On first order mean field game systems

P. Cardaliaguet

Paris-Dauphine

Mean Field Games and Related Topics - 2 Padova, September 4-6 2013

The 1 rst order MFG system with local coupling

In this talk we concentrate on the system :

$$
(M F G)\left\{\begin{aligned}
& \text { (i) }-\partial_{t} u+H(x, D u)=f(x, m(t, x)) \\
& \text { in }[0, T] \times \mathbb{T}^{d} \\
& \text { (ii) } \partial_{t} m-\operatorname{div}\left(m D_{p} H(x, D u)\right)=0 \\
& \text { in }[0, T] \times \mathbb{T}^{d} \\
& \text { (iii) } m(0, x)=m_{0}(x), u(T, x)=u_{T}(x) \quad \text { in } \mathbb{T}^{d}
\end{aligned}\right.
$$

where

- $H=H(x, p)$ is convex in p, periodic in x,
- $f=f(x, m)$ is a local coupling, increasing in m, periodic in x
- $u_{T}=u_{T}(x)$ is a periodic terminal cost,
- m_{0} is a probability density on \mathbb{T}^{d}.

Because of the lack of regularity, the usual fixed-point method does not work.

Two approaches :

- Reduction to a quasi-linear equation \rightsquigarrow smooth solutions
- Variational methods \rightsquigarrow weak solutions.

Reduction to a quasi-linear equation

Assume for simplicity that $H=H(p), f=f(m)$.
The MFG system becomes

$$
(M F G) \quad\left\{\begin{aligned}
(i) & -\partial_{t} u+H(D u)=f(m(t, x)) \\
\text { (ii) } & \partial_{t} m-\operatorname{div}\left(m D_{p} H(D u)\right)=0 \\
\text { (iii) } & m(0)=m_{0}, u(T, x)=u_{T}(x)
\end{aligned}\right.
$$

Writing

$$
m(t, x)=f^{-1}\left(-\partial_{t} u+H(D u)\right)
$$

the MFG systems reduces to the quasilinear elliptic equation

$$
\left\{\begin{array}{l}
-\operatorname{Tr}\left(A\left(D_{t, x} u\right) D_{t, x}^{2} u\right)=0 \text { in }[0, T] \times \mathbb{T}^{d} \\
-\partial_{t} u+H(D u)=f\left(m_{0}\right) \text { at } t=0 \\
u(T, \cdot)=u_{T} \text { at } t=T
\end{array}\right.
$$

A priori estimates (Lasry-Lions)

(1) The map $\Phi(t, x):=-\partial_{t} u+H(D u)$ is bounded above.

Indeed:

- Φ satisfies an equation of the form

$$
-\operatorname{Tr}\left(A\left(D_{t, x}^{2} \Phi\right)-B \cdot D \Phi \leq 0 \text { in }(0, T) \times \mathbb{T}^{d}\right.
$$

So max Φ reached at the boundary,

- $\Phi(0, \cdot)=f\left(m_{0}\right)$ is bounded,
- $\Phi(T, x)$ is bounded (barrier argument).
(2) $|D u|$ is bounded (Bernstein method)

Consequences : (Lasry-Lions)

(1) A priori estimates for the solution : $u \in W^{1, \infty}$ and $m \in L^{\infty}$,
(2) If $f(m) \sim \log (m)$ at 0 , the system is uniformly elliptic and the solution is smooth.

Variational approach

Following Lasry-Lions, the MFG system can be formally viewed as a system of optimality conditions for

- an optimal control problem of a continuity equation.
- an optimal control problem of a Hamilton-Jacobi equation

Reminiscent of

- Benamou-Brenier formulation of the Wasserstein distance,
- A new class of transport problems introduced by Dolbeault-Nazaret-Savaré (2009) : optimality conditions studied in C.-Carlier-Nazaret (2012).

