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Introduction

Large particle systems arise in many modern applications:

Image halftoning via variational

dithering.

Dynamical data analysis: R. palustris

protein-protein interaction network.

Large Facebook “friendship” network

Computational chemistry: molecule

simulation.



Social dynamics
We consider large particle systems of
form:

ẋi = vi ,
v̇i = (H ? µN)(xi , vi ), i = 1, . . .N, t ∈ [0,T ],

where , µN = 1
N

∑N
j=1 δ(xi ,vi ),

Several“social forces” encoded in the
interaction kernel H:

I Repulsion-attraction

I Alignment

I ...

Possible noise/uncertainty by adding
stochastic terms.

Patterns related to different balance of

social forces.

Understanding how superposition of re-iterated binary “social
forces” yields global self-organization.
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An example inspired by nature

Mills in nature and in our simulations.

J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil, Particle, kinetic,

hydrodynamic models of swarming, within the book “Mathematical modeling

of collective behavior in socio-economic and life-sciences”, Birkhäuser (Eds.

Lorenzo Pareschi, Giovanni Naldi, and Giuseppe Toscani), 2010.



Split coherence in homophilious societies: government?

I Self-organization in free social interactions, due to either
game rules or embedded decentralized feedback control rules,
is a fascinating mechanism;

I There are many mechanisms of promotion of coherence
(patterns) in a society, for instance the heterophilia (Motsch
and Tadmor 2013 – consensus emergence);

I Also in homophilious societies, global self-organization can be
expected as soon as enough initial coherence is reached
(Cucker and Smale 2007 – consensus emergence);

I However, it is common experience that coherence in a
homophilious society can be lost, leading sometimes to
dramatic consequences, questioning strongly the role and the
effectiveness of governments.

Question: can a government endowed with limited resources
rescue/stabilize a society by minimal interventions? Which ones?
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Consensus/flocking emergence
The Cucker-Smale model:

ẋi = vi ∈ Rd

v̇i =
1

N

N∑
j=1

a(‖xj − xi‖)(vj − vi ) ∈ Rd
,

where a(t) := aβ(t) = 1
(1+t2)β

, β > 0 governs the rate of

communication.

In matrix notation:{
ẋ = v

v̇ = −Lxv

where Lx is the Laplacian of the matrix1 (a(‖xj − xi‖)/N)N
i ,j=1

and depends on x .

I Mean-velocity conservation:
d
dt v̄(t) = 1

N

∑N
i=1 v̇i (t) = 1

N2

∑N
i=1

∑N
j=1

vj−vi

(1+‖xj−xi‖2)β
≡ 0.

1The Laplacian L of A is given by L = D − A, with D = diag(d1, . . . , dN)
and dk =

PN
j=1 akj



Consensus/flocking emergence
The Cucker-Smale model:
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ẋi = vi ∈ Rd

v̇i =
1

N

N∑
j=1

a(‖xj − xi‖)(vj − vi ) ∈ Rd
,

where a(t) := aβ(t) = 1
(1+t2)β

, β > 0 governs the rate of

communication. In matrix notation:{
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Unconditional consensus emergence

Without loss of generality v̄ = 0 and x̄(t) = x̄(0) = 1
N

∑N
i=1 xi (0).

Theorem (Cucker-Smale, Ha-Tadmor,
Carrillo-F.-Rosado-Toscani)

Let (x(t), v(t)) ∈ C 1([0,+∞),R2d×N) be the solution of the
Cucker-Smale system. We denote

V(t) = max
i=1,...N

‖vi (t)‖, V0 = V(0),

X (t) = max
i=1,...N

‖xi (t)− xi (0)‖, X0 = X (0).

If 0 < β < 1
2 then

V(t) ≤ V0e−a(2X̄ )t → 0, t →∞, ∃X̄ > 0.

