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The 1rst order MFG system with local coupling

In this talk we concentrate on the system :

(MFG)


(i) −∂tu + H(x ,Du) = f (x ,m(t , x))

in [0,T ]× Td

(ii) ∂tm − div(m DpH(x ,Du)) = 0
in [0,T ]× Td

(iii) m(0, x) = m0(x), u(T , x) = uT (x) in Td

where

H = H(x ,p) is convex in p, periodic in x ,

f = f (x ,m) is a local coupling, increasing in m, periodic in x

uT = uT (x) is a periodic terminal cost,

m0 is a probability density on Td .
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Because of the lack of regularity, the usual fixed-point method does not work.

Two approaches :

Reduction to a quasi-linear equation smooth solutions

Variational methods weak solutions.
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Reduction to a quasi-linear equation
Assume for simplicity that H = H(p), f = f (m).
The MFG system becomes

(MFG)

 (i) −∂tu + H(Du) = f (m(t , x))
(ii) ∂tm − div(mDpH(Du)) = 0
(iii) m(0) = m0, u(T , x) = uT (x)

Writing
m(t , x) = f−1 (−∂tu + H(Du)) ,

the MFG systems reduces to the quasilinear elliptic equation
−Tr

(
A(Dt,xu)D2

t,xu
)

= 0 in [0,T ]× Td

−∂tu + H(Du) = f (m0) at t = 0

u(T , ·) = uT at t = T
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A priori estimates (Lasry-Lions)

1 The map Φ(t , x) := −∂tu + H(Du) is bounded above.

Indeed :

Φ satisfies an equation of the form

−Tr(A(D2
t,x Φ)− B.DΦ ≤ 0 in (0,T )× Td

So max Φ reached at the boundary,
Φ(0, ·) = f (m0) is bounded,
Φ(T , x) is bounded (barrier argument).

2 |Du| is bounded (Bernstein method)

P. Cardaliaguet (Paris-Dauphine) MFG 5 / 36



Consequences : (Lasry-Lions)

1 A priori estimates for the solution : u ∈W 1,∞ and m ∈ L∞,

2 If f (m) ∼ log(m) at 0, the system is uniformly elliptic and the solution is
smooth.
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Variational approach

Following Lasry-Lions, the MFG system can be formally viewed as a system
of optimality conditions for

an optimal control problem of a continuity equation.

an optimal control problem of a Hamilton-Jacobi equation

Reminiscent of

Benamou-Brenier formulation of the Wasserstein distance,

A new class of transport problems introduced by
Dolbeault-Nazaret-Savaré (2009) : optimality conditions studied in
C.-Carlier-Nazaret (2012).
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THE OPTIMAL CONTROL OF CONTINUITY EQUATION

inf
(m,w)

{∫ T

0

∫
Q

mH∗(x ,−v) + F (x ,m) dxdt +

∫
Q

uT (x)m(T , x)dx

}
where the infimum is taken over the pairs (m, v) such that

∂tm + div(mv) = 0, m(0) = m0

in the sense of distributions.

We have set :

F (x ,m) =


∫ m

0
f (x ,m′)dm′ if m ≥ 0

+∞ otherwise

and H∗(x , v) = supp∈Rd p.v − H(x ,p).
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THE OPTIMAL CONTROL OF HJ EQUATION

inf
α

{∫ T

0

∫
Q

F ∗(x , α(t , x)) dxdt −
∫

Q
u(0, x)m0(x)dx

}
where u is the solution to the HJ equation{

−∂tu + H(x ,Du) = α in (0,T )× Td

u(T , ·) = uT in Td

We have set F ∗(x ,a) = sup
m∈R

(am − F (x ,m)).
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Heuristic argument for the link with (MFG)
Assume (u, α) is optimal in the problem

inf

{∫ T

0

∫
Q

F ∗(x , α(t , x)) dxdt −
∫

Q
u(0, x)m0(x)dx

}
where u is the solution to the HJ equation{

−∂tu + H(x ,Du) = α in (0,T )× Td

u(T , ·) = uT in Td

Necessary condition : take the derivative in the direction β,∫ T

0

∫
Q

DαF ∗(x , α)β dxdt −
∫

Q
w(0, x)m0(x)dx = 0

where w is the solution to the linearized HJ equation{
−∂tw + DpH(x ,Du).Dw = β in (0,T )× Td

w(T , ·) = 0 in Td
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Set m(t , x) = DαF ∗(x , α(t , x)), i.e., α(t , x) = f (x ,m(t , x)). Then∫ T

0

∫
Q

m (−∂tw + DpH(x ,Du).Dw) dxdt −
∫

Q
w(0, x)m0(x)dx = 0.

Integrate by parts :∫ T

0

∫
Q

(∂tm − div (mDpH(x ,Du))) w dxdt+
∫

Q
w(0, x)(m(0, x)−m0(x))dx = 0.

