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Highlights
A steady increase in complexity of technological development
=⇒ appropriate (or better optimal) management of complex
stochastic systems consisting of large number of interacting
components (agents, mechanisms, vehicles, subsidiaries,
species, police units, etc), which may have competitive or
common interests.
Traditional Markov decision analysis is often unfeasible.
Sometimes: the limiting problem (LLN limit): better
manageable deterministic evolution: measure-valued (a
nonlinear Markov process).
Controlled version: nonlinear Markov control process or a
nonlinear Markov game.
In case of finite initial state space, space of measures is
= Rd

+), so the limiting is a differential game in Rd .
Aim: identification of deterministic limit and proof of
convergence with explicit rates.



Plan

Part 1: Finite state space:
1) Dynamic law of large numbers for interacting Markov
chains, 2) Control without competition, 3) Two player
zero-sum games with mean -field interaction,
Part II: Infinite state space.
Part III: Applications to mean-field games.



Mean-field interacting particles, I
Part I
State space {1, ..., d} (types of a particle, say, opinions,
fitness, etc), {Q(t, x)} = {(Qij)(t, x)} a family of Q-matrices
or Kolmogorov matrices, piecewise continuous in t ≥ 0 and
Lipshitz in x from

Σd = {x = (x1, ..., xd) ∈ Rd
+ :

d∑
j=1

xj = 1}.

For any x , the family {Q(., x)} specifies a Markov chain:

(Q(t, x)f )n =
∑
m ̸=n

Qnm(t, x)(fm − fn).

Transition matrices P(s, t, x) = (Pij(s, t, x))
d
i ,j=1 satisfy the

Kolmogorov equations

d

dt
Pij(s, t, x) =

d∑
l=1

Qlj(t, x)Pil(s, t, x), s ≤ t.



Mean-field interacting particles, II

State space S for many particles: sequences N = (n1, ..., nd),
|N | = n1 + ...+ nd . For i ̸= j denote by N ij the state obtained
from N by removing one particle of type i and adding a
particle of type j , that is ni and nj are changed to ni − 1 and
nj + 1 respectively.
The mean-field interacting particle system: Markov process on
S with generator

Ltf (N) =
d∑

i ,j=1

niQij(t,N/|N |)[f (N ij)− f (N)]. (1)

Probabilistic description and master equation.



Mean-field interacting particles, III

Let h = 1/|N |. Normalized state N/|N | live in
Σh

d = {hN ∈ Σd}:

Lht f (
N

|N |
) =

d∑
i=1

d∑
j=1

ni
|N |

|N |Qij(t,
N

|N |
)[f (

N ij

|N |
)− f (

N

|N |
)], (2)

Lht f (x) =
d∑

i=1

d∑
j=1

xiQij(t, x)
1

h
[f (x−hei+hej)−f (x)], x ∈ hZd

+,

(3)
The transition operators:

Ψh
s,tf (hN) = Es,hN f (hN

t,h), s ≤ t. (4)



LLN, I

Main question: asymptotic behavior as h → 0. Formally:

lim
|N|→∞,N/|N|→x

|N |[f (N ij/|N |)− f (N/|N |)] = ∂f

∂xj
(x)− ∂f

∂xi
(x),

lim
|N|→∞,N/|N|→x

Lht f (N/|N |) = Λtf (x),

=
d∑

i=1

∑
j ̸=i

xiQij(t, x)[
∂f

∂xj
− ∂f

∂xi
](x)

=
d∑

k=1

∑
i ̸=k

[xiQik(t, x)− xkQki(t, x)]
∂f

∂xk
(x).



LLN, II

The limiting operator Λtf is a first-order PDO with
characteristics solving the equation

ẋk =
∑
i ̸=k

[xiQik(t, x)−xkQki(t, x)] =
d∑

i=1

xiQik(t, x), k = 1, ..., d ,

(5)
called the kinetic equations for the process of interaction
described above. They define a deterministic Feller process
with transition operators:

Φs,tf (x) = f (Xs,x(t)), s ≤ t, (6)

where Xs,x(t) is the solution to (5) with the initial condition x
at time s.



