
Multi-population Ergodic Mean-Field
Games with Neumann boundary

conditions and a model of segregation

Mean Field Games and Related Topics - 2
Padova, September 4 - 6, 2013

Marco Cirant,
joint work with Martino Bardi

Department of Mathematics.
Doctoral School in Mathematical Sciences.



Outline

1 A Multi-population Ergodic MFG system with Neumann B.C.

2 Some existence results.

3 An Ergodic MFG from a Segregation model by T. C. Schelling.

4 Numerical Experiments.

MFG & Rel. Topics - 2 of 21



Multipop. ergodic MFG system

We study the behavior of an “average” player, belonging to the i-th
population (i = 1, . . . ,M), which chooses αi

t to drive the state variable X i
t :

dX i
t = αi

tdt +
√

2νdB i
t + L i

t ← reflection at ∂Ω

aiming at minimizing a long-time average cost

J i(X i
0, α

i
t ,m1, . . . ,mM) = lim inf

T→+∞

1
T
E

[∫ T

0
L(X i

t , α
i
t ) + V i[m1, . . . ,mM](Xk

t )dt
]

where mi ∈ P is the invariant measure of the optimal process X̄ i
t (optimal

distribution of i-th population).
This leads to the system of 2M equations , i = 1, . . . ,M

−νi∆ui + Hi(x,Dui) + λi = V i[m], Ω
−νi∆mi − div(DpHi(x,Dui)mi) = 0,
∂nui = 0, ∂nmi + miDpHi(x,Dui) · n = 0 ∂Ω

(MFG)
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Existence - Non-local case.

Theorem

Let Ω be a bounded C2 domain of Rd . If Hi are admissible* and V i

are regularizing:

1 ‖V i[m]‖W1,∞(Ω) ≤ C for all m ∈ [W1,q(Ω)]M ∩ PM , q > d,

2 m(n) → m in C(Ω)⇒ V i[m(n)]→ V i[m] in C(Ω).

Then, there exists a solution

(u, λ,m) ∈ [C2(Ω)]M × RM × [W1,q(Ω)]M

of (??).
* Have in mind: H(x, p) = R(x)|p|γ − H0(x), R(x) ≥ r > 0, γ > 1.
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Idea of the proof.

Exploit the fixed point structure of (??). Given m solve{
−νi∆ui + Hi(x,Dui) + λi = V i[m], ∂nui = 0
−νi∆µi − div(DpHi(x,Dui)µi) = 0, ∂nµi + µiDpHi(x,Dui) · n = 0.

Prove that
m 7→ µ

is continuous from [C(Ω)]M to [C(Ω)]M and maps a ball of [W1,q]M

into itself (standard elliptic estimates)⇒
By Schauder there exists a fixed point.
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Existence - Local (bounded) case.

Theorem

Let Ω be a bounded C2 convex domain. If

Hi(x, p) = R i |p|γ
i
− Hi

0(x),

γi > 1 and V i[m](x) = V i(m(x)), V i ∈ C(RM) are bounded:

|V i(y)| ≤ L ∀y ∈ RM , i = 1, . . . ,M

Then, there exists a solution

(u, λ,m) ∈ [C1,δ(Ω)]M × RM × [W1,q(Ω)]M

of (??).
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Idea of the proof.

Solve with the non-local existence theorem the approximating
problems (as suggested by Lasry and Lions){

−νi∆uεi + Hi(x,Duεi ) + λεi = V i(mε) ? ϕε ,
−νi∆mε i − div(DpHi(x,Duεi )mε

i ) = 0.
(MFGε)

and pass to the limit as ε → 0 to obtain a solution (u, λ,m) for the
original problem. Uniform estimates on solutions of (??) needed:

→ again classic (see Liebermann, Ladyzhenskaya...).
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A-Priori Estimates for the local
Unbounded case. (M = 2)

Let V i(m1,m2) = Wi1(m1) + Wi2(m2), with entries Wij ∈ C1((0,+∞)).

Theorem
Let Ω be convex. Suppose that (u, λ,m) is a (regular) solution of (??), Hi are nice
and ∀m1,m2 > 0, v ,w ∈ Rd

A) Wi1(m1) + Wi2(m2) ≤ C(1 + mη
1 + mη

2), i = 1, 2

B) ε(mγ
1 |v |

2 +mγ
2 |w |

2) ≤ W ′
11(m1)|v |2 +(W ′

12(m2)+W ′
21(m1))v ·w+W ′

22(m2)|w |2,

for some γ > −2 and ε, η,W > 0 such that

η <

{
(γ + 2)/(d − 2) if d ≥ 3
+∞ else

Then,
‖Du‖Lq(Ω) ≤ C , ‖m‖L∞(Ω) ≤ C , |λ| ≤ C
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Some examples.