The optimal control of continuity equation

$$
\inf _{(m, w)}\left\{\int_{0}^{T} \int_{Q} m H^{*}(x,-v)+F(x, m) d x d t+\int_{Q} u_{T}(x) m(T, x) d x\right\}
$$

where the infimum is taken over the pairs (m, v) such that

$$
\partial_{t} m+\operatorname{div}(m v)=0, m(0)=m_{0}
$$

in the sense of distributions.
We have set :

$$
F(x, m)= \begin{cases}\int_{0}^{m} f\left(x, m^{\prime}\right) d m^{\prime} & \text { if } m \geq 0 \\ +\infty & \text { otherwise }\end{cases}
$$

and $H^{*}(x, v)=\sup _{p \in \mathbb{R}^{d}} p . v-H(x, p)$.

The optimal control of HJ equation

$$
\inf _{\alpha}\left\{\int_{0}^{T} \int_{Q} F^{*}(x, \alpha(t, x)) d x d t-\int_{Q} u(0, x) m_{0}(x) d x\right\}
$$

where u is the solution to the HJ equation

$$
\left\{\begin{array}{l}
-\partial_{t} u+H(x, D u)=\alpha \quad \text { in }(0, T) \times \mathbb{T}^{d} \\
u(T, \cdot)=u_{T} \quad \text { in } \mathbb{T}^{d}
\end{array}\right.
$$

We have set $F^{*}(x, a)=\sup _{m \in \mathbb{R}}(a m-F(x, m))$.

Heuristic argument for the link with (MFG)

Assume (u, α) is optimal in the problem

$$
\inf \left\{\int_{0}^{T} \int_{Q} F^{*}(x, \alpha(t, x)) d x d t-\int_{Q} u(0, x) m_{0}(x) d x\right\}
$$

where u is the solution to the HJ equation

$$
\left\{\begin{array}{l}
-\partial_{t} u+H(x, D u)=\alpha \quad \text { in }(0, T) \times \mathbb{T}^{d} \\
u(T, \cdot)=u_{T} \quad \text { in } \mathbb{T}^{d}
\end{array} \quad\right.
$$

Necessary condition : take the derivative in the direction β,

$$
\int_{0}^{T} \int_{Q} D_{\alpha} F^{*}(x, \alpha) \beta d x d t-\int_{Q} w(0, x) m_{0}(x) d x=0
$$

where w is the solution to the linearized HJ equation

$$
\begin{cases}-\partial_{t} w+D_{p} H(x, D u) \cdot D w=\beta & \text { in }(0, T) \times \mathbb{T}^{d} \\ w(T, \cdot)=0 \quad \text { in } \mathbb{T}^{d}\end{cases}
$$

Set $m(t, x)=D_{\alpha} F^{*}(x, \alpha(t, x))$, i.e., $\alpha(t, x)=f(x, m(t, x))$. Then

$$
\int_{0}^{T} \int_{Q} m\left(-\partial_{t} w+D_{p} H(x, D u) . D w\right) d x d t-\int_{Q} w(0, x) m_{0}(x) d x=0 .
$$

Integrate by parts :
$\int_{0}^{T} \int_{Q}\left(\partial_{t} m-\operatorname{div}\left(m D_{p} H(x, D u)\right)\right) w d x d t+\int_{Q} w(0, x)\left(m(0, x)-m_{0}(x)\right) d x=0$.
This holds for any w with $w(T, x)=0$: hence m solves

$$
\left\{\begin{array}{l}
\partial_{t} m-\operatorname{div}\left(m D_{p} H(x, D u)\right)=0 \\
m(0, x)=m_{0}(x)
\end{array}\right.
$$

By definition, u is the solution to the HJ equation

$$
\left\{\begin{array}{l}
-\partial_{t} u+H(x, D u)=\alpha=f(x, m) \\
u(T, \cdot)=u_{T} \quad \text { in } \mathbb{T}^{d}
\end{array}\right.
$$

So (u, m) solves (MFG).

Aim :

- Provide a framework in which both problems are well-posed and in duality,
- derive from these problems the existence of a weak solution for the MFG system, as optimality conditions,
- discuss properties of the weak solution.

