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Background — Mean Field Game (MFG) Theory

(Huang, Malhamé,
PEC ('03,'06,'07), Lasry-Lions ('06,'07)):
Games over time with a large number of stochastic dynamical
agents such that:

Each agent interacts with a mass effect (e.g. average) of other agents via
couplings in their individual cost functions and individual dynamics

Each agent is minor in the sense that, asymptotically as the population
size goes to infinity, it has a negligible influence on the overall system but
the mass effect on the agent is significant

Establish the existence and uniqueness of equilibria and the
corresponding strategies of the agents



Background — Mean Field Game (MFG) Theory

The existence of Nash equilibria between the individual agents and the
mass in the infinite population limit where
(a) the individual strategy of each agent is a best response to the mass

effect, and
(b) the set of the strategies collectively replicate that mass effect

The e—Nash Approximation Property: If agents in a finite population
system apply the infinite population equilibrium strategies an
approximation to the infinite population equilibrium results

Mass influence

Play against mass



Non-linear Major-Minor Mean Field Systems



MFG Theory Involving Major-Minor Agents

Extension of the LQG MFG model for Major and Minor agents (Huang
2010, Huang-Ngyuan 2011) to the case of nonlinear dynamical systems
Dynamic game models will involve nonlinear stochastic systems with
(i) a major agent, and (ii) a large population of minor agents

Partially observed systems become meaningful and hence estimation of
major agent and mean field states becomes a meaningful problem

Economic and social models with both minor and massive agents
Power markets with large consumers and large utilities together with
many domestic consumers and generators using smart meters

Mass influence of minor agents
Minor @,
agent .
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MFG Nonlinear Major-Minor Agent Formulation

Notation: Subscript 0 for the major agent Ao and an integer valued
subscript for minor agents {4; : 1 <7 < N}.

The states of Ag and A; are R” valued and denoted z{' () and 2 (¢).



MFG Nonlinear Major-Minor Agent Formulation

: The objective of each agent is to
minimize its finite time horizon cost function given by

Tl s i) = E/ ZLU[t (), ul (¢), z]N(t)})dt,

N

TN s u) ;:E/OT ;Zu 2 (1), ul (), 20 (1), 22 ()] .

The major agent has non-negligible influence on the mean field (mass)
behaviour of the minor agents due to presence of z}' in the cost function
of each minor agent. A consequence is that the mean field is no longer a
deterministic function of time.

(Q, F,{Fi}t>0, P): a complete filtered probability space
Fii=0{zi(s),w;(s) : 0< 5 < N,0<s <t}
Fi° = 0{z0(0),wo(s) : 0 < s <t}



Assumptions

. Let the empirical distribution of N minor agents’ initial states be
defined by FN(:E) = % Zf\lz1 1{Zi(0)<z}'

(A1) The initial states {z;(0) : 0 < j < N} are Fo-adapted random variables
mutually independent and independent of all Brownian motions, and there
exists a constant k independent of IV such that sup;; <y E|zj(0) <k < .

(A2) {Fn : N > 1} converges weakly to the probability distribution F'.
(A3) Uy and U are compact metric spaces.

(A8) folt, z,u,y], oolt,z,y], f[t,z,u,y] and o[t, x,y] are continuous and
bounded with respect to all their parameters, and Lipschitz continuous in
(x,y,2). In addition, their first order derivatives (w.r.t. z) are all uniformly

continuous and bounded with respect to all their parameters, and Lipschitz
continuous in y.

(A5) folt, z,u,y] and f[t,x,u,y] are Lipschitz continuous in w.



Assumptions

(A6) Lot,z,u,y] and L[t,x,u,y, z] are continuous and bounded with respect
to all their parameters, and Lipschitz continuous in (z,y, z). In addition, their
first order derivatives (w.r.t. ) are all uniformly continuous and bounded with
respect to all their parameters, and Lipschitz continuous in (y, z).

(A7) (Non-degeneracy Assumption) There exists a positive constant o such
that

oolt, z, ylog [t,x,y] > o, oft,z,ylo” (t,z,y) > al, Y(t,z,y).

Otherwise, a notion of viscosity like solutions seems necessary.



