the initial
state x0. The optimal feedback

v̂(x , t) = v̂(x ,Du(x , t))

depends also on x0. Note that it does not depend on any
intermediate state. This type of optimal control is called a
pre-commitment optimal control.
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GAME CONCEPT

In [8], the authors introduce a new concept, in order to de�ne an
optimization problem among feedbacks which do not depend on the
initial condition.

A feedback will be optimal only against spike changes, but not
against global changes.

Game interpretation. Players are attached to small periods of
time ( eventually to each time, in the limit). Therefore, if one
uses the concept of Nash equilibrium, decisions at di�erent
times correspond to decisions of di�erent players, and thus out
of reach.
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NOTATION I

In the spirit of Dynamic Programming, and the invariant
embedding idea, we consider a family of control problems indexed
by the initial conditions, and we control the system using feedbacks
only. So if v(x ,s) is a feedback, we consider the state equation
x(s) = xxt(s;v(.))

dx = g(x(s),v(x(s),s))ds + σ(x(s))dw(t) (33)

x(t) = x

and the payo�
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NOTATION II

Jx ,t(v(.)) = E [
∫ T

t
f (x(s),v(x(s),s))ds +h(x(T )] + (34)

+
∫ T

t
F (Ex(s))ds + Φ(Ex(T ))

Consider a speci�c control v̂(x ,s) which will be optimal . We
de�ne x̂(.) to be the corresponding state, solution of (33) and set

V (x , t) = Jx ,t(v̂(.)) (35)
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SPIKE MODIFICATION I

We make a spike modi�cation and de�ne

v̄(x ,s) =

∣∣∣∣ v t < s < t + ε

v̂(x ,s) s > t + ε

where v is arbitrary. The idea is to evaluate Jx ,t(v̄(.)) and to
express that it is larger than V (x , t). We introduce the function

Ψ(x , t;s) = Ex̂xt(s), t < s

which is the solution of
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SPIKE MODIFICATION II

−∂ Ψ

∂ t
+AΨ−DΨ.g(x , v̂(x , t)) = 0, t < s (36)

Ψ(x ,s;s) = x

We note the important property

Ex̄(s) = EΨ(x(t + ε), t + ε;s), ∀s ≥ t + ε
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COMPARISON I

Therefore

Jx ,t(v̄(.)) = E [
∫ t+ε

t
f (x(s),v)ds+

+
∫ T

t+ε

f (x̂x(t+ε),t+ε (s), v̂(x̂x(t+ε),t+ε (s),s))ds +h(x̂x(t+ε),t+ε (T ))]

+
∫ t+ε

t
F (Ex(s))ds +

∫ T

t+ε

F (EΨ(x(t + ε), t + ε;s))ds+

+Φ(EΨ(x(t + ε), t + ε;T )
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COMPARISON I

The next point is to compare F (EΨ(x(t + ε), t + ε;s)) with
EF (Ψ(x(t + ε), t + ε;s)). This is a simple application of Ito's
formula

EF (Ψ(x(t + ε), t + ε;s))−F (EΨ(x(t + ε), t + ε;s)) = (37)

ε ∑
ij

aij(x)∑
kl

∂ 2F

∂xk∂xl
(Ψ(x , t;s))

∂ Ψk

∂xi

∂ Ψl

∂xj
(x , t;s)) +0(ε)

We can similarly compute the di�erence
EΦ(Ψ(x(t + ε), t + ε;T ))−Φ(EΨ(x(t + ε), t + ε;T ).
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EVALUATION OF THE PAYOFF I

Jx ,t(v̄(.)) = EV (x(t + ε), t + ε) + ε[f (x ,v) +F (x)−

−∑
ij

aij(x)
∫ T

t
∑
kl

∂ 2F

∂xk∂xl
(Ψ(x , t;s))

∂ Ψk

∂xi

∂ Ψl

∂xj
(x , t;s))ds−

−∑
ij

aij(x)∑
kl

∂ 2Φ

∂xk∂xl
(Ψ(x , t;T ))