Actually one has V(t)→ 0 also for β = 1/2.
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Conditional consensus emergence for a generic
communication rate a(·)

Consider the symmetric bilinear form

B(u, v) =
1

2N2

∑
i ,j

〈ui − uj , vi − vj〉 =
1

N

N∑
i=1

〈ui , vi 〉 − 〈ū, v̄〉,

and
X (t) = B(x(t), x(t)), V (t) = B(v(t), v(t)).

Theorem (Ha-Ha-Kim)

Let (x0, v0) ∈ (Rd)N × (Rd)N be such that
X0 = B(x0, x0) and V0 = B(v0, v0) satisfy

√
N

∫ ∞
√

NX0

a(
√

2r)dr >
√

V0 .

Then the solution with initial data (x0, v0)
tends to consensus.
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Non-consensus events
If β > 1/2 then for a(·) = aβ(·) the consensus condition is not
satisfied by all (x0, v0) ∈ (Rd)N × (Rd)N .
There are counterexamples to consensus emergence
(Caponigro-F.-Piccoli-Trélat).

Consider β = 1 and x(t) = x1(t)− x2(t), v(t) = v1(t)− v2(t)
relative pos. and vel. of two agents on the line: ẋ = v

v̇ = − v

1 + x2

with initial conditions x(0) = x0 and v(0) = v0 > 0.
By direct integration

v(t) = − arctan x(t) + arctan x0 + v0.

Hence, if arctan x0 + v0 > π/2 + ε we have

v(t) > π/2 + ε− arctan x(t) > ε, ∀t ∈ R+.
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Self-organization Vs organization by intervention
We introduce the notion of organization via intervention.

Admissible controls: measurable functions
u = (u1, . . . , uN) : [0,+∞)→ RN such that

∑N
i=1 ‖ui (t)‖ ≤ M for

every t > 0, for a given constant M:
ẋi = vi

v̇i =
1

N

N∑
j=1

a(‖xj − xi‖)(vj − vi )+ui

for i = 1, . . . ,N, and xi ∈ Rd , vi ∈ Rd .

Our aim is then to find admissible controls
steering the system to the consensus
region.
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Total control

Proposition (Caponigro-F.-Piccoli-Trélat)

For every initial condition (x0, v0) ∈ (Rd)N × (Rd)N and M > 0
there exist T > 0 and u : [0,T ]→ (Rd)N , with

∑N
i=1 ‖ui (t)‖ ≤ M

for every t ∈ [0,T ] such that the associated solution tends to
consensus.

Proof.
Consider a solution of system with initial data (x0, v0) associated
with a feedback control u = −α(v − v̄), with
0 < α ≤ M/(N

√
B(v0, v0)). Then

d

dt
V (t) =

d

dt
B(v(t), v(t))

= −2B(Lxv(t), v(t)) + 2B(u(t), v(t))

≤ 2B(u(t), v(t)) = −2αB(v − v̄ , v − v̄) = −2αV (t).

Therefore V (t) ≤ e−2αtV (0) and V (t) tends to 0 exponentially
fast as t →∞. Moreover

∑N
i=1 ‖ui‖ ≤ M.
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More economical choices?

We wish to make

d

dt
V (t) =

d

dt
B(v(t), v(t))

= −2B(Lxv(t), v(t)) + 2B(u(t), v(t))

the smallest possible and use the minimal amount of intervention:

minimize B(u(t), v(t)) with additional sparsity constraints.
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Greedy sparse control

Theorem (Caponigro-F.-Piccoli-Trélat)

For every initial condition (x0, v0) ∈ (Rd)N × (Rd)N and M > 0
there exist T > 0 and a sparse control u : [0,T ]→ (Rd)N , with∑N

i=1 ‖ui (t)‖ ≤ M for every t ∈ [0,T ] such that the associated AC
solution tends to consensus.