McKean-Vlasov Approximation for MFG Analysis

Assume o (w, t, ) € Li‘{”” ([0,T);Uo) and p(w,t,z) € Li.two ([0,T);U) are
two arbitrary F,’°-measurable stochastic processes, Lipschitz continuous in z,
constituting the Major and Minor agent control laws. Then:

azd) (¢ Zfo 20 (8), wolt, 20 (£)), 22 (£))dt

Z (t, 20 (t), 2 (£))dwo(t), z (0) = 20(0), 0<t<T,

dz o(t, 21 (t), 20 (), 27 (t))dt

z (B)dwi(t), =z (0)==2(0), 1<i<N.

N
Nz fZl
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McKean-Vlasov Approximation for MFG Analysis

For an arbitrary function g and a probability distribution u: in R™, set
olt, 2] = [ glt, 0 2)ue(da).

The pair of infinite population systems

corresponding to the collection of finite population systems above is given by:

dzo(t) = folt, z0(t), po(t, zo(t)), we|dt + oo[t, z0(t), pe]dwo (t),
dz(t) = f[t, z(t), o(t, 2(t), z0(t)), peldt + o[t, z(t), pe]dw(t), 0<t<T
with initial conditions (20(0), 2(0)).

In using the MV system it is assumed that the (behaviour) of an infinite
population of (parameter) uniform minor agents can be modelled by the
collection of sample paths of agents with independent initial conditions
and independent Brownian sample paths.

In the above MV system (z0(:), 2(-), (.)) is a consistent solution if
(20(-), 2(+)) is a solution to the above SDE system, and 1 is the
conditional law of z(t) given F;° (i.e., p¢ := L(2(t)|F;"°)).



McKean-Vlasov Approximation for MFG Analysis

We shall use the notation:
dzo(t) = folt, 20(t), ¢o(t, 20(1)), peldt + oo[t, 20(t), pe]dwo(t), 0<t < T,
dZi (t) = f[t7 Zi (t)~ Sp(ta Zi (t)), 20 (t)7 ,U/t]dt + U[ta Zi (1) ,LLt}d’LUi (t)> 1 S ) S N7

with initial conditions z;(0) = z;(0) for 0 < j < N, to describe N independent
samples of the MV SDE system.

Theorem ( )

Assume (A1) and (A3)-(A5) hold. Then unique solutions exist for the finite
and MV SDE equation schemes and we have

sup  sup E\EJN(I‘) —zi(t)] = O(

1
0<j<N O<t<T \/N)7

where the right hand side may depend upon the terminal time T'.

The proof is based on the Cauchy-Schwarz inequality, Gronwall's lemma and

the conditional independence of minor agents given F;".



Distinct Feature of the Major-Minor MFG Theory

The non-standard nature of the SOCPs is due to the fact that the minor
agents are optimizing with respect to the future stochastic evolution of
the major agent's stochastically evolving state which is partly a result of
that agent’s future best response control actions. Hence the mean field
becomes stochastic.

This feature in the non-game theoretic setting of one controller
with one cost function with respect to the trajectories of all the system
components (the classical SOCP), moreover it also in the infinite

population limit of the standard MFG models with no major agent.

The nonstandard feature of the SOCPs here give rise to the analysis of
systems with stochastic parameters and hence BSDEs enter the analysis.



An SOCP with Random Coefficients (after Peng '92)

Let (W(t)):>0 and (B(t)):>0 be mutually independent standard Brownian
motions in R™. Denote

FVP .= a{W(s),B(s):s <t}, F :=oc{W(s):s<t}

T
U = {u(-) € U : u(t) is adapted to o-field FVB and E/ lu(t)|?dt < oo}.
Jo

dz(t) = f[t, z,u]dt + o[t, z|dW (t) + s[t, z]dB(t)

inf J(u) == 325E[/T L[uz(t),u(t)}dt},

ueU 0

0<t<T,

where the coefficients f,o,< and L are are F}V-adapted stochastic processes.

is defined to be the F}V-adapted process

o(t.a) = inf Bry [ Lls.a(o) u(s)ds,

where x; is the initial condition for the process x.