∂ Ψk

∂xi

∂ Ψl

∂xj
(x , t;T ))] +0(ε)
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HJB EQUATION I

−∂V

∂ t
+AV = H(x ,DV ) +F (x)−

−∑
ijkl

aij(x)[
∫ T

t

∂ 2F

∂xk∂xl
(Ψ(x , t;s))

∂ Ψk

∂xi

∂ Ψl

∂xj
(x , t;s))ds + (38)

+
∂ 2Φ

∂xk∂xl
(Ψ(x , t;T ))

∂ Ψk

∂xi

∂ Ψl

∂xj
(x , t;T ))]

V (x ,T ) = h(x) + Φ(x)
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FUNCTION Ψ I

Moreover the equation for Ψcan be written as

−∂ Ψ

∂ t
+AΨ−DΨ.G (x ,DV ) = 0, t < s (39)

Ψ(x ,s;s) = x

The optimal feedback obtained from the system (38), (39) is time
consistent.
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STATEMENT OF THE PROBLEM I

The mean-variance problem is the extension in continuous time for
a �nite horizon of the Markowitz optimal portfolio theory. Without
referring to the background of the problem, it can be stated as
follows, mathematically. The state equation is

dx = rxdt + xv .(αdt + σdw) (40)

x(0) = x0

x(t) is scalar, r is a positive constant, α is a vector in Rm and σ is
a matrix in L (Rd ;Rm). All can depend on time and they are
deterministic quantities. v(t) is the control in Rm.
We note that, conversely to our general framework, the control
a�ects the volatility term. The objective function is
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STATEMENT OF THE PROBLEM II

J(v(.)) = Ex(T )− γ

2
var(x(T )) (41)

which we want to maximize.
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MEAN FIELD TYPE CONTROL PROBLEM I

Because of the variance term, the problem is not a standard
stochastic control problem. It is a mean �eld type control problem,
since one can write

J(v(.)) = E (x(T )− γ

2
x(T )2) +

γ

2
(Ex(T ))2 (42)

We consider a feedback control v(x ,s) and the corresponding state
xv(.)(t) solution of (40) when the control is replaced by the
feedback.
We associate the probability density mv(.)(x , t) solution of
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MEAN FIELD TYPE CONTROL PROBLEM II

∂mv(.)

∂ t
+

∂

∂x
(xmv(.)(r + α.v(x)))− 1

2

∂ 2

∂x2
(x2mv(.)|σ∗v(x)|2) = 0

(43)

mv(.)(x ,0) = δ (x− x0)

The functional (42) can be written as

J(v(.)) =
∫
mv(.)(x ,T )(x− γ

2
x2)dx +

γ

2
(
∫
mv(.)(x ,T )xdx)2 (44)
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NECESSARY CONDITIONS I

Let v̂(x , t) be an optimal feedback, and m(t) = mv̂(.)(t). Using the
mean �eld type control approach, we get a pair u(x , t),m(x , t)
satisfying

−∂u

∂ t
− xr

∂u

∂x
+
1

2

(
∂u

∂x
)2

∂ 2u

∂x2

α
∗(σσ

∗)−1α = 0 (45)

u(x ,T ) = x− γ

2
x2 + γx

∫
m(ξ ,T )ξdξ
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NECESSARY CONDITIONS II

∂m

∂ t
+ r

∂ (xm)

∂x
− ∂

∂x

m

∂u

∂x
∂ 2u

∂x2

α
∗(σσ

∗)−1α− (46)

−1
2

∂ 2

∂x2

m
(
∂u

∂x
)2

(
∂ 2u

∂x2
)2

α
∗(σσ

∗)−1α = 0 (47)

m(x ,0) = δ (x− x0)
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OPTIMAL FEEDBACK I

The optimal feedback is de�ned by

v̂(x , t) =−

∂u

∂x

x
∂ 2u

∂x2

(σσ
∗)−1α (48)