More precisely, we can choose
adaptively the control law explicitly as one of the solutions of the
variational problem

min B(v , u) +
γ(x)

N

N∑
i=1

‖ui‖ subject to
N∑

i=1

‖ui‖ ≤ M ,

where

γ(x) =
√

N

∫ ∞
√

NB(x ,x)
a(
√

2r)dr threshold by Ha-Ha-Kim

The control u(t) is a sparse vector with at most one nonzero
coordinate, i.e., ui (t) 6= 0 for a unique i ∈ {1, . . . ,N} and
uj(t) = 0 for j 6= i for almost every t ∈ [0,T ].
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For every initial condition (x0, v0) ∈ (Rd)N × (Rd)N and M > 0
there exist T > 0 and a sparse control u : [0,T ]→ (Rd)N , with∑N

i=1 ‖ui (t)‖ ≤ M for every t ∈ [0,T ] such that the associated AC
solution tends to consensus. More precisely, we can choose
adaptively the control law explicitly as one of the solutions of the
variational problem

min B(v , u) +
γ(x)

N

N∑
i=1

‖ui‖ subject to
N∑

i=1

‖ui‖ ≤ M ,

where

γ(x) =
√

N

∫ ∞
√

NB(x ,x)
a(
√

2r)dr threshold by Ha-Ha-Kim

The control u(t) is a sparse vector with at most one nonzero
coordinate, i.e., ui (t) 6= 0 for a unique i ∈ {1, . . . ,N} and
uj(t) = 0 for j 6= i for almost every t ∈ [0,T ].



Greedy sparse control

Theorem (Caponigro-F.-Piccoli-Trélat)
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Explicit sparse control
Denote v⊥ = v − v̄ . We construct the control law from the variational
problem.

If ‖v⊥i‖ ≤ γ(x) for every i = 1, . . . ,N, then

u1 = · · · = uN = 0⇒ reached consensus region.

Otherwise there exists a “best index” i ∈ {1, . . . ,N} such that

‖v⊥i‖ > γ(x) and ‖v⊥i‖ ≥ ‖v⊥j‖ for every j = 1, . . . ,N.

Therefore we can choose i ∈ {1, . . . ,N} satisfying it, and a control law

ui = −M
v⊥i

‖v⊥i‖
, and uj = 0, for every j 6= i .

Hence the control acts on the most
“stubborn”. We may call this control the
“shepherd dog strategy”. This choice of the
control makes V (t) = B(v(t), v(t)) vanishing
in finite time, hence there exists T such that
B(v(t), v(t)) ≤ γ(x)2, t ≥ T .
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Hence the control acts on the most
“stubborn”. We may call this control the
“shepherd dog strategy”. This choice of the
control makes V (t) = B(v(t), v(t)) vanishing
in finite time, hence there exists T such that
B(v(t), v(t)) ≤ γ(x)2, t ≥ T .
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Geometrical interpretation in the scalar case

For |v | ≤ γ the minimal solution u ∈ [−M,M] is zero.

For |v | > γ the minimal solution u ∈ [−M,M] is |u| = M.



Instantaneous optimality of the greedy strategy
Consider generic control u (solution of the variation problem) of
components

ui (x , v) =


0 if v⊥i

= 0

− αi
v⊥i

‖v⊥i
‖

if v⊥i
6= 0

where αi ≥ 0 such that
∑N

i=1 αi ≤ M.

Theorem (Caponigro-
F.-Piccoli-Trélat)

The 1-sparse control is
the minimizer of

R(t, u) := R(t) =
d

dt
V (t),

among all the control of
the previous form.

? A policy maker, who is not allowed to have
prediction on future developments, should
always consider more favorable to intervene
with stronger actions on the fewest possible
instantaneous optimal leaders than trying to
control more agents with minor strength.
? Homophilious society can be stabilized by
parsiminious interventions!