This holds for any w with w(T , x) = 0 : hence m solves{
∂tm − div (mDpH(x ,Du)) = 0
m(0, x) = m0(x)

By definition, u is the solution to the HJ equation{
−∂tu + H(x ,Du) = α = f (x ,m)
u(T , ·) = uT in Td

So (u,m) solves (MFG).
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Aim :

Provide a framework in which both problems are well-posed and in
duality,

derive from these problems the existence of a weak solution for the MFG
system, as optimality conditions,

discuss properties of the weak solution.
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Outline

1 The weak solution

2 Some properties of the weak solution

3 Long time behavior
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The weak solution

Assumptions

f : Td × [0,+∞)→ R is smooth and increasing w.r. to m with f (x ,0) = 0,
and

−C̄ +
1
C̄
|m|q−1 ≤ f (x ,m) ≤ C̄(1 + |m|q−1) (where q > 1) .

There is r > d(q − 1) ∨ 1 such that

1
C̄
|ξ|r − C̄ ≤ H(x , ξ) ≤ C̄(|ξ|r + 1) ∀(x , ξ) ∈ Td × Rd .

+ technical conditions of DxH...
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The weak solution

Analysis of the optimal control of HJB
We study the optimal control of the HJ equation :

(HJ− Pb) inf
α

{∫ T

0

∫
Q

F ∗(x , α(t , x)) dxdt −
∫

Q
u(0, x)dm0(x)

}

where u is the solution to the HJ equation{
−∂tu + H(x ,Du) = α in (0,T )× Td

u(T , ·) = uT in Td

Recall the notation : F ∗(x ,a) = sup
m∈R

(am − F (x ,m)) where

F (x ,m) =


∫ m

0
f (x ,m′)dm′ if m ≥ 0

+∞ otherwise

Note that F ∗(x ,a) = 0 for a ≤ 0.
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The weak solution

Let (un, αn) be a minimizing sequence for

(HJ− Pb) inf

{∫ T

0

∫
Q

F ∗(x , α(t , x)) dxdt −
∫

Q
u(0, x)dm0(x)

}

where u is the solution to the HJ equation{
−∂tu + H(x ,Du) = α in (0,T )× Td

u(T , ·) = uT in Td

Proposition

the (αn) are bounded in Lp (with p = q′), with αn ≥ 0.

the (un) are uniformly continuous in [0,T ]× Td .

the Dun are bounded in Lr and the (∂tun) are bounded in L1.
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The weak solution

Consequence : There exists a minimizer (u, α) of the optimal control of HJB
such that :

α ∈ Lp,

u is continuous in [0,T ]× Td ,

u ∈ BV ((0,T )× Td ) and Du ∈ Lr ((0,T )× Td ),

u solves in the sense of distribution{
−∂tu + H(x ,Du) ≤ α in (0,T )× Td

u(T , ·) = uT in Td
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The weak solution

One key ingredient of proof of the proposition :

Theorem (Hölder estimates, C.-Silvestre, 2012)
Let u be a bounded viscosity solution of{

−∂tu + H(x ,Du) = α in (0,T )× Td

u(T , x) = uT (x) in Td

where α ≥ 0, α ∈ Lp with p > 1 + d/r , r > 1.
Then, for any δ > 0, u is Hölder continuous in [0,T − δ]× Td :

|u(t , x)− u(s, y)| ≤ C|(t , x)− (s, y)|γ

where γ = γ(‖u‖∞, ‖α‖p,d , r), C = C(‖u‖∞, ‖α‖p,d , r , δ).

Related results (2nd order results)

Capuzzo Dolcetta-Leoni-Porretta (2010), Barles (2010) : stationary equations, bounded
RHS,

C. (2009), Cannarsa-C. (2010), C., Rainer (2011) : evolution equations, bounded RHS,

Dall’Aglio-Porretta (preprint) : stationary setting, unbounded RHS.
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The weak solution

The dual of the optimal control of HJ eqs

Proposition
The dual of the optimal control of HJ (HJ-Pb) equation is given by optimal
control problem for the continuity equation :

(K− Pb) inf

{∫ T

0

∫
Q

mH∗(x ,−w
m

) + F (x ,m) dxdt +

∫
Q

uT (x)m(T , x)dx

}

where the infimum is taken over the pairs
(m,w) ∈ L1((0,T )× Td )× L1((0,T )× Td ,Td ) such that

∂tm + div(w) = 0, m(0) = m0

in the sense of distributions.