We can solve explicitly the system (45), (46). We look for

u(x , t) =−1
2
P(t)x2 + s(t)x + ρ(t) (49)

We also de�ne

q(t) =
∫
m(ξ , t)ξdξ (50)
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SOLUTION I

We obtain

P(t) = γ exp
∫ T

t
(2r −α

∗(σσ
∗)−1α)dτ (51)

s(t) = (1+ γq(T ))exp
∫ T

t
(r −α

∗(σσ
∗)−1α)dτ

ρ(t) =
∫ T

t

1

2

s2

P
α
∗(σσ

∗)−1α(τ)dτ

We have to �x q(T ). Equation (46) becomes
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SOLUTION II

∂m

∂ t
+ r

∂ (xm)

∂x
− ∂

∂x

(
m(x− s

P
)
)

α
∗(σσ

∗)−1α (52)

−1
2

∂ 2

∂x2

(
m(x− s

P
)2
)

α
∗(σσ

∗)−1α = 0

m(x ,0) = δ (x− x0)
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OPTIMAL FEEDBACK

If we test this equation with x we obtain easily

q(T ) = x0 exp
∫ T

0
rdτ +

1

γ
[exp

∫ T

0
α
∗(σσ

∗)−1α)dτ−1] (53)

This completes the de�nition of the function u(x , t). The optimal
feedback is de�ned by , see (48)

v̂(x , t) =−(σσ
∗)−1α +

1

x

1+ γq(T )

γ
exp−

∫ T

t
rdτ (54)

We see that this optimal feedback depends on the initial condition
x0.
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TIME CONSISTENCY APPROACH I

If we take the time consistency approach, we consider the family of
problems

dx = rxds + xv(x ,s).(αdt + σdw), s > t (55)

x(t) = x

and the pay-o�

Jx ,t(v(.)) = E (x(T )− γ

2
x(T )2) +

γ

2
(Ex(T ))2 (56)

Denote by v̂(x ,s) an optimal feedback and set V (x , t) = Jx ,t(v̂(.)).
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FUNCTION Ψ

We de�ne

Ψ(x , t;T ) = Ex̂xt(T )

where x̂xt(s) is the solution of (55) for the optimal feedback.
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FUNCTION V I

The function Ψ(x , t;T ) is the solution of

∂ Ψ

∂ t
+

∂ Ψ

∂x
(rx + xv̂(x , t)∗α) +

1

2
x2

∂ 2Ψ

∂x2
|σ∗v̂(x , t)|2 = 0

Ψ(x ,T ;T ) = x

We can write

V (x , t) = E (x̂xt(T )− γ

2
x̂xt(T )2) +

γ

2
(Ψ(x , t;T ))2
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SPIKE MODIFICATION I

We consider a spike modi�cation

v̄(x ,s) =

∣∣∣∣ v t < s < t + ε

v̂(x ,s) s > t + ε

then

Jx ,t(v̄(.)) = E ((x̂x(t+ε),t+ε (T )− γ

2
x̂x(t+ε),t+ε (T )2)

+
γ

2
(EΨ(x(t + ε), t + ε;T ))2

where x(t + ε) corresponds to the solution of (55) at time t + ε for
the feedback equal to the constant v .
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APPROXIMATION I

We note that

EV (x(t + ε), t + ε) = E ((x̂x(t+ε),t+ε (T )− γ

2
x̂x(t+ε),t+ε (T )2)

+
γ

2
E (Ψ(x(t + ε), t + ε;T ))2

so we have to compare (EΨ(x(t + ε), t + ε;T ))2 with
E (Ψ(x(t + ε), t + ε;T ))2. We see easily that

(EΨ(x(t + ε), t + ε;T ))2−E (Ψ(x(t + ε), t + ε;T ))2 =

=−εx2
∂ 2Ψ

∂x2
(x , t;T )|σ∗v |2 +0(ε)
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HJB EQUATION I