Example 1 - Two populations (competition)

V1(m) = W11(m1) + W12(m2) = Am1 + Bm2

V2(m) = W21(m1) + W22(m2) = Cm1 + Am2,

Estimates for d ≤ 3

A > 0, B ,C ≥ 0, B + C < 2A .

Example 2 - One population

V(m) = Amβ,

Estimates for A > 0 and

0 < β <
{

1/(d − 3) if d ≥ 4
+∞ else
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Idea of the proof.

1.
∫

Ω
mγ|Dm|2 ≤ C

using the adjoint structure of (??).
(see Gomes, Pires, Sanchez-Morgado)
multi-pop. setting→ condition B)

2.
∫

Ω
Vq(m) ≤ C ⇐

∫
Ω

mγ′ ≤ C, q > d by Sobolev imbeddings.

3. ‖Du‖L r (Ω) ≤ C
integral Bernstein method.
(see Lions)

4. 2. + 3. ⇒ ‖m‖L∞(Ω) ≤ C estimates for Kolmogorov eq.

5. |λ| ≤ C using the maximum principle.

Existence: through continuity method (work in progress).
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The model of Schelling

In the late ’60 Schelling grew interested in segregated neighborhoods:
“It was easy in America to find neighborhoods that were mostly or entirely
black or white, and correspondingly difficult to find neighborhoods where
neither race made up more than, say, three fourths of the total.”

BUT: Was that a result of widespread racism?

He had an intuition, and created the following model.
Suppose that blue people and red people live in a chessboard
(the neighborhood).
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They start interacting. How?

Each individual wants to make sure that he lives near some of its
own. He’s happy if the percentage of same-color individuals among
his neighbors is above some threshold a. If he’s not happy he
moves to another free house.

Example: a = 30%

% of reds = 50% > a % of reds = 25% < a
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They start interacting. How?

Each individual wants to make sure that he lives near some of its
own. He’s happy if the percentage of same-color individuals among
his neighbors is above some threshold a. If he’s not happy he
moves to another free house.

Example: a = 30%

% of reds = 50% > a % of reds = 100% > a
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If we run a simulation starting from a random initial distribution of
individuals (so, some of them are unhappy), after some time we
always notice that ethnic clusters form.

MFG & Rel. Topics - 13 of 21



In our test, the “happiness” threshold is a = 30%, so the individual
preference is “not to stay alone”.

Everyone is initially surrounded by an average 50% of same-color
neighbors, BUT, that average stabilizes at ∼ 75%.

So, segregation may come out from a mild ethnocentric attitude.

Some references:

T. Schelling, “Dynamic model of segregation”, 1971

T. Schelling, “Micromotives and Macrobehavior, 1978
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An N + N players game.

We try to design a simple game that fits the model of Schelling.
Suppose that

(x1, . . . , xN) ∈ (Ω)N are the players of the first population.

(y1, . . . , yN) ∈ (Ω)N are the players of the second population,

Ω a bounded domain of Rd . The cost paid by every player xk is

F1,N
k (x1, . . . , xN , y1, . . . , yN) =(

]{xj ∈ U(xk ) : j , k }
]{xj ∈ U(xk ) : j , i}+ ]{yj ∈ U(xk )}

− a1

)−
,

with a1 ∈ [0, 1] andU(x) a neighborhood of x.
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Cost paid by xk :

It is zero if the number of same-color neighbors is sufficiently high,
with respect to the individuals of the other population.

The players yk pay costs of similar form but possibly with different
thresholds a2.
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We notice that every player xi and yi behaves with the same
criterion, i.e.

F1,N
k (x1, . . . , xN , y1, . . . , yN) = V1,N

 1
N − 1

∑
k,j

δxj ,
1
N

∑
δyj

 (xk ),

F2,N
k (x1, . . . , xN , y1, . . . , yN) = V2,N

 1
N

∑
δxj ,

1
N − 1

∑
k,j

δyj

 (yk ),

the functionals V1,N, V2,N do not depend on k = 1, . . . ,N:

V1,N[m1,m2](x) =


∫
U(x)

m1∫
U(x)

m1 + N
N−1

∫
U(x)

m2
− a1


−
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Ergodic Schelling MFG

Going back to our ergodic MFG setting with reflection, we consider
the system, i = 1, 2,

−νi∆ui + |Dui |
2 + λi =

(
mi

m1+m2+ηi
− ai

)−
, Ω

−νi∆mi − 2div(Duimi) = 0,
∂nui = 0, ∂nmi = 0

∫
mi = 1 ∂Ω

Continuous model, takes into account the effort of moving and
randomness.

Solutions exist but are not unique.

Does segregation show up?
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Numerical experiments in collaboration w Y. Achdou.
Long time approx., we fix initial (mi)0 at T = 0 and let T → ∞ in
the respective Forward-Forward non-stationary MFG system.
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ν = 0.03, T = 5, α1,2 = 0.4
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Thanks for your attention !
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