Outline

(1) The weak solution

(2) Some properties of the weak solution

(3) Long time behavior

Outline

(1) The weak solution
(2) Some properties of the weak solution (3) Long time behavior

Outline

(1) The weak solution
(2) Some properties of the weak solution
(3) Long time behavior

Outline

(1) The weak solution

(2) Some properties of the weak solution

(3) Long time behavior

Assumptions

- $f: \mathbb{T}^{d} \times[0,+\infty) \rightarrow \mathbb{R}$ is smooth and increasing w.r. to m with $f(x, 0)=0$, and

$$
-\bar{C}+\frac{1}{\bar{C}}|m|^{q-1} \leq f(x, m) \leq \bar{C}\left(1+|m|^{q-1}\right) \quad(\text { where } q>1)
$$

- There is $r>d(q-1) \vee 1$ such that

$$
\frac{1}{\bar{C}}|\xi|^{r}-\bar{C} \leq H(x, \xi) \leq \bar{C}\left(|\xi|^{r}+1\right) \quad \forall(x, \xi) \in \mathbb{T}^{d} \times \mathbb{R}^{d}
$$

- + technical conditions of $D_{x} H$...

Analysis of the optimal control of HJB

We study the optimal control of the HJ equation :

$$
(\mathbf{H J}-\mathbf{P b}) \quad \inf _{\alpha}\left\{\int_{0}^{T} \int_{Q} F^{*}(x, \alpha(t, x)) d x d t-\int_{Q} u(0, x) d m_{0}(x)\right\}
$$

where u is the solution to the HJ equation

$$
\left\{\begin{array}{l}
-\partial_{t} u+H(x, D u)=\alpha \quad \text { in }(0, T) \times \mathbb{T}^{d} \\
u(T, \cdot)=u_{T} \quad \text { in } \mathbb{T}^{d}
\end{array}\right.
$$

Recall the notation : $F^{*}(x, a)=\sup _{m \in \mathbb{R}}(a m-F(x, m))$ where

$$
F(x, m)= \begin{cases}\int_{0}^{m} f\left(x, m^{\prime}\right) d m^{\prime} & \text { if } m \geq 0 \\ +\infty & \text { otherwise }\end{cases}
$$

Note that $F^{*}(x, a)=0$ for $a \leq 0$.

Let (u_{n}, α_{n}) be a minimizing sequence for

$$
(\mathbf{H J}-\mathbf{P b}) \quad \inf \left\{\int_{0}^{T} \int_{Q} F^{*}(x, \alpha(t, x)) d x d t-\int_{Q} u(0, x) d m_{0}(x)\right\}
$$

where u is the solution to the HJ equation

$$
\left\{\begin{array}{l}
-\partial_{t} u+H(x, D u)=\alpha \quad \text { in }(0, T) \times \mathbb{T}^{d} \\
u(T, \cdot)=u_{T} \quad \text { in } \mathbb{T}^{d}
\end{array} \quad\right.
$$

Proposition

- the $\left(\alpha_{n}\right)$ are bounded in L^{p} (with $p=q^{\prime}$), with $\alpha_{n} \geq 0$.
- the $\left(u_{n}\right)$ are uniformly continuous in $[0, T] \times \mathbb{T}^{d}$.
- the $D u_{n}$ are bounded in L^{r} and the $\left(\partial_{t} u_{n}\right)$ are bounded in L^{1}.

Consequence : There exists a minimizer (u, α) of the optimal control of HJB such that :

- $\alpha \in L^{p}$,
- u is continuous in $[0, T] \times \mathbb{T}^{d}$,
- $u \in B V\left((0, T) \times \mathbb{T}^{d}\right)$ and $D u \in L^{r}\left((0, T) \times \mathbb{T}^{d}\right)$,
- u solves in the sense of distribution

$$
\left\{\begin{array}{l}
-\partial_{t} u+H(x, D u) \leq \alpha \quad \text { in }(0, T) \times \mathbb{T}^{d} \\
u(T, \cdot)=u_{T} \quad \text { in } \mathbb{T}^{d}
\end{array}\right.
$$