We obtain the HJB equation

∂V

∂ t
+

∂V

∂x
rx +max

v
[x

∂V

∂x
v∗α +

x2

2
(
∂ 2V

∂x2
− γ

∂ 2Ψ

∂x2
(x , t;T ))v∗σσ

∗v ] = 0

(57)

V (x ,T ) = x

A direct checking shows that

V (x , t) = x exp r(T − t) +
1

2γ

∫ T

t
α
∗(σσ

∗)αds (58)

Ψ(x , t;T ) = x exp r(T − t) +
1

γ

∫ T

t
α
∗(σσ

∗)αds
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HJB EQUATION II

and

v̂(x , t) =
exp−r(T − t)

xγ
(σσ

∗)α (59)

This optimal control satis�es the time consistency property ( it
does not depend on the initial condition).
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GENERAL CONSIDERATIONS I

In the preceding slides, we have considered a single population,
composed of a large number of individuals, with identical behavior.
In real situations, we will have several populations. The natural
extension to the preceding developments is to obtain mean �eld
equations for each population. A much more challenging situation
will be to consider competing populations. We present �rst the
approach of multi-class agents, as described in [16], [18].

64/110 Alain Bensoussan, Jens Frehse, Phillip Yam Di�erential games, Nash equilibrium, Mean Field, Hamiltonian, Lagrangian, Bellman system, 64/110



INTRODUCTION
GENERAL PRESENTATION

DISCUSSION OF THEMEAN FIELD TYPE CONTROL PROBLEM
DIFFERENT POPULATIONS

COALITIONS

GENERAL CONSIDERATIONS
MULTI-CLASS AGENTS
MAJOR PLAYER

MODEL I

Instead of functions f (x ,m,v),g(x ,m,v),h(x ,m),σ(x) we consider
K functions fk(x ,m,v),gk(x ,m,v),hk(x ,m),σk(x), k = 1, · · ·K .
The index k represents some characteristics of the agents, and a
class corresponds to one value of the characteristics. So there are
K classes. In the model discussed previously, we have considered a
single class. In the sequel, when we consider an agent i ,he will have
a characteristics α i ∈ (1, · · · ,K ). Agents will be de�ned with upper
indices, so i = 1, · · ·N with N very large. α i is a known
information. The important assumption is

1

N

N

∑
i=1

1Iα i=k → πk , asN →+∞ (60)
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MODEL II

and πk is a probability distribution on the �nite set of
characteristics, which represents the probability that an agent has
the characteristics k .
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FURTHER NOTATION I

Generalizing the case of a single class, we de�ne

ak(x) =
1

2
σk(x)σk(x)∗and the operator

Akϕ(x) =−trak(x)D2
ϕ(x)

We de�ne Lagrangians, Hamiltonians indexed by k ,namely

Lk(x ,m,v ,q) = fk(x ,m,v) +q.gk(x ,m,v)

Hk(x ,m,q) = inf
v
Lk(x ,m,v ,q)

and v̂k(x ,m,q) denotes the minimizer in the de�ntion of the
Hamiltonian. We also de�ne
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FURTHER NOTATION II

Gk(x ,m,q) = gk(x ,m, v̂k(x ,m,q))
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SYSTEM OF HJB EQUATIONS I

Given a function m(t) we consider the HJB equations, indexed by k

−∂uk
∂ t

+Auk = Hk(x ,m,Duk) (61)

uk(x ,T ) = hk(x ,m(T ))

and the FP equations

∂mk

∂ t
+A∗mk + div (Gk(x ,m,Duk)mk) = 0 (62)

mk(x ,0) = mk0(x) (63)
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SYSTEM OF HJB EQUATIONS II

in which the probability densities mk0 are given. A mean �eld game
equilibrium for the multi class agents problem is attained whenever

m(x , t) =
K

∑
k=1

πkmk(x , t), ∀x , t (64)
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GENERAL COMMENTS I