Solution to the Optimal Control Problem with Random Coefficients

Let u°(-) be the optimal control with corresponding closed-loop solution z(-)
By the , the process

is an . Next, by the
along the optimal trajectory there exists an F;}" -adapted process 1/)(-, J:())
such that

Cf’(t,l‘(t)):/, L[svw(s)auo(s,l‘(s))]ds—/l l/JT(b,l(é))dW(é)
:;/t F(S,m(S))ds—/t Y7 (s,2(s))dW(s), te€[0,T).



Extended Ito-Kunita formula

(Extended Ité-Kunita formula (after Peng’92)) Let ¢(¢,z) be a
stochastic process represented by

do(t,z) = —T(t,z)dt + il/)k(t,x)de(t), (t,z) € [0,T] x R",

(=il

where ['(¢,z) and ¥ (t,z), 1 < k < m, are F}"-adapted stochastic processes.

Let () = (z'(:),--- ,2"(-)) be a continuous semimartingale of the form
da'(t) = fi(t)dt + Y o (t)dWi(t) + > sk(t)dBi(t), 1<i<n,

k=1 =1l
where fi, 0; = (041, ,0im) and G = (i1, - -+ ,Sim), 1 < i < n, are 7Y

adapted stochastic processes.



Extended It6-Kunita formula

Then the composition map ¢(-, z(-)) is also a continuous semimartingale which
has the form

d(t,z(t)) = —T(t,a(t))dt + > i (t, 2(t))dWi(t) + > 0, 6(t, 2(t)) fi(t)dt
k=1 o=il

+ 3703 006t 2(0) ik (VAW (8) + DD Do (1, (1)) sir () dBi (1)

=1l [5=1 o=I1l =1
n m 1 n m

)0 0n (£, 2(t)) ik (£)dt + 5 > 020,00t () oin (o (t)dt
i=1 k=1 i,j=1k=1

+% 3 S0, 6(t, w(8))sik (s (Bt

i,j=1k=1



A Stochastic Hamilton-Jacobi-Bellman (SHJB) Equation

Using the extended It6-Kunita formula and the Principle of Optimality, it may
be shown that the pair (¢(s,z),%(s,z)) satisfies the following backward in
time SHJB equation:

—do(t,w,z) = [H[t,w, x, Daop(t,w, z)] + <0[t,w,m], Dzw(t,w,x»
n %Tr(a[t,w,:E]Diwqb(t,w,:r))}dt — T (tw, 2)dW (t,w), S(T,z) =0,

in [0, 7] x R™, where a[t,w, x] := o[t,w, z]o” [t,w, x] + [t, w, z]sT (t,w, z), and
the stochastic Hamiltonian H is given by

H[t7wa Z,p} o= 1}2{{ {<f[t,w, Zq U],p> + L[t,w, z, LL]}



Unique Solution of the SHJB Equation

(H1)(Continuity Assumptions 1) f[t,z,u] and L[t,z, u] are a.s. continuous in
(z,u) for each ¢, a.s. continuous in t for each (x,u),

f[t.0,0] € L%, ([0, T];R™) and L[t,0,0] € L%, ([0, T]; R4). In addition, they
and all their first derivatives (w.r.t. x) are a.s. continuous and bounded.

(H2) (Continuity Assumptions 2) o[t, z] and ¢[t,z] are a.s. continuous in z for
each t, a.s. continuous in t for each x and o[t,0], <[t,0] € L%, ([0, T}; R™*™).
In addition, they and all their first derivatives (w.r.t. z) are a.s. continuous and
bounded.

(H3) (Non-degeneracy Assumption) There exist non-negative constants a; and
a2, a1 + a2 > 0, such that

oft,w,zlo” [t,w,z] > onl, <lt,w,z)s’ (t,w,z) > azl, a.s., Y(t,w,z).

Theorem (Peng’'92)

Assume (H1)-(H3) hold. Then the SHJB equation has a unique forward in
time F}" -adapted solution pair
(¢(t,w,2), ¥(t,w, ) € (LE, (0, T R), Lz, ([0, T, R™))



Best Response Control Action and Verification Theorem

u’(t,w, z) = arg in(f H"[t,w,z, Dy (t,w, ), u]
welU

= arg igf {<f[f, w, z,u], Dyo(t, w, T)> + L[t,w, z, u}}‘

is a forward in time F}V-adapted process for any fixed x.