LLN, Theorem I

Let Q(t, .) ∈ C 1,α(Σ), α ∈ (0, 1]. If for s > 0 and x ∈ Rd , the
initial data hNs converge to x in Rd , as h → 0, the Markov
chains hN t,h with the initial data hNs converge in distribution
and in probability to the deterministic characteristic Xs,x(t).
Rates:

sup
0≤s≤t≤T

[
Es,hN f (hN

t,h)− f (Xs,x(t))
]

≤ C (T )
(
(t − s)hα∥f ∥C1,α(Σd ) + ∥f ∥C1(Σd )|hN − x |

)
.



LLN, Theorem II

If Qij(t, .) ∈ C 1(Σ), the convergence of Markov chains to the
deterministic characteristics still holds, but weaker rates:

sup
0≤s≤t≤T

sup
N∈Zd

+:|N|=1/h

[
Ψh

s,tf (hN)− Φs,tf (hN)
]

≤ C (T )(t − s)
(
whC(T )(∇f ) + whC(T )(∇Q)∥f ∥C1(Σd )

)
,

where C (T ) depends on the C 1(Σ)-norm of Q.



Mean field Markov control, I

{Q(t, u, x)} = {(Qij)(t, u, x), i , j = 1, · · · d}, x ∈ Σd , t ≥ 0,
u ∈ U .
Main assumption: Q ∈ C 1,α(Σd) as a function of x .
Controlled Markov chain on Σh

d :

Lt,u(t)f

(
N

|N |

)
=

d∑
i ,j

niQij

(
t, u(t),

N

|N |

)[
f (

N ij

|N |
)− f (

N

|N |
)

]
,

(7)
or equivalently

Lht,u(t)f (x) =
d∑

i=1

d∑
j=1

xiQij(t, u(t), x)
1

h
[f (x−hei +hej)− f (x)].

(8)



Mean field Markov control, II

Again for f ∈ C 1(Σd),

lim
h=1/|N|→0,N/|N|→x

Lht,u(t)f (N/|N |) = Λt,u(t)f (x),

where

Λt,u(t)f (x) =
d∑

k=1

∑
i ̸=k

[xiQik(t, u(t), x)−xkQki(t, u(t), x)]
∂f

∂xk
(x),

with the corresponding controlled characteristics governed by
the equations

ẋk =
d∑

i=1

xiQik(t, u(t), x), k = 1, ..., d . (9)



Mean field Markov control, III

We are looking for

V h(t, x) = sup
u(.)∈Cpc [t,T ]

Eu(.)
t,x

[∫ T

t

(J(s, u(s), hN(s))ds + VT (hN(T ))

]
,

where E
u(.)
t,x denotes the expectation with respect to the

Markov chain on Σh
d started at x = hN at time t.

We expect V h(t, x) to be approximated by

V (t, x) = sup
u(.)∈Cpc [t,T ]

[∫ T

t

J(s, u(s), x(s)) ds + VT (x(T ))

]
(10)

for the controlled deterministic dynamics above.



Mean field Markov control, IV

A function γ(t, x) is called an optimal synthesis (adaptive
policy) for Γ(T , h) if

V h(t, x) = Eγ
t,x

[∫ T

t

(J(s, γ(s, hN(s)), hN(s))ds + VT (hN(T ))

]
(11)

for all t ≤ T and x ∈ Σh
d . A function γ(t, x) is called an

ϵ-optimal synthesis (ϵ-adaptive policy), if the r.h.s. of (11)
differs from its l.h.s. by not more than ϵ. Similarly an optimal
synthesis or an adaptive policy are defined for the limiting
deterministic system.