We consider here a problem initiated by Huang [15], in the L.Q.
case. In a recent paper Nourian and Caines [23] have studied a non
linear mean �eld game with a major player. In both papers, there is
a simpli�cation in the coupling between the major player and the
representative agent. We will describe here the problem in full
generality and explain the simpli�cation which is done in [23].
The new element is that, besides the representative agent there is a
major player. This major player in�uences directly the mean �eld
term. Since the mean �eld term also impacts the major playor, he
will takes this into account to de�ne his decisions. On the other
hand, the mean �eld term can no longer be deterministic, since it
depends on the major player decisions. This coupling creates new
di�culties.
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MODEL OF MAJOR PLAYER I

We introduce the following state evolution for the major player

dx0 = g0(x0(t),m(t),v0(t))dt + σ0(x0)dw0 (65)

x0(0) = ξ0

We assume that x0(t) ∈ Rn0 , v0(t) ∈ Rd0 . The process w0(t) is a
standard Wiener process with values in Rk0and ξ0 is a random
variable in Rn0 independent of the Wiener process. The process
m(t) is the mean �eld term, with values in the space of
probabilities on Rn. This term will come from the decisions of the
representative agent.
However, It will be linked to x0(t) since the major player in�uences
the decision of the representative agent.
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MODEL OF MAJOR PLAYER II

If we de�ne the �ltration

F 0t = σ(ξ0,w0(s),s ≤ t) (66)

then m(t) is a process adapted to F 0t . But it is not external.
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MODEL OF MAJOR PLAYER I

We will describe the link with the state x0 in analyzing the
representative agent problem. The control v0(t) is also adapted to
F 0t . The objective functional of the major player is

J0(v0(.)) = E [
∫ T

0
f0(x0(t),m(t),v0(t))dt + (67)

+h0(x0(T ),m(T ))]

The functions g0, f0,σ0,h0 are deterministic. We do not specify the
assumptions, since our treatment is formal.
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MODEL OF REPRESENTATIVE AGENT I

The representative agent has state x(t) ∈ Rn and control
v(t) ∈ Rd .We have the evolution

dx = g(x(t),x0(t),m(t),v(t))dt + σ(x(t))dw (68)

x(0) = ξ

in which w(t) is a standard Wiener process with values in Rk and ξ

is a random variable with values in Rn independent of w(.).
Moreover, ξ ,w(.) are independent of ξ0,w0(.). We de�ne

F t = σ(ξ ,w(s),s ≤ t) (69)

G t = F 0t ∪F t (70)
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MODEL OF REPRESENTATIVE AGENT II

The control v(t) is adapted to G t . The objective functional of the
representative agent is de�ned by

J(v(.),x0(.),m(.)) = E [
∫ T

0
f (x(t),x0(t),m(t),v(t))dt + (71)

+h(x(T ),x0(T ),m(T ))]

Conversely to the major player problem, in the representative agent
problem, the processes x0(.),m(.) are external. In (67) m(t)
depends on x0(.).
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CONDITIONAL PROBABILITY DENSITY OF THE

REPRESENTATIVE AGENT I

The representative agent's problem is similar to the standard
situation except for the presence of x0(t).
We begin by limiting the class of controls for the representative
agent to belong to feedbacks v(x , t) random �elds adapted to F 0t

. The corresponding state, solution of (68) is denoted by xv(.)(t).
Of course, this process depends also of x0(t),m(t) . Note that
x0(t),m(t) is independent from F t , therefore the conditional
probability density of xv(.)(t) given the �ltration ∪tF 0t is the
solution of the F.P. equation with random coe�cients
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CONDITIONAL PROBABILITY DENSITY OF THE

REPRESENTATIVE AGENT II

∂pv(.)