By a verification theorem approach, Peng showed that if a unique
solution (¢, 1) (¢, x) to the SHIB equation exists, and if it satisfies:

(i) for each t, (¢,9)(t, z) is a C*(R™) map,

(i) for each z, (¢,%)(t,z) and (Db, D2,6, Dz1))(t, x) are continuous
F}V-adapted stochastic processes,

then ¢(z,t) coincides with the value function of the optimal control
problem.



The MFG Consistency Condition

The functional dependence loop of observation and control of the major and
minor agents yields the following proof iteration loop, initiated with a nominal
measure f;(w) :

M-SHJB M-SBR s
M()(W) — (¢0(',W»I):¢O(':W7CU)) — uo(~,w,a:)
Tm-SMV IM-smv
o m-SBR m-SHJB )
w(,w,z) (o(yw, ), 9(-, w, x)) — 26 (-, w)

: By substituting u° into the generic minor agent'’s
dynamics we get the SMV dynamics:
dz°(t,w) = f[t,2°(t,w),u’ (¢, w, 2), pe(w)]dt
+olt, 2°(t,w), pe(@)ldw(t), 2°(0) = 2(0),
where f and o are random processes via u, and u° which depend on the

Brownian motion of the major agent wo. Let fi;(w) be the conditional law of
2°(+) with control u® given F,°°. Then:

The
“measure and control” mapping loop for the MM MFG equation schema is
closed if fit(w) = pt(w) a.s., 0 < ¢ < T, which consistitutes the measure

valued part of the solution.



Major-Minor Agent Stochastic MFG System

Summary of the Major Agent’s Stochastic MFG (SMFG) System:

MFG-SHIB  — dgo(t,w,z) = [ inf Holt,w,z,u, Daho(t,w, z)]

u€EUy
+ <UD[t,ZI,‘,/.Lt(UJ)],wao(t,w,$)> + %Tr(ao[t,w,x]Dizqﬁo(t,w,x))]dt
o wg(tyw7m)dw0(taw)7 ¢0(T7 IL’) =0

MFG-SBR ug(t,w,z) = arg iné Holt,w, z,u, Dyo(t,w, )]
ucUg

MFG-SMV dzg (t,w) = folt, 20 (¢, w), ug (t, w, 20), e (w)]dt
+ oolt, 20 (t, w), pe(w)]dwo (t, w),  25(0) = 20(0)

where aolt,w, z] := oo[t, =, e (w)]od [t, x, jut(w)], and the stochastic
Hamiltonian Hy is



Major-Minor Agent Stochastic MFG System

_ d¢(t7wvx) — [JIEIZEH[twamauaDzd)(tawvx)]

+ %Tr(a[t,w, x]Diqu(t,w, x))] dt — U)T(t,w, x)dwo(t,w), ¢(T,z) =0
uo(tz w, 33) = arg HEIfU H[t7 W, T, U, Df(b(t: w, Qj)]

dz°(t,w) = f[t, 2°(t,w), u’(t,w, 2), pe(w)]dt
—|—a[t7z (t,w), pe(w)]dw(t)

where alt,w, z] := o[t, z, ut(w)]o [t, x, e (w)], and the stochastic Hamiltonian
His

H[t,w,z,p] := (f[t, z, u, ue(w)], p) + L[t, z, u, s e ()]



Major-Minor Agent Stochastic MFG System

The solution of the major-minor SMFG system consists of 8-tuple
F,"°-adapted random processes

(¢0(t7 W, 'T")7 1/}0 (t-, w, .’L’)., u8(t7 W, JI), Z(())(t/ OJ), ¢(t, W, .’L’)., w(t w, J?), uo(ts w, f[?), Zn(ta w))
where z°(t,w) generates the random measure i (w).

The solution to the major-minor SMFG system is a stochastic mean field
in contrast to the deterministic mean field of the standard MFG problems
(HCM'03,HMC'06,LL’06).



Analysis of the MM-SMFG System

: A fixed point argument with random parameters in the space of
stochastic probability measures.