One key ingredient of proof of the proposition :

Theorem (Hölder estimates, C.-Silvestre, 2012)

Let u be a bounded viscosity solution of

$$
\left\{\begin{array}{l}
-\partial_{t} u+H(x, D u)=\alpha \quad \text { in }(0, T) \times \mathbb{T}^{d} . \\
u(T, x)=u_{T}(x) \quad \text { in } \mathbb{T}^{d}
\end{array}\right.
$$

where $\alpha \geq 0, \alpha \in L^{p}$ with $p>1+d / r, r>1$.
Then, for any $\delta>0$, u is Hölder continuous in $[0, T-\delta] \times \mathbb{T}^{d}$:

$$
|u(t, x)-u(s, y)| \leq C|(t, x)-(s, y)|^{\gamma}
$$

where $\gamma=\gamma\left(\|u\|_{\infty},\|\alpha\|_{p}, d, r\right), \quad C=C\left(\|u\|_{\infty},\|\alpha\|_{p}, d, r, \delta\right)$.
Related results (2nd order results)

- Capuzzo Dolcetta-Leoni-Porretta (2010), Barles (2010) : stationary equations, bounded RHS,
- C. (2009), Cannarsa-C. (2010), C., Rainer (2011) : evolution equations, bounded RHS,
- Dall'Aglio-Porretta (preprint) : stationary setting, unbounded RHS.

The dual of the optimal control of HJ eqs

Proposition

The dual of the optimal control of $\mathrm{HJ}(\mathbf{H J}-\mathrm{Pb})$ equation is given by optimal control problem for the continuity equation :
$(\mathbf{K}-\mathbf{P b}) \quad \inf \left\{\int_{0}^{T} \int_{Q} m H^{*}\left(x,-\frac{w}{m}\right)+F(x, m) d x d t+\int_{Q} u_{T}(x) m(T, x) d x\right\}$
where the infimum is taken over the pairs
$(m, w) \in L^{1}\left((0, T) \times \mathbb{T}^{d}\right) \times L^{1}\left((0, T) \times \mathbb{T}^{d}, \mathbb{T}^{d}\right)$ such that

$$
\partial_{t} m+\operatorname{div}(w)=0, m(0)=m_{0}
$$

in the sense of distributions.
Moreover the dual problem has a unique minimum (m, w) and $m \in L^{q}$.

Definition of weak solution

We say that a pair $(m, u) \in L^{q}\left((0, T) \times \mathbb{T}^{d}\right) \times B V\left((0, T) \times \mathbb{T}^{d}\right)$ is a weak solution of (MFG) if
(i) u is continuous in $[0, T] \times \mathbb{T}^{d}, D u \in L^{r}\left((0, T) \times \mathbb{T}^{d}\right), m D_{p} H(x, D u) \in L^{1}$,
(ii) Equality $-\partial_{t} u^{a c}(t, x)+H(x, D u(t, x))=f(x, m(t, x))$ holds a.e. in $\{m>0\}$ and inequality $-\partial_{t} u+H(x, D u) \leq f(x, m)$ holds in the sense of distribution, with $u(T, x)=u_{T}(x)$ in the sense of trace,
(iii) $\partial_{t} m-\operatorname{div}\left(m D_{p} H(x, D u)\right)=0$ holds in the sense of distribution in $(0, T) \times \mathbb{T}^{d}$ and $m(0)=m_{0}$,
(iv) Equality $\int_{0}^{T} \int_{Q} m\left(\partial_{t} u^{a c}-\left\langle D u, D_{p} H(x, D u)\right\rangle\right)=\int_{Q} m(T) u_{T}-m_{0} u(0)$ holds.
(where $\partial_{t} u^{a c}$ is the a.c. part of the measure $\partial_{t} u$).