∂ t
+A∗pv(.) +div(g(x ,x0(t),m(t),v(x , t))pv(.)) = 0 (72)

pv(.)(x ,0) = ϖ(x)

in which ϖ(x) is the density probability of ξ .
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OBJECTIVE FUNCTIONAL OF THE REPRESENTATIVE

AGENT I

We can then rewrite the objective functional J(v(.),x0(.),m(.)) as
follows

J(v(.),x0(.),m(.)) = E [
∫ T

0

∫
Rn

pv(.),x0(.),m(.)(x , t)f (x ,x0(t),m(t),v(x , t))dxdt +

(73)

+
∫
Rn

pv(.),x0(.),m(.)(x ,T )h(x ,x0(T ),m(T ))dx ]

We can give an expression for this functional. Introduce the
random �eld χv(.)(x , t) solution of the stochastic backward PDE:
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OBJECTIVE FUNCTIONAL OF THE REPRESENTATIVE

AGENT II

−
∂ χv(.)

∂ t
+Aχv(.) = f (x ,x0(t),m(t),v(x , t)) +g(x ,x0(t),m(t),v(x , t)).Dχv(.)

(74)

χv(.)(x ,T ) = h(x ,x0(T ),m(T ))

then we can assert that

∫ T

0

∫
Rn

pv(.),x0(.),m(.)(x , t)f (x ,x0(t),m(t),v(x , t))dxdt+∫
Rn

pv(.),x0(.),m(.)(x ,T )h(x ,x0(T ),m(T ))dx =
∫
Rn

χv(.)(x ,0)ϖ(x)dx
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COMPUTING THE OBJECTIVE FUNCTION I

We get

J(v(.),x0(.),m(.)) =
∫
Rn

ϖ(x)Eχv(.)(x ,0)dx (75)

Now de�ne

uv(.)(x , t) = EF 0t

χv(.)(x , t)

From equation (74) we can assert that

−EF 0t ∂ χv(.)

∂ t
+Auv(.) = f (x ,x0(t),m(t),v(x , t)) +g(x ,x0(t),m(t),v(x , t)).Duv(.)

(76)

uv(.)(x ,T ) = h(x ,x0(T ),m(T ))
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BACKWARD SPDE I

On the other hand

uv(.)(x , t)−
∫ t

0
EF 0s ∂ χv(.)

∂ s
(x ,s)ds

is a F 0t martingale. Therefore we can write

uv(.)(x , t)−
∫ t

0
EF 0s ∂ χv(.)

∂ s
(x ,s)ds = uv(.)(x ,0)+

∫ t

0
Kv(.)(x ,s)dw0(s)

where Kv(.)(x ,s) is F 0s measurable, and uniquely de�ned. It is
then easy to check that the random �eld uv(.)(x , t) is solution of
the backward stochastic PDE (BSPDE) :
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BACKWARD SPDE II

−∂tuv(.)(x , t) +Auv(.)(x , t)dt = f (x ,x0(t),m(t),v(x , t))dt +

(77)

+g(x ,x0(t),m(t),v(x , t)).Duv(.)(x , t)dt−Kv(.)(x , t)dw0(t)

uv(.)(x ,T ) = h(x ,x0(T ),m(T ))
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NECESSARY CONDITION I

From ( 75) we get immediately

J(v(.),x0(.),m(.)) =
∫
Rn

ϖ(x)Euv(.)(x ,0)dx (78)

We then write a necessary condition of optimality for a control
v̂(x , t).Setting u(x , t) = uv̂(.)(x , t), K (x , t) = Kv̂(.)(x , t) we obtain
the stochastic HJB equation

−∂tu(x , t) +Au(x , t)dt = H(x ,x0(t),m(t),Du)dt−K (x , t)dw0

(79)

u(x ,T ) = h(x ,x0(T ),m(T ))

and
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NECESSARY CONDITION II

v̂(x , t) = v̂(x ,x0(t),m(t),Du(x , t)) (80)
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FP EQUATION I

We next have to express the mean �eld game condition

m(t) = pv̂(.),x0(.),m(.)(., t)

we obtain from (72) the FP equation

∂m

∂ t
+A∗m+div(G (x ,x0(t),m(t),Du(x , t))m) = 0 (81)

m(x ,0) = ϖ(x)

The coupled pair of HJB-FP equations (79),(81) allow to de�ne the
reaction function of the representative agent to the trajectory x0(.)
of the major player. One de�nes the random �elds u(x , t),m(x , t)
and the optimal feedback is given by (80).