M-SHJB

/,L()((d) — (¢0('7w7x)aw0('7w7$)) NﬂR ’ILE;(',CU“T)
Tm-sMV IM-smv
u”(-,W.,m) m<S_BR (¢('7W,~77)~,1/)('-,W7~75)) mﬂB 28('7"‘})
Theorem (

)

Under technical conditions including a contraction gain condition there exists a
unique solution for the map I', and hence a unique solution to the major and
minor agents’ MM-SMFG system.



e-Nash Equilibrium of the MFG Control Laws

Given € > 0, the set of controls {u5;0 < j < N} generates an
w.r.t. the costs JJV,1 < j < N} if, for each j,

TV, ul ) —e< inf TV (ug,u?;) < TN (ud,ul;).
‘ ‘ u7eu.7 . ‘ ‘

Theorem ( )

Subject to technical conditions, there exists a unique solution to the MM-MFG
system such that the set of infinite population MF best response control
processes in a of minor agents (ug, - ,u%)
generates an en-Nash equilibrium where ey = O(1/v/N).

Agent y is a maximizer

Agent x is a minimizer




Major-Minor Agent LQG -MFG Systems



Major-Minor Agent LQG-MFG Systems

: Yields retrieval of
the MM MFG-LQG equations of [Nguyen-Huang'11] (given here in the uniform
agent class case).

:dzg (t) = (a0zd (8) + boud () + coz™(t))dt + oodwo(t)
de (t) = (azd () + bu’ () + cz™ ())dt+adwz( ), 1<i<N

where zV) (1) := (1/N) S°N | 2](-) is the average state of minor agents.

S AN (TP AT E/ )\gz ) (t) +T]0)>2 + 7o (uév(t))Q] dt
s IV (ul E/ )\z<N)( t) + A1 +n))2—|—r(ufv(t))2]dt

where 1o, > 0.



Major-Minor Agent LQG-MFG Systems

[ . —dso(t) = [(ao — (B3 /70)TIo (%)) s0(t) — o
+ (colTo(t) — )xo)zo(t)] dt — qo(t)dwo(t), so(T) =0
[ ]: ug(t) := —(bo/r0) (Lo (t) 26 (t) + s0(t))
[ ]+ dz5(t) = (aozg () + boud(t) + coz(t))dt + oodwo(t), 25(0) = 20(0)

where IIo(-) > 0 is the unique solution of the Riccati equation:

Ao (t) + 2a0Tlo(t) — (bg /7o) (t) + 1 =0, Mo(T) = 0.

[ 0 —dsi(t) = [(a — (6 /r)TI(E)) si(t) — 0 — A28 (t)
+ (eI1(t) — A)z"(t)] dt — qi(t)dwo(t), s:(T) =0
[ ]: u? () == —(b/r)(TL(t)z7 () + s:(t))
[ |+ dzf (t) = (azf (t) + bu (t) + c2°(t))dt + odwi(t), z{(0) = 2i(0)

where II(-) > 0 is the unique solution of the Riccati equation:

AII(t) + 2all(t) — (b°/r)II*(t) + 1 = 0, II(T) = 0.



Major-Minor Agent LQG-MFG Systems

[ ]: —ds(t) = [(a - (b2/T)H(t))s(t) = ()

+ (eIT(t) — A) 2°( t)]dt — q(t)dwo(t), s(T)=0
| K ug (t) == (b/r)(H(t)zf(t) s(t))
[ ]: dz°(t) = ((a + ¢)2°(t) + bu’(t))dt.

Key assumption for solution existence and uniqueness of MM-MFG
system is that all drift and cost functions f and L and their derivatives
are bounded which clearly does not hold for the MM-MFG LQG problem
(as in classical LQG control), so particular methods must be used to deal

with this.



The LQG-MFG Solution: The Generalized Four-Step Scheme

: For given 2°()
we set so(t) = 0(t, 25(t)) where the function 6 is to be determined. By Itd's

formula:
dsol) = dB(t, 75(1)) = {0u(t, 25(6)) + 026, 2 (8)) [(ao — 2)25()

_ i—ze(t, 20(t)) + cozn(t)] 4 %Ugé?w(t, zg(t))}dt + 000 (t, 25 (t))dwo (t).