Existence/uniqueness of weak solutions

Theorem

There exists a weak solution (m, u) of (MFG) such that u is locally Hölder continuous in $[0, T) \times \mathbb{T}^{d}$ and which satisfies in the viscosity sense

$$
-\partial_{t} u+H(x, D u) \geq 0 \quad \text { in }(0, T) \times \mathbb{T}^{d}
$$

Idea of proof :
 - Let (m, w) is a minimizer of $(\mathbb{K}-\mathbf{P b})$ and (u, α) is a minimizer of $(\mathrm{HJ}-\mathrm{pb})$ such that u is continuous. Then one can show that (m, u) is a solution of mean field game system (MFG) and $w=-m D_{p} H(\cdot, D u)$ while $\alpha=f(\cdot, m)$ a.e.
 - Conversely, if (u, m) is a solution of (MFG), then the pair $\left(m,-m D_{p} H(\cdot, D u)\right)$ is the minimizer of $(\mathrm{K}-\mathrm{Pb})$ while $(u, f(\cdot, m))$ is a minimizer of (HJ-pb)

Existence/uniqueness of weak solutions

Theorem

There exists a weak solution (m, u) of (MFG) such that u is locally Hölder continuous in $[0, T) \times \mathbb{T}^{d}$ and which satisfies in the viscosity sense

$$
-\partial_{t} u+H(x, D u) \geq 0 \quad \text { in }(0, T) \times \mathbb{T}^{d}
$$

Idea of proof :

- Let (m, w) is a minimizer of $(\mathbf{K}-\mathbf{P b})$ and (u, α) is a minimizer of $(\mathbf{H J}-\mathbf{p b})$ such that u is continuous. Then one can show that (m, u) is a solution of mean field game system (MFG) and $w=-m D_{p} H(\cdot, D u)$ while $\alpha=f(\cdot, m)$ a.e..
- Conversely, if (u, m) is a solution of (MFG), then the pair $\left(m,-m D_{p} H(\cdot, D u)\right)$ is the minimizer of $(\mathrm{K}-\mathrm{Pb})$ while $(u, f(\cdot, m))$ is a minimizer of (HJ-pb)

Existence/uniqueness of weak solutions

Theorem

There exists a weak solution (m, u) of (MFG) such that u is locally Hölder continuous in $[0, T) \times \mathbb{T}^{d}$ and which satisfies in the viscosity sense

$$
-\partial_{t} u+H(x, D u) \geq 0 \quad \text { in }(0, T) \times \mathbb{T}^{d}
$$

Idea of proof :

- Let (m, w) is a minimizer of $(\mathbf{K}-\mathbf{P b})$ and (u, α) is a minimizer of $(\mathbf{H J}-\mathbf{p b})$ such that u is continuous. Then one can show that (m, u) is a solution of mean field game system (MFG) and $w=-m D_{p} H(\cdot, D u)$ while $\alpha=f(\cdot, m)$ a.e..
- Conversely, if (u, m) is a solution of (MFG), then the pair $\left(m,-m D_{p} H(\cdot, D u)\right)$ is the minimizer of $(\mathbf{K}-\mathbf{P b})$ while $(u, f(\cdot, m))$ is a minimizer of (HJ-pb).

Uniqueness for the MFG system

Theorem

Let (m, u) and $\left(m^{\prime}, u^{\prime}\right)$ be two weak solutions of (MFG). Then $m=m^{\prime}$ and $u=u^{\prime}$ in $\{m>0\}$.

Moreover, if u satisfies the additional condition

$$
(*) \quad-\partial_{t} u+H(x, D u) \geq 0 \quad \text { in }(0, T) \times \mathbb{T}^{d},
$$

in the viscosity sense, then $u \geq u^{\prime}$.

Remark : In particular, if we add condition (*) to the definition of weak solution of (MFG), then the weak solution exists and is unique.