86/110 Alain Bensoussan, Jens Frehse, Phillip Yam Di�erential games, Nash equilibrium, Mean Field, Hamiltonian, Lagrangian, Bellman system, 86/110



INTRODUCTION
GENERAL PRESENTATION

DISCUSSION OF THEMEAN FIELD TYPE CONTROL PROBLEM
DIFFERENT POPULATIONS

COALITIONS

GENERAL CONSIDERATIONS
MULTI-CLASS AGENTS
MAJOR PLAYER

MAJOR PLAYER I

Consider now the problem of the major player. In [23] and also [15]
for the L.Q. case it is limited to (65), (67) since m(t) is external.
However since m(t) is coupled to x0(t) through equations (79),
(81) one cannot consider m(t) as external, unless limiting the
decision of the major player. So in fact the major player has to
consider three state equations (65), (79), (81). For a a given v0(.)
adapted to F 0t we associate x0,v0(.)(.), uv0(.)(., .),mv0(.)(., .)
solution of the system (65), (79), (81).
Introduce the notation
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MAJOR PLAYER II

H0(x0,m,p) = inf
v0

[f0(x0,m,v0) +p.g0(x0,m,v0)]

v̂0(x0,m,p) minimizes the expression in brackets

G0(x ,m,p) = g0(x0,m, v̂0(x0,m,p))
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NECESSARY CONDITIONS FOR THE MAJOR PLAYER I

We have 3 adjoint equations

−dp = [H0,x0(x0(t),m(t),p(t)) +
k0

∑
l=1

σ
∗
0l ,x0

(x0(t))ql (t)

+
∫
G ∗x0(x ,x0(t),m(t),Du(x , t))Dη(x , t)m(x , t)dx + (82)∫

ζ (x , t)Hx0(x ,x0(t),m(t),Du(x , t)dx ]dt−
k0

∑
l=1

qldw0l
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NECESSARY CONDITIONS FOR THE MAJOR PLAYER II

p(T ) = h0,x0(x0(T ),m(T )) +
∫

ζ (x ,T )hx0(x ,x0(T ),m(T ))dx
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−∂tη +Aη(x , t)dt = [
∂H0

∂m
(x0(t),m(t),p(t))(x)

+Dη(x , t).G (x ,x0(t),m(t),Du(x , t))+

+
∫
Dη(ξ , t).

∂G

∂m
(ξ ,x0(t),m(t),Du(ξ , t))(x)m(ξ , t)dξ (83)

+
∫

ζ (ξ , t)
∂H

∂m
(ξ ,x0(t),m(t),Du(ξ , t))(x)dξ ]dt − ∑

l

µl (x , t)dw0l (t)

η(x ,T ) =
∂h0

∂m
(x0(T ),m(T ))(x)+

∫
ζ (ξ ,T )

∂h

∂m
(ξ ,x0(T ),m(T ))(x)dξ
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∂ζ

∂ t
+A∗ζ (x , t) +div (G (x ,x0(t),m(t),Du(x , t))ζ (x , t))

+div(G ∗q (x ,x0(t),m(t),Du(x , t))Dη(x , t)m(x , t)) = 0(84)

ζ (x ,0) = 0

Next x0(t) satis�es

dx0 = G0(x0(t),m(t),p(t))dt + σ0(x0(t))dw0 (85)

x0(0) = ξ0
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So, in fact the complete solution is provided by the 6 equations
(85),(82), (79), (84), (81), (83) and the feedback of the
representative agent and the contol of the major player are given by
(80) and

v̂0(t) = v̂0(x0(t),m(t),p(t)) (86)
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SYSTEM OF HJB-FP EQUATIONS I

We can introduce more general problems

−∂ui

∂ t
+Aui = H i (x ,m,Du) (87)

ui (x ,T ) = hi (x ,m(T ))