Comparing this to the Major agent’s SDE implies that 6 should satisfy the
equations:
o [ bg o bg o o 1 %) o
gt (t‘ Z(](t)) aF QL(t7 Z0 (t)) [(ao — %)Z()(t) — %9(16, Z()(t)) + coz (t)] + 50'()01-;5 (t, Z[)(t))

= —[ao — D TTo(®)] (¢, 28(1)) + 7m0 — [eollo(£) — Ao]2°()

0002 (t, 25 (1)) = —qo(?)-

We can get similar equations for the minor agent by setting

s(t) = 0(t, 28(¢), z°(t)).



The Four-Step Scheme for the LQG-MFG System

Step 1. For given z°(-) solve the following parabolic PDE for 6(t, z):

Bu(t, ) + 62 (t, ) (a0 — %Ho(t))z _ %9(1&, 2) + co2(8)] + %agem(m)
= —[ao - %no(t)}a(t,m) +10 — [eollo(£) — Mo]2°(), O(T,x) = 0.

Step 2. Use 6 in Step 1 to solve the following forward SDE:

b oy U

dzg(t) = [((L() — %H()(t))zo (t) — + C()Zo(t):ldt + O'()d'w() (t), 28(0) = 20 (0)

To

Step 3. Set

qo(t) = —00bz(t, 25(t))
so(t) = 0(t, 25 (1))

by the use of 6 and 2§(¢) obtained in Steps 1 and 2.



The Four-Step Scheme for the LQG-MFG System (ctd’)

Step 4. Use 0 to solve the following PDE for é(t7 x,9):

b3 b

=2 - 1 gx
6t(t,$7y) + 01(t7£7y) [(CL() - Ti)x — + C(]y} + 70—501I(t7l’3y)
(0]

To 2

i b’ b’
+0,(t, @, 9)[(a + c = —T(0)y — —-0(t, ,y)]
2

—[a— %H(t)]é(t, z,y) +n— Mz — (cI(t) = Ny, 0(T,z,y) =0.

Step 5. Use z5(t) and 6 obtained in Steps 2 and 4 to solve the following
forward SDE:

a:°(t) = [fa+ e~ TTO)="(0) = N, 2@

Step 6. Set

q(t) = =000 (¢, 25(1), 2°())

s(t) = 0(t, 25(2), 2°(t)).

by the use of z§(t), # and 2°(t) obtained in Steps 2, 4 and 5.



Partially Observed Major-Minor Agent Mean
Field Systems



Infinite Horizon Completely Observed MM MFG Problem
Formulation (Huang 2010)

—  dxg = [Aozo + Bouo|dt + Dodwy
—  dz; = [A(0;)x; + B(0;)u; + Gxoldt + Ddw;,

1 €N
The for the agent:
o
Jo(ug, u—g) = E/o e {Hwo — HQQO + HUOH%%O} dt
= Hoa™ +mo &V = (1/N) X, @i
The for a agent i, ¢ € N:
o0
Ji(uiy u_;) :E/O e_pt{Ha:i— H2Q+Huz||%g} dt

= Hizo + Hoz™ +1



Minor Agents Types

Ikz{itei:k,iEN}, Nk:|Ik|, 1<k<K

oV = (7N, .., 7}), 7 = Ny /N, 1 < k < K, denotes the
empirical distribution of the parameters (61, ...,0y) of the
agents A; € N.

Assumption: There exists 7 such that limy_,oo 7 = 7 a.s.



Major Agent and Minor Agents

If it exists, the L2 limit of the system states’ means
o = [z}, ..., 2}] constitutes the
Subject to time invariant local state plus mean field plus

major agent state feedback control, zV = [2¥', ..., 2]

satisfies the

K
dTy = Z Ak,jfjdt = kaodt +mpdt, 1<kE<K
j=1
e, dz(t) = Az(t)dt + Gzo(t)dt + m(t)dt
where the quantities G}, 7y, are to be solved for in the
tracking solution.



Major Agent and Minor Agents LQG - MFG

MF plus zq plus local state dependent controls are
applied,

Major agent's state extended by the mean field: [ 9;0 ] .