Sparse optimal control

The problem is to minimize, for a given γ > 0

J (u) =

∫ T

0

1

N

N∑
i=1

((
vi (t)− 1

N

N∑
j=1

vj(t)
)2

+
γ

N

N∑
i=1

N∑
i=1

‖ui (t)‖
)

dt,

s.t.
∑
‖ui‖ ≤ M

where the state is a trajectory of the control system
ẋi = vi

v̇i =
1

N

N∑
j=1

a(‖xj − xi‖)(vj − vi ) + ui

with initial constraint

(x(0), v(0)) = (x0, v0) ∈ (Rd)N × (Rd)N .



Beyond a greedy approach: sparse optimal control

Theorem (Caponigro-F.-Piccoli-Trélat)

For every (x0, v0) in (Rd)N × (Rd)N , for every M > 0, and for
every γ > 0 the optimal control problem has an optimal solution.
The optimal control u(t) is “usually” instantaneously a vector with
at most one nonzero coordinate.

The PMP ensures the existence of λ ≥ 0 and of a nontrivial
covector (px , pv ) ∈ (Rd)N × (Rd)N satisfying the adjoint
equations, for i = 1, . . . ,N,

ṗxi =
1

N

N∑
j=1

a(‖xj − xi‖)
‖xj − xi‖

〈xj − xi , vj − vi 〉(pvj − pvi )

ṗvi = −pxi −
1

N

∑
j 6=i

a(‖xj − xi‖)(pvj − pvi )− 2λvi +
2λ

N

N∑
j=1

vj .

The application of the PMP leads to minimize

min
N∑

i=1

〈pvi , ui 〉+ λγ
N∑

i=1

‖ui‖, subject to
N∑

i=1

‖ui‖ ≤ M.
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Mean-field (sparse) optimal control?

What if N →∞? How can we define a proper infinite dimensional
sparse optimal control?

We consider a perhaps natural control problem:
ẋi = vi ,
v̇i = (H ? µN)(xi , vi ) + ui , i = 1, . . .N, t ∈ [0,T ],

where , µN = 1
N

∑N
j=1 δ(xi ,vi ),

controlled by the minimizer of the cost functional

J (u) :=

∫ T

0

∫
R2d

(
L(x , v , µN)dµN(t, x , v) +

1

N

N∑
i=1

|ui |

)
dt,

Which topology on µN = 1
N

∑N
j=1 δ(xi ,vi )? Which topology on

νN = 1
N

∑N
j=1 uiδ(xi ,vi )?
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Too weak convergence

The compactness of the problem is way too weak

νN =
1

N

N∑
j=1

uiδ(xi ,vi ) ⇀ ν, µN =
1

N

N∑
j=1

δ(xi ,vi ) ⇀ µ,

as it can happen that ν ⊥ µ.

Natural limit equation

∂µ

∂t
+ v · ∇xµ = ∇v · [(H ? µ)µ+ ν] ,

We cannot steer a river µ by the toothpick ν!! Then use only
νa = f µ and obtain

∂µ

∂t
+ v · ∇xµ = ∇v · [(H ? µ+ f )µ] ,

but f ∈ L1
µ(R2d ,Rd) only and no stable solutions can be expected!
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A natural relaxation: smoother controls

Definition
For a horizon time T > 0, and an exponent 1 ≤ q < +∞ we fix a
control bound function ` ∈ Lq(0,T ). The class of admissible
control functions F`([0,T ]) is so defined: f ∈ F`([0,T ]) if and
only if

(i) f : [0,T ]× Rn → Rd is a Carathéodory function,

(ii) f (t, ·) ∈W 1,∞
loc (Rn,Rd) for almost every t ∈ [0,T ], and

(iii) |f (t, 0)|+ Lip(f (t, ·),Rd) ≤ `(t) for almost every t ∈ [0,T ].