Outline

(1) The weak solution

(2) Some properties of the weak solution

(3) Long time behavior

Hamiltonian structure

Formally the (MFG) system can be rewritten as the Hamiltonian system

$$
\left\{\begin{array}{l}
\partial_{t} u=\frac{\partial \mathcal{E}}{\partial m}(u(t, \cdot), m(t, \cdot)) \\
\partial_{t} m=-\frac{\partial \mathcal{E}}{\partial u}(u(t, \cdot), m(t, \cdot)) \\
m(0, x)=m_{0}(x), u(0, x)=u_{T}(x)
\end{array}\right.
$$

where

$$
\mathcal{E}(u, m)=\int_{\mathbb{T}^{d}} m(x) H(x, D u(x))-F(x, m(x)) d x
$$

Proposition

Let (u, m) be a weak solution of the (MFG) system. Then there exists $C \in \mathbb{R}$ with

$$
\mathcal{E}(u(t, \cdot), m(t, \cdot))=C \quad \text { for a.e. } t \in(0, T)
$$

Link with the quasilinear elliptic equation

Proposition

If (u, m) is a weak solution of the MFG system, then u is a viscosity solution of

$$
\left\{\begin{array}{l}
\mathcal{G}\left(x, \partial_{t} u, D u, \partial_{t t} u, D \partial_{t} u, D^{2} u\right)=0 \text { in }(0, T) \times \mathbb{T}^{d} \\
u(T, \cdot)=u_{T} \text { in } \mathbb{T}^{d} \\
-\partial_{t} u+H(x, D u)=f\left(m_{0}\right) \text { in } \mathbb{T}^{d}
\end{array}\right.
$$

where

$$
\begin{aligned}
& \mathcal{G}\left(x, p_{t}, p_{x}, a, b, C\right) \\
& =-\operatorname{Tr}\left(\mathcal{A}\left(x, p_{t}, p_{x}\right)\left(\begin{array}{cc}
a & b^{T} \\
b & C
\end{array}\right)\right)-F_{\alpha, \alpha}^{*}\left\langle H_{p}, H_{x}\right\rangle-\left\langle F_{x, \alpha}^{*}, H_{p}\right\rangle-F_{\alpha}^{*} \operatorname{Tr}\left(H_{x, p}\right)
\end{aligned}
$$

with

$$
\mathcal{A}\left(x, p_{t}, p_{x}\right)=F_{\alpha, \alpha}^{*}\left(\begin{array}{cc}
1 & -H_{p}^{T} \\
-H_{p} & H_{p} \otimes H_{p}
\end{array}\right)+F_{\alpha}^{*}\left(\begin{array}{cc}
0 & 0 \\
0 & H_{p p}
\end{array}\right) \geq 0
$$

Other properties of the solutions

- Stability of the solution with respect to the data.
- Application to differential games with finitely many players.
\longrightarrow Well-known for 2nd order MFG system with nonlocal coupling : Huang, Caines, Malhamé (2006), Kolokoltsov, Li, Yang (2011), Carmona, Delarue (2012).
\longrightarrow Specific difficulties : only weak solutions to the MFG system, local coupling.

Outline

(1) The weak solution

(2) Some properties of the weak solution

(3) Long time behavior

We study the link between the solution $\left(u^{T}, m^{T}\right)$ of the finite horizon problem
$\left(M F G_{T}\right) \quad \begin{cases}\text { (i) } & -\partial_{t} u^{T}+H\left(x, D u^{T}\right)=f\left(x, m^{T}(x, t)\right) \\ \text { (ii) } & \partial_{t} m^{T}-\operatorname{div}\left(m^{T} D_{p} H\left(x, D u^{T}\right)\right)=0 \\ \text { (iii) } & m^{T}(0)=m_{0}, u^{T}(x, T)=u_{f}(x)\end{cases}$
and the solution $(\bar{\lambda}, \bar{u}, \bar{m})$ of the ergodic problem

$$
(M F G-\operatorname{ergo}) \quad \begin{cases}\text { (i) } & \bar{\lambda}+H(x, D \bar{u})=f(x, \bar{m}(x)) \\ \text { (ii) } & -\operatorname{div}\left(\bar{m} D_{p} H(x, D \bar{u})\right)=0 \\ \text { (iii) } & \bar{m} \geq 0, \int_{\mathbb{T}^{d}} \bar{m}=1\end{cases}
$$

References:

- Gomes, Mohr, Souza (2010) : discrete setting,
- C., Lasry, Lions, Porretta $(2010,2013)$: 2nd order MFG systems,
- C. (2013) : 1rst order MFG system with nonlocal coupling.