Minor agent's state extended by major agent’s state and the
Z;

mean field: | zg
T



Major Agent and Minor Agents (Inf. Population)

[ ]3]

w| B | ugdts | Ot | gp 4 | Podwo
0 Onrx1

| Ao Onrxn - By
m=| g ] om0, ]

| Onxa T Qo —QoHf
MO‘[ i } QO_[—HSTQO Hy T QoHy

o = Inxn, —HZ) T Qomo Hf =7 ® Ho £ [ Ho moHy ... mx Ho)



Major Agent and Minor Agents (Inf. Population)

dl’i xX;
di (nK+n)xn 0 %

+{ By }uidzH—{O"Xl }dt

O(nK+n) xXm M
On><m dez
By uodt + | Dodwg
OnKXm OnKX 1

Omr+nyxn Ao — BoRy 'BFII,

Bk 0n><1

]B = M = —
. [ O(nk+n)xm ] [ M, — BoRg 'B{ so ]

77: [Inxna_H7_Hg]TQn H; :7T®H2



Infinite Population Cost Function

The for the agent:
00 _ = —pt 2 2
T (g, o) =E [~ e {lla — 0(0) [, + Juolf,  at
= Hgz +no
The for a agent 4, ¢ € N:
00 _ = —pt 2 2
(i u—i) =E | e {||lzi— 0(@)|| + lusllk dt
0

= Hizo+ HjZ+n



Control Actions (Infinite Population)

plly = MoAg + AJ Ty — By Ry "By Iy + QF

ds;
dt

psh = —2 4 (Ag — BoRy 'BETIy) s}y + TToMy —

Pl = Ay + ATTL, — B RBF 1T, + Q

dsy,
dt

psy = + (A, — BRR'BI ;) st + ITM — 7



Major-Minor MF Equations

g1 g2 Igas
My = | Igo1 Ilgoo Ilgo3
Mp31 Igzz i3s3

= [0nxcns --s Onxny s Oy -5 Onxcn], Where the n X n identity matrix
1,, is at the kth block.

pllp = MoAg + AJ Iy — TlpB Ry 'By o + QF,

pIly = I A, + AFTL, — B R™IBFIL, + Q™, VE,
= [Ay — ByR 'BlTl} 11]ex — By R "B 1} 13, VF,
= —BLR'BIT} 15, Vk,

o dS* — * =
psh = dto + (Ag — BoRy 'BI ) Tsfy + oMo — 7o,
d *
pst = ;tk + (A — ByR'BTII,) s + LM — 7, Vk,

= —ByR'Bfs;, Vk,



Assumptions

Define

My

Mo

M3

[ A — BlR_lB;FHLn

Arx — BKRilB;F(HK,n
BiR™'BITl 15

| BkR !Bk a3

A 0 0
q A 0 ) LO,H — (1)/2[‘[7 07 _Hg]
G M M,

: There exists a probability vector 7 such that limy ;o N = 7.

: The initial states are independent, Ez;(0) = 0 for each ¢ > 1,

sup;so Elz; ) <e

: The pair (Lo, , M3s) is observable.
: The pair (Lq,Ag — (p/2)I) is detectable, and for each k =1, ..., K,

the pair (Ly, A — (p/2)]) is detectable, where Lo = Qq/*[I, —H{) and
Ly = Q'2[I,—H,—H™]. The pair (Ao — (p/2)I,Bo) is stabilizable and
(Ar — (p/2)I,Byg) is stabilizable for each k =1, ..., K.



Major - Minor: MF Equilibrium

Subject to the
MF equations generate a set of stochastic control laws
U 2 {ud;0<i <N}, 1 <N < oo, such that
All agent systems S(A;), 0 < i < N, are second order stable.

{U ;1 < N < oo} yields an e-Nash equilibrium for all ¢, i.e.
for all € > 0, there exists N(¢€) such that for all N > N(e)

I uly) —e < inf IV (i) < Il uly).
u;EUg



Simulation

——— Major Agent

State trajectories




Partially Observed Major-Minor Mean Field
Systems



Partially Observed Major-Minor Agent Systems

Recall: Estimation of major agent and mean field states becomes a
meaningful problem in MM case.
—  dxg = [Aol'o - BQ’U,()]dt + Dydwy
— dz; = [A(Gl)acz aF B(Gz)ul =F G.To]dt + Ddw;,

The observation process for minor agent Aj;: ieN
dy;(t) = Lx?’xdt +dvi(t) =L | =y | dt+ dvi(t)
T
TUCE L =[L; Ly 0].