Control LLN: Theorem I

Assume that Q, J depend continuously on t, u and
Q, J ,V ∈ C 1,α(Σd), α ∈ (0, 1], as functions of x , with the
norms bounded uniformly in t, u. Then

sup
0≤t≤T

[V h(t, hN)− V (t, x)] ≤ C (T )((T − t)hα + |hN − x |)

×
(
∥VT∥C1,α(Σd ) + sup

s,u
∥J(t, u, .)∥C1,α(Σd )

)
.

Moreover, if u(t) is an ϵ-optimal control for deterministic
dynamics (9), then u(.) is an (ϵ+C (T )hα)-optimal control for
|N | = 1/h particle system.



Control LLN: Theorem II

Suppose additionally that u belong to a convex subset of a
Euclidean space and that Q(t, u, x) depends Lipschitz
continuously on u. Let ϵ ≥ 0, and let γ(t, x) be a Lipschitz
continuous function of x uniformly in t that represents an
ϵ-optimal synthesis for the limiting deterministic control
problem. Then, for any δ > 0, there exists h0 such that, for
h ≤ h0, γ(t, x) is an (ϵ+ δ)-optimal synthesis for the
approximate optimal problem Γ(T , h) on Σh

d .
Interpretation in terms of viscosity solutions of HJB-Isaacs
equations.



Two players with mean-field interaction, I

{Q(t, u, x) = (Qij)(u, x)} and {P(t, v , x) = (Pij)(v , x)},
i , j = 1, · · · d , x ∈ Σd , u ∈ U , v ∈ V .
Controlled Markov chains:

Lt,u(t),v(t)f (
N

|N |
,
M

|M |
)

=
d∑
i ,j

niQij(t, u(t),
N

|N |
)[f

(
N ij

|N |
,
M

|M |

)
− f

(
N

|N |
,
M

|M |

)
]

+
d∑
i ,j

miPij(t, v(t),
M

|M |
)[f

(
N

|N |
,
M ij

M

)
− f

(
N

|N |
,
M

|M |

)
],

where N = (n1, · · · , nd), M = (m1, · · · ,md).
We shall assume for simplicity that |N | = |M | = 1/h.



Two players with mean-field interaction, II

Lht,u(t),v(t)f (x , y)

=
d∑

i=1

d∑
j=1

xiQij(t, u(t), x)
1

h
[f (x − hei + hej , y)− f (x , y)]

+
d∑

i=1

d∑
j=1

yiPij(t, v(t), y)
1

h
[f (x , y − hei + hej)− f (x , y)].

lim
h→0,N/|N|→x ,M/|M|→y

Lht,u(t),v(t)f (N/|N |,M/|M |) = Λt,u(t),v(t)f (x , y)

=
d∑

k=1

∑
i ̸=k

[xiQik(t, u(t), x)− xkQki(t, u(t), x)]
∂f

∂xk
(x)

+
d∑

k=1

∑
i ̸=k

[yiPik(t, u(t), x)− ykPki(t, v(t), y)]
∂f

∂yk
(y).



Two players with mean-field interaction, III

The corresponding controlled characteristics are governed by
the equations

ẋk =
d∑

i=1

xiQik(t, u(t), x), k = 1, ..., d ,

ẏk =
d∑

i=1

yiPik(t, v(t), y), k = 1, ..., d .



Mean field competitive control

Denote Γ(T , h) stochastic zero-sum game with player I
(controlling Q via u) maximizing∫ T

0

J

(
s, u(s), v(s),

N(s)

|N |
,
M(s)

|M |

)
ds+VT

(
N(T )

|N |
,
M(T )

|M |

)
.

(12)
As previously we want to approximate it by the deterministic
zero-sum differential game Γ(T ) with the payoff of player I
given by∫ T

0

J(s, u(s), v(s), x(s), y(s)) ds + VT (X (T ),Y (T )). (13)



Upper and lower values, I
A progressive strategy of player I is a mapping β from
Cpc([0,T ];V ) to Cpc([0,T ];U):
if v1(s) = v2(s) for s ∈ [0, t], t < T , then
u1 = (β(v1)(s) = (β(v2)(s)) for s ∈ [0, t]. Similarly
progressive strategies are defined for player II . The sets of
progressive strategies for players I and II by Sp([0,T ];U) and
Sp([0,T ];V ).