Moreover the dual problem has a unique minimum (m,w) and m ∈ Lq .
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The weak solution

Definition of weak solution

We say that a pair (m,u) ∈ Lq((0,T )× Td )× BV ((0,T )× Td ) is a weak
solution of (MFG) if

(i) u is continuous in [0,T ]× Td , Du ∈ Lr ((0,T )× Td ), mDpH(x ,Du) ∈ L1,

(ii) Equality −∂tuac(t , x) + H(x ,Du(t , x)) = f (x ,m(t , x)) holds a.e. in
{m > 0} and inequality −∂tu + H(x ,Du) ≤ f (x ,m) holds in the sense
of distribution, with u(T , x) = uT (x) in the sense of trace,

(iii) ∂tm − div(mDpH(x ,Du)) = 0 holds in the sense of distribution in
(0,T )× Td and m(0) = m0,

(iv) Equality
∫ T

0

∫
Q

m (∂tuac − 〈Du,DpH(x ,Du)〉) =

∫
Q

m(T )uT −m0u(0)

holds.

(where ∂tuac is the a.c. part of the measure ∂tu).
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The weak solution

Existence/uniqueness of weak solutions

Theorem
There exists a weak solution (m,u) of (MFG) such that u is locally Hölder
continuous in [0,T )× Td and which satisfies in the viscosity sense

−∂tu + H(x ,Du) ≥ 0 in (0,T )× Td .

Idea of proof :

Let (m,w) is a minimizer of (K-Pb) and (u, α) is a minimizer of (HJ-pb)
such that u is continuous. Then one can show that (m,u) is a solution of
mean field game system (MFG) and w = −mDpH(·,Du) while
α = f (·,m) a.e..

Conversely, if (u,m) is a solution of (MFG), then the pair
(m,−mDpH(·,Du)) is the minimizer of (K-Pb) while (u, f (·,m)) is a
minimizer of (HJ-pb).
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The weak solution

Uniqueness for the MFG system

Theorem
Let (m,u) and (m′,u′) be two weak solutions of (MFG). Then m = m′ and
u = u′ in {m > 0}.

Moreover, if u satisfies the additional condition

(∗) − ∂tu + H(x ,Du) ≥ 0 in (0,T )× Td ,

in the viscosity sense, then u ≥ u′.

Remark : In particular, if we add condition (*) to the definition of weak
solution of (MFG), then the weak solution exists and is unique.
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Some properties of the weak solution

Hamiltonian structure

Formally the (MFG) system can be rewritten as the Hamiltonian
system 

∂tu =
∂E
∂m

(u(t , ·),m(t , ·))

∂tm = −∂E
∂u

(u(t , ·),m(t , ·))

m(0, x) = m0(x), u(0, x) = uT (x)

where
E(u,m) =

∫
Td

m(x)H(x ,Du(x))− F (x ,m(x)) dx

Proposition
Let (u,m) be a weak solution of the (MFG) system. Then there exists
C ∈ R with

E(u(t , ·),m(t , ·)) = C for a.e. t ∈ (0,T ).
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Some properties of the weak solution

Link with the quasilinear elliptic equation

Proposition
If (u,m) is a weak solution of the MFG system, then u is a viscosity solution of

G
(
x , ∂tu,Du, ∂ttu,D∂tu,D2u

)
= 0 in (0,T )× Td

u(T , ·) = uT in Td

−∂tu + H(x ,Du) = f (m0) in Td

where

G(x ,pt ,px ,a,b,C)

= −Tr
(
A(x ,pt ,px )

(
a bT

b C

))
− F ∗α,α〈Hp,Hx〉 − 〈F ∗x,α,Hp〉 − F ∗αTr(Hx,p)

with

A(x ,pt ,px ) = F ∗α,α

(
1 −HT

p
−Hp Hp ⊗ Hp

)
+ F ∗α

(
0 0
0 Hpp

)
≥ 0

P. Cardaliaguet (Paris-Dauphine) MFG 26 / 36



Some properties of the weak solution

Other properties of the solutions

Stability of the solution with respect to the data.

Application to differential games with finitely many players.

−→Well-known for 2nd order MFG system with nonlocal coupling :
Huang, Caines, Malhamé (2006), Kolokoltsov, Li, Yang (2011),
Carmona, Delarue (2012).

−→ Specific difficulties : only weak solutions to the MFG system, local
coupling.
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Long time behavior
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Long time behavior

We study the link between the solution (uT ,mT ) of the finite horizon problem

(MFGT )


(i) −∂tuT + H(x ,DuT ) = f (x ,mT (x , t))
(ii) ∂tmT − div(mT DpH(x ,DuT )) = 0
(iii) mT (0) = m0, uT (x ,T ) = uf (x)

and the solution (λ,u,m) of the ergodic problem

(MFG − ergo)

 (i) λ+ H(x ,Du) = f (x ,m(x))
(ii) −div(mDpH(x ,Du)) = 0
(iii) m ≥ 0,

∫
Td m = 1

References :
Gomes, Mohr, Souza (2010) : discrete setting,

C., Lasry, Lions, Porretta (2010, 2013) : 2nd order MFG systems,

C. (2013) : 1rst order MFG system with nonlocal coupling.
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Long time behavior