Compactness

Theorem (F. and Solombrino)

Let 1 < p <∞. Assume that (fj)j∈N be a sequence of functions in
F` for a given function ` ∈ Lq(0,T ), 1 ≤ q < +∞. Then there
exist a subsequence (fjk )k∈N and a function f ∈ F`, such that

lim
k→∞

∫ T

0
〈φ(t), fjk (t, ·)− f (t, ·)〉dt = 0, (1)

for all φ ∈ Lq′([0,T ],H−1,p′(Rn,Rd)) such that supp(ψ(t)) b Ω
for all t ∈ [0,T ], where Ω is a relatively compact set in Rn. Here
the symbol 〈·, ·〉 denotes the duality between W 1,p and its dual
H−1,p′ .



Product convergence

Corollary (F. and Solombrino)

For a given ` ∈ L1(0,T ), let (fk)k∈N be a sequence of functions in
F` converging to f in the sense of (1). Let µk : [0,T ]→ P1(Rn)
be a sequence of functions taking values in the probability measures
with finite first moment, and µ : [0,T ]→ P1(Rn) such that

sup
t∈[0,T ]

∫
Rn

|x |dµk(t, x) = M <∞,

and
lim
k
W1(µk(t), µ(t)) = 0, for all t ∈ [0,T ].

Then

lim
k

∫ t̂

0
〈ϕ, fk(t, ·)µk(t)〉dt =

∫ t̂

0
〈ϕ, f (t, ·)µ(t)〉dt,

for all ϕ ∈ C 1
c (Rn,Rd) and for all t̂ ∈ [0,T ].



Lower semi-continuity

Theorem (F. and Solombrino)

Consider a nonnegative convex function ψ : Rd → [0,+∞)
satisfying

Lip(ψ,B(0,R)) ≤ CRq−1.

Fix ` ∈ Lq(0,T ) and a sequence of functions (fk)k∈N in F`
converging to f in the sense of (1). Let µk : [0,T ]→ P1(Rn) be a
sequence such that

supp(µk(t)) b Ω,

for a.e. t ∈ [0,T ] and k ∈ N, where Ω b Rn. Let
µ : [0,T ]→ P1(Rn), and assume that

lim
k
W1(µk(t), µ(t)) = 0, for a.e. t ∈ [0,T ].

Then, we have

lim inf
k→+∞

∫ T

0
〈ψ(fk(t, ·)), µk(t)〉 dt ≥

∫ T

0
〈ψ(f (t, ·)), µ(t)〉 dt.



Assumptions for the optimal control problem
We consider the phase space Rn where n = 2d with state variables
z = (x , v), x , v ∈ Rd . Assumptions:

(H) Let H : R2d → Rd be a locally Lipschitz function such that

|H(z)| ≤ C (1 + |z |), for all z ∈ R2d ;

(L) Let L : R2d × P1(R2d)→ R+ be a continuous function in the
state variables (x , v) and such that if (µj)j∈N ⊂ P1(R2d) is a
sequence converging narrowly to µ in P1(R2d), then
L(x , v , µj)→ L(x , v , µ) uniformly with respect to (x , v) on
compact sets of R2d ;

(Ψ) Let ψ : Rd → [0,+∞) be a nonnegative convex function
satisfying the following assumption: there exist C ≥ 0 and
1 ≤ q < +∞ such that

Lip(ψ,B(0,R)) ≤ CRq−1

for all R > 0.



Finite dimensional optimal control problem

Theorem (F. and Solombrino)

Given N ∈ N and an initial datum
(x1(0), . . . , xN(0), v1(0), . . . , vN(0)) ∈ (Rd)N × (Rd)N , The
following (finite dimensional) optimal control problem:

min
f ∈F`

∫ T

0

∫
R2d

[L(x , v , µN(t, x , v)) + ψ(f (t, x , v)] dµN(t, x , v)dt,

where

µN(t, x , v) =
1

N

N∑
j=1

δ(xi (t),vi (t))(x , v),

constrained by being the solution of the system{
ẋi = vi ,
v̇i = (H ? µN)(xi , vi ) + f (t, xi , vi ), i = 1, . . .N, t ∈ [0,T ],

has solutions.