Complete observations process for the major agent Ay:

dy,(t) = dxo(t)



Partially Observed Major-Minor Agent Systems

The Major agent is assumed to have complete observations of
its own state.

This permits the Minor agents to form conditional
expectations of the Major agent's MFG control action ug
since it is a (linear) function of the Major agent’s state.

Such an estimate could not in general be generated by the
Minor agents in the case where the Major agent’s control
action is a (linear) function of the conditional expectation of
its state [z zo], where FO is the Major agent's observation
o-field.



Estimation

The Riccati equation associated with the Kalman filtering equations for
0,z -
z," £ 24, 70, Z):

V(t) = AV (8) + V(AL — KORKT (1) + Qu,

where
> 0 0 Ay, [G 0nxnk]
Qw — 0 ZC 0 5 Ak — 0 AO O(nKXn)
0 0 0 (nKgnpxn 1 G A
and



Estimation

The innovation process is
e
dvi =dy; — L | ZoF»
25y
and the Kalman filter gain is given by
K(t)=V(@#)L"R,* .

: The system parameter set O satisfies [Ay, Q),,] controllable and
[L, Ag] observable for 1 < k < K.

The Filtering Equations:

iy 7o Ay, (G 0pxnk] Ty v
dig iy | = Onxn Ao Onkxn TojFy | dt
di"]—‘y OnKXn G A f%|]-'y

Bk 0n><m O’I’L><1

aF On><m uldt—ﬁ— BO ’lALO‘]::/dt-l- 0n><1 dt-I—KdVZ,
Onk xm Onk xm m



Separation Principle for MM-MFG Systems

The control law dependent summand of the for the
agent Ag:
°° 2
T (uoyuo) =E [ e {20 - e + ol } at
0

&y, = (L/N) i, a7,

The control law dependent summand of the for a
agent A;, 1 € N:

T (uou) =B [ e {flaym - 12+ sl }



Separation Principle for PO MM-MFG Systems

Key Steps to Main Result:

The major agent and individual minor agent state estimation
recursive equations schemes are given by the MM KF-MF Equations
(for size N finite populations and infinite populations).

Apply the Separation Theorem strategy of reducing a partially
observed SOC problem to a completely observed SOC problem for
the controlled state estimate processes.

Step 2 transforms the Jy and J; MM performance functions into
LQG MM tracking performance functions on the controlled state
estimate processes in the infinite and finite population cases.



Separation Principle for PO MM-MFG Systems

The problem in (2) for the state estimate processes is solved
using the completely observed LQG MM-MFG methodology
which yields the g and #; control laws and the J§° and J*°
performance function values.

The Major Agent performance value J§° and Minor Agent
performance value J; neccessarily correspond to infinite
population Nash equilibria.

Approximation Analysis gives e—Nash equilibria with respect
to J$° and J© for J¥ and JY in finite N populations.



Nash Equilibria for Partially Observed MM-MFG Systems

Subject to , the KF-MF state estimation scheme plus
MM-MFG equations generate the set of control laws
UYL= {191 <i <N}, 1< N < oo, and ug given by

such that
All agent systems S(A;), 0 <1i < N, are second order stable.

{UN ;1 < N < oo} yields an e-Nash equilibrium for all ¢, i.e.
for all € > 0, there exists N (¢) such that for all N > N (e)

JN@9,4%,) — e < inf JN(us,a%;) < IV (@, a2,).
u; EUg



Concluding Remarks

Building upon the MM-LQG-MFG theory for partially
observed MM systems and the Nonlinear MM-MFG theory,
the next step is to generate a MM-MFG theory for

Investigate via the systematic
application of MM-MFG Theory to markets where minor
agents (customers and suppliers) receive

(such as utilities and
international energy prices) and on (such
as wind and ocean behaviour).
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