∂mi

∂ t
+A∗mi +div (G i (x ,m,Du)mi ) = 0 (88)

mi (x ,0) = mi
0(x)

in which m = (m1, · · · ,mN) and the functions H i ,G i depend on the
full vector m. The interpretation is much more elaborate.
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DESCRIPTION OF THE GAME I

We want to associate to problem (87), (88) a di�erential game for
N communities, composed of very large numbers of agents. We
denote the agents by the index i , j where i = 1, · · ·N and
j = 1, · · ·M. The number M will tend to +∞. Each player
i , jchooses a feedback v i ,j(x), x ∈ Rn. The state of player i , j is
denoted by x i ,j(t) ∈ Rn. We consider independent standard Wiener
processes w i ,j(t) and independent replicas x i ,j0 of the random
variable x i0, whose probability density is mi

0. They are independent
of the Wiener processes. We denote

v .j(.) = (v1,j(.), · · · ,vN,j(.))

The trajectory of the state x i ,j is de�ned by the equation
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DESCRIPTION OF THE GAME II

dx i ,j = g i (x i ,j ,v .j(x i ,j))dt + σ(x i ,j)dw i ,j (89)

x i ,j(0) = x
i ,j
0
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DESCRIPTION OF THE GAME I

The trajectories are independent. The player i , j trajectory is
in�uenced by the feedbacks vk,j(x), k 6= i acting on his own state.
When we focus on player i we use the notation

v .j(.) = (v i ,j(.), v̄ i ,j(.))

in which v̄ i ,j(.) represents all feedbacks vk,j(x), k 6= i . The notation
v(.) represents all feedbacks.
We now de�ne the objective functional of player i , j . It is given by
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J i ,j(v(.)) = E

∫ T

0
[f i (x i ,j(t),v .j(x i ,j(t))) + (90)

f i0 (x i ,j(t),
1

M−1

M

∑
l=1 6=j

δx i ,l (t)))]dt +Ehi (x i ,j(T ),
1

M−1

M

∑
l=16=j

δx i ,l (T ))

We look for a Nash equilibrium.
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APPROXIMATE NASH EQUILIBRIUM I

Consider next the system of pairs of HJB-FP equations (87), (88)
and the feedback v̂(x).
We can show that the feedback

v̂ i ,j(.) = v̂ i (.)

is an approximate Nash equilibrium.
If we use this feedback in the state equation (89) we get

dx̂ i ,j = g i (x̂ i ,j , v̂(x̂ i ,j))dt + σ(x̂ i ,j)dw i ,j

x̂ i ,j(0) = x
i ,j
0
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APPROXIMATE NASH EQUILIBRIUM II

and the trajectories x̂ i ,j become independent replicas of x̂ i solution
of

dx̂ i = g i (x̂ i , v̂(x̂ i ))dt + σ(x̂ i )dw i

x̂ i (0) = x i0
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APPROXIMATE NASH EQUILIBRIUM I

The probability density of x̂ i (t) is mi (t). We �rst prove

J i ,j(v̂(.))−J i (v̂(.),mi (.))→ 0, asM →+∞.

We now focus on player 1,1 to �x the ideas. Suppose he uses a
feedback v1,1(x) 6= v̂1,1(x), and the other players use
v̂ i ,j(x) = v̂ i (x),∀i ≥ 2,∀j or ∀i ,∀j ≥ 2. We set v1(x) = v1,1(x). Call
this set of controls ṽ(.). By abuse of notation, we also write

ṽ(.) = (v1(.), v̂2(.), · · · v̂N(.)) = (v1(.), v̂
1
(.))

The corresponding trajectories are denoted by y1,j(t) solutions of
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dy1,1 = g1(y1,1,v1(y1,1), v̂
1
(y1,1))dt + σ(y1,1)dw1,1 (91)

y1,1(0) = x
1,1
0

and y1,j = x̂1,j for j ≥ 2.
We can then prove that

J 1,1(ṽ(.))≥ J1(v̂(.),m1(.))−O(M)

and this concludes the approximate Nash equilibrium property.
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