Mean-field solutions

Definition
Fix a function f ∈ F`. Given H : R2d → Rd satisfying (H), we say that a map
µ : [0,T ]→ P(R2d) continuous with respect to W1 is a weak equi-compactly
supported solution of the equation

∂µ

∂t
+ v · ∇xµ = ∇v · [(H ? µ+ f )µ] ,

if there exists R > 0 such that suppµ(t) ⊂ B(0,R), t ∈ [0,T ], and, defining

wH,µ,f (t, x , v) := (v ,H ? µ(t)(x , v) + f (t, x , v))

one has

d

dt

Z
R2d

ζ(x , v) dµ(t)(x , v) =

Z
R2d

∇ζ(x , v) · wH,µ,f (t, x , v) dµ(t)(x , v)

for every ζ ∈ C∞c (Rd × Rd).

By particle approximations and characteristics method, given a compactly

supported µ0 ∈ P(R2d) and f ∈ F`, there exists always a unique solution of the

equation.
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Mean-field optimal control

Theorem (F. and Solombrino)
Assume that we are given maps H, L, and ψ as in assumptions (H), (L), and
(Ψ). For N ∈ N and an initial datum
((x0

N)1, . . . , (x0
N)N , (v 0

N)1, . . . , (v 0
N)N) ∈ B(0,R0) ⊂ (Rd)N × (Rd)N , for R0 > 0

independent of N, we consider

min
f∈F`

Z T

0

Z
R2d

[L(x , v , µN(t, x , v)) + ψ(f (t, x , v))] dµN(t, x , v)dt,

where µN(t, x , v) = 1
N

PN
j=1 δ(xi (t),vi (t))(x , v), constrained by being the solution

of 
ẋi = vi ,
v̇i = (H ? µN)(xi , vi ) + f (t, xi , vi ), i = 1, . . .N, t ∈ [0,T ],

with initial datum (x(0), v(0)) = (x0
N , v

0
N) and, for consistency, we set

µ0
N =

1

N

MX
i=1

δ((x0
N

)i ,(v
0
N

)i )
(x , v).

For all N ∈ N let us denote the function fN ∈ F` as a solution of the finite
dimensional optimal control problem.



Mean-field optimal control

If there exists a compactly supported µ0 ∈ P1(R2d) such that
limN→∞W1(µ0

N , µ
0) = 0, then there exists a subsequence (fNk )k∈N and a

function f∞ ∈ F` such that fNk converges to f∞ in the sense of (1) and f∞ is a
solution of the infinite dimensional optimal control problem

min
f∈F`

Z T

0

Z
R2d

[L(x , v , µ(t, x , v)) + ψ(f (t, x , v))] dµ(t, x , v)dt,

where µ : [0,T ]→ P1(R2d) is the unique weak solution of

∂µ

∂t
+ v · ∇xµ = ∇v · [(H ? µ+ f )µ] ,

with initial datum µ(0) := µ0 and forcing term f .

The proof is based on the simultaneous development of the mean-field limit for

the equation and the Γ-limit for the optimization of the control.
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Open problems and work in progress

I The reported results is essentially an existence result;

I We need now a (first-order optimality) characterization of the
mean-field optimal control f∞: which equations should
appear?

I In which sense is f∞ sparse if ψ(·) = | · |?
I Does the control f∞ lead to pattern formation for the time T

large enough?

I Numerical methods to compute efficiently f∞.
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Conclusion

I We presented dynamical systems with
self-organization features.

I In case pattern formation cannot be
ensured, we introduced the concept of
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I We proved that the most effective
greedy strategy is by instantaneous
1-sparse controls.

I We showed that maximally sparse
optimal control are also expected
when considering `1-norm constraints.
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(sparse) finite dimensional optimal
control problems and a general
technique to derive their mean-field
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