The ergodic problem

A triple (λ,m,u) ∈ R× Lq(Td )×W 1,pr (Td ) is a solution of (MFG-ergo) if

(i) m ≥ 0,
∫
Td

m = 1 and mDpH(x ,Du) ∈ L1(Td ),

(ii) Equation (MFG-ergo)-(i) holds in the following sense :
λ+ H(x ,Du(x)) = f (x ,m(x)) a.e. in {m > 0}

and λ+ H(x ,Du) ≤ f (x ,m) a.e. in Td ,

(iii) Equation (MFG-ergo)-(ii) holds :
−div(mDpH(x ,Du(x))) = 0 in Td ,

in the sense of distribution.

Theorem
There exists at least one solution (λ,m,u) to the ergodic MFG system
(MFG-ergo). Moreover, the pair (λ,m) is unique.
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Long time behavior

Idea of proof.

As for the time-dependent problem, the existence relies on two optimization
problems :
- Optimization of an ergodic cost

inf
(λ,u)

∫
Td

F ∗ (x , λ+ H(x ,Du(x))) dx − λ.

- Optimization of a cost on invariant measures.

inf
(m,w)

∫
Td

m(x)H∗
(

x ,−w(x)

m(x)

)
+ F (x ,m(x)) dx ,

where m ∈ L1 is a measure and div(w) = 0 in Td .

−→ Claim : the two problems are in duality and have optimal solutions (λ,u)

and (m,w). Moreover (λ,u,m) is a solution to (MFG − ergo).
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Long time behavior

The convergence result

Let (uT ,mT ) and (λ,u,m) be the solution to (MFGT ) and (MFG − ergo)
respectively.

Set
vT (s, x) = uT (Ts, x) and µT (s, x) = mT (Ts, x)

for (s, x) ∈ (0,1)× Td .

Theorem
As T → +∞,

(vT/T ) converges to −λ in Lθ for any θ > 0,

(µT ) converges to m in Lθ for θ ∈ [1,p).
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Long time behavior

Ingredients of proof

1) Lasry-Lions usual estimate is still valid :

Proposition (Lasry-Lions key estimate)

∫ T

0

∫
Td

mT (H(x ,Du)− H(x ,DuT )− 〈DpH(x ,DuT ),D(u − uT )〉
)

dxdt

+

∫ T

0

∫
Td

m
(
H(x ,DuT )− H(x ,Du)− 〈DpH(x ,Du),D(uT − u)〉

)
dxdt

+

∫ T

0

∫
Td

(f (x ,mT )− f (x ,m))(mT −m) dxdt

≤ −
[∫

Td
(mT (t)−m)(uT (t)− u) dx

]T

0

Problem : show that the RHS is a o(T ).
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Long time behavior

2) The optimal control of HJB equations has a limit :

Lemma

lim
T→+∞

inf
u

1
T

∫ T

0

∫
Td

F ∗(x ,−∂tu + H(x ,Du)) dxdt − 1
T

∫
Td

u(x ,0)m0(x) dx

= inf
(λ,u)

∫
Td

F ∗ (x , λ+ H(x ,Du(x))) dx − λ.

Moreover
lim

T→+∞

1
T

uT (0, ·) = −λ in Lθ(Td )

for any θ ≥ 1 (where λ is the ergodic constant).

P. Cardaliaguet (Paris-Dauphine) MFG 34 / 36



Long time behavior

By the Lasry-Lions key estimate,∫ 1

0

∫
Td

(f (x , µT )− f (x ,m))(µT −m) dxdt

≤ − 1
T

[∫
Td

(µT (t)−m)(vT (t)− u) dx
]1

0

where, at t = 1,

lim
T→+∞

∫
Td

(µT (1)−m)
(uf − u)

T
dx = 0

while, at t = 0,

lim
T→+∞

∫
Td

(µ0 −m)(
vT (0)− u

T
) dx =

∫
Td

(µ0 −m)(−λ) dx = 0

So

lim
T→+∞

∫ 1

0

∫
Td

(f (x , µT )− f (x ,m))(µT −m) dxdt = 0,

which proves the convergence of µT to m.
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Long time behavior

Conclusion
Summary

Existence/uniqueness of weak solutions in to 1rst order MFG system
with local coupling,

Link with optimal control problems and with a quasilinear elliptic system,

Application to games with finitely many players.

Long time-average.

Open problems

Regularity of solutions for 1rst order, local MFG systems in full generality,

Vanishing viscosity limit,

Existence/uniqueness for the MFG system of congestion type
(α ∈ (0,2)) 

(i) −∂tu +
|Du|2

2mα
= 0

(ii) ∂tm − div(m1−αDu)) = 0
(iii) m(0) = m0, u(T , x) = uT (x)
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