The ergodic problem

A triple $(\lambda, m, u) \in \mathbb{R} \times L^{q}\left(\mathbb{T}^{d}\right) \times W^{1, p r}\left(\mathbb{T}^{d}\right)$ is a solution of (MFG-ergo) if
(i) $m \geq 0, \int_{\mathbb{T}^{d}} m=1$ and $m D_{p} H(x, D u) \in L^{1}\left(\mathbb{T}^{d}\right)$,
(ii) Equation (MFG-ergo)-(i) holds in the following sense :

$$
\begin{aligned}
& \quad \lambda+H(x, D u(x))=f(x, m(x)) \text { a.e. in }\{m>0\} \\
& \text { and } \quad \lambda+H(x, D u) \leq f(x, m) \text { a.e. in } \mathbb{T}^{d} \text {, }
\end{aligned}
$$

(iii) Equation (MFG-ergo)-(ii) holds :

$$
-\operatorname{div}\left(m D_{p} H(x, D u(x))\right)=0 \quad \text { in } \mathbb{T}^{d}
$$

in the sense of distribution.

Theorem

There exists at least one solution $(\bar{\lambda}, \bar{m}, \bar{u})$ to the ergodic MFG system (MFG-ergo). Moreover, the pair $(\bar{\lambda}, \bar{m})$ is unique.

Idea of proof.

As for the time-dependent problem, the existence relies on two optimization problems :

- Optimization of an ergodic cost

$$
\inf _{(\lambda, u)} \int_{\mathbb{T}^{d}} F^{*}(x, \lambda+H(x, D u(x))) d x-\lambda .
$$

- Optimization of a cost on invariant measures.

$$
\inf _{(m, w)} \int_{\mathbb{T}^{d}} m(x) H^{*}\left(x,-\frac{w(x)}{m(x)}\right)+F(x, m(x)) d x
$$

where $m \in L^{1}$ is a measure and $\quad \operatorname{div}(w)=0$ in \mathbb{T}^{d}.
\longrightarrow Claim : the two problems are in duality and have optimal solutions $(\bar{\lambda}, \bar{u})$ and (\bar{m}, \bar{w}). Moreover $(\bar{\lambda}, \bar{u}, \bar{m})$ is a solution to (MFG - ergo).

The convergence result

Let $\left(u^{T}, m^{T}\right)$ and $(\bar{\lambda}, \bar{u}, \bar{m})$ be the solution to $\left(M F G_{T}\right)$ and (MFG - ergo) respectively.

Set

$$
v^{T}(s, x)=u^{T}(T s, x) \text { and } \mu^{T}(s, x)=m^{T}(T s, x)
$$

for $(s, x) \in(0,1) \times \mathbb{T}^{d}$.

Theorem

As $T \rightarrow+\infty$,

- $\left(v^{T} / T\right)$ converges to $-\bar{\lambda}$ in L^{θ} for any $\theta>0$,
- $\left(\mu^{T}\right)$ converges to \bar{m} in L^{θ} for $\theta \in[1, p)$.

Ingredients of proof

1) Lasry-Lions usual estimate is still valid :

Proposition (Lasry-Lions key estimate)

$$
\begin{aligned}
& \int_{0}^{T} \int_{\mathbb{T}^{d}} m^{T}\left(H(x, D \bar{u})-H\left(x, D u^{T}\right)-\left\langle D_{p} H\left(x, D u^{T}\right), D\left(\bar{u}-u^{T}\right)\right\rangle\right) d x d t \\
& \quad+\int_{0}^{T} \int_{\mathbb{T}^{d}} \bar{m}\left(H\left(x, D u^{T}\right)-H(x, D \bar{u})-\left\langle D_{p} H(x, D \bar{u}), D\left(u^{T}-\bar{u}\right)\right\rangle\right) d x d t \\
& \quad+\int_{0}^{T} \int_{\mathbb{T}^{d}}\left(f\left(x, m^{T}\right)-f(x, \bar{m})\right)\left(m^{T}-\bar{m}\right) d x d t \\
& \quad \leq-\left[\int_{\mathbb{T}^{d}}\left(m^{T}(t)-\bar{m}\right)\left(u^{T}(t)-\bar{u}\right) d x\right]_{0}^{T}
\end{aligned}
$$

Problem : show that the RHS is a $o(T)$.
2) The optimal control of HJB equations has a limit :

Lemma

$$
\begin{aligned}
\lim _{T \rightarrow+\infty} \inf _{u} & \frac{1}{T} \int_{0}^{T} \int_{\mathbb{T}^{d}} F^{*}\left(x,-\partial_{t} u+H(x, D u)\right) d x d t-\frac{1}{T} \int_{\mathbb{T}^{d}} u(x, 0) m_{0}(x) d x \\
& =\inf _{(\lambda, u)} \int_{\mathbb{T}^{d}} F^{*}(x, \lambda+H(x, D u(x))) d x-\lambda
\end{aligned}
$$

Moreover

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} u^{T}(0, \cdot)=-\bar{\lambda} \quad \text { in } \quad L^{\theta}\left(\mathbb{T}^{d}\right)
$$

for any $\theta \geq 1$ (where $\bar{\lambda}$ is the ergodic constant).

By the Lasry-Lions key estimate,

$$
\begin{aligned}
\int_{0}^{1} \int_{\mathbb{T}^{d}}(& \left.f\left(x, \mu^{T}\right)-f(x, \bar{m})\right)\left(\mu^{T}-\bar{m}\right) d x d t \\
& \leq-\frac{1}{T}\left[\int_{\mathbb{T}^{d}}\left(\mu^{T}(t)-\bar{m}\right)\left(v^{T}(t)-\bar{u}\right) d x\right]_{0}^{1}
\end{aligned}
$$

where, at $t=1$,

$$
\lim _{T \rightarrow+\infty} \int_{\mathbb{T}^{d}}\left(\mu^{T}(1)-\bar{m}\right) \frac{\left(u_{f}-\bar{u}\right)}{T} d x=0
$$

while, at $t=0$,

$$
\lim _{T \rightarrow+\infty} \int_{\mathbb{T}^{d}}\left(\mu_{0}-\bar{m}\right)\left(\frac{v^{T}(0)-\bar{u}}{T}\right) d x=\int_{\mathbb{T}^{d}}\left(\mu_{0}-\bar{m}\right)(-\bar{\lambda}) d x=0
$$

So

$$
\lim _{T \rightarrow+\infty} \int_{0}^{1} \int_{\mathbb{T}^{d}}\left(f\left(x, \mu^{T}\right)-f(x, \bar{m})\right)\left(\mu^{T}-\bar{m}\right) d x d t=0
$$

which proves the convergence of μ^{T} to \bar{m}.

Conclusion

Summary

- Existence/uniqueness of weak solutions in to 1 rst order MFG system with local coupling,
- Link with optimal control problems and with a quasilinear elliptic system,
- Application to games with finitely many players.
- Long time-average.

Open problems

- Regularity of solutions for 1 rst order, local MFG systems in full generality,
- Vanishing viscosity limit,
- Existence/uniqueness for the MFG system of congestion type ($\alpha \in(0,2))$

$$
\begin{cases}\text { (i) } & -\partial_{t} u+\frac{|D u|^{2}}{2 m^{\alpha}}=0 \\ \text { (ii) } & \left.\partial_{t} m-\operatorname{div}\left(m^{1-\alpha} D u\right)\right)=0 \\ \text { (iii) } & m(0)=m_{0}, u(T, x)=u_{T}(x)\end{cases}
$$