V+(t, x , y) = sup
β∈Sp([0,T ];U)

inf
v(.)∈Cpc ([0,T ];V )[∫ T

0

J

(
s, (β(v))(s), v(s)

N(s)

|N |
,
M(s)

|M |

)
ds + VT

(
N(T )

|N |
,
M(T )

|M |

)]
,

(14)
V−(t, x , y) = inf

β∈Sp([0,T ];V )
sup

u(.)∈Cpc ([0,T ];U)[∫ T

0

J

(
s, u(s), (β(u))(s),

N(s)

|N |
,
M(s)

|M |

)
ds + VT

(
N(T )

|N |
,
M(T )

|M |

)]
.



Upper and lower values, II

If the so called Isaac’s condition holds, that is, for any V ,

max
u

min
v

[J(t, u, v , x , y) + Λt,u,vV ]

= min
v

max
u

[J(t, u, v , x , y) + Λt,u,vV ] ,

then the upper and lower values coincide:
V+(t, x , y) = V−(t, x , y).
Similarly the upper and the lower values V h

+(t, x , y) and
V h
−(t, x , y) for the stochastic game Γ(T , h) are defined.

HJB-Isaac’s equations.



Mean field competitive control

Theorem Assume that Q,P , J depend continuously on t, u
and Q,P , J ,VT ∈ C 1,α(Σd), α ∈ (0, 1], as functions of x , with
the norms bounded uniformly in t, u, v . Then

sup
0≤t≤T

[V h
±(t, hN)− V±(t, x)] ≤ C (T )((T − t)hα + |hN − x |)

×
(
∥VT∥C1,α(Σd ) + sup

s,u
∥J(t, u, v , .)∥C1,α(Σd )

)
,

with C (T ) depending only on the bounds of the norms of Q in
C 1,α(Σd). Moreover, if β ∈ Sp([0,T ];U) and
v(.) ∈ Cpc([0,T ];V ) are ϵ-optimal for the minimax problem
(14), then this pair is also (ϵ+ C (T )hα)-optimal for the
corresponding stochastic game Γ(T , h).



Two players with binary interaction

Lt,u(t),v(t)f (N ,M)

=
d∑

i ,j ,l ,r=1

nimjQ
lr
ij (t, u(t), v(t),

N

|N |
,
M

|M |
)[f (N il ,M jr )−f (N ,M)].

Assume |M | = |N | and let h = 1/|N | = 1/|M |. To get a
reasonable scaling limit, it is necessary to scale time by factor
h leading to the generators

Lht,u(t),v(t)f (
N

|N |
,
M

|M |
)

= h
d∑

i ,j ,l ,r=1

nimjQ
lr
ij (t, u(t), v(t),

N

|N |
,
M

|M |
)[f (N il ,M jr)−f (N ,M)],



Two players with binary interaction
This generator for x = hN , y = hM and h → 0, tends to

Λt,u(t),v(t)f (x , y)

=
d∑

i ,j ,l ,r=1

xiyjQ
lr
ij (t, u(t), v(t), x , y)

[
∂f

∂xl
+

∂f

∂yr
− ∂f

∂xi
− ∂f

∂yj

]
(x , y).

The limiting kinetic equations:

ẋk =
d∑

i ,j ,r=1

yj
[
xiQ

kr
ij (t, u(t), v(t))− xkQ

ir
kj(t, u(t), v(t))

]
,

ẏk =
d∑

i ,j ,l=1

xi
[
yjQ

lk
ij (t, u(t), v(t))− ykQ

lj
ik(t, u(t), v(t))

]
,

Results are the same.



K players with coupled mean-field interaction

Lt,u(t)f (
N1

|N1|
, · · · , NK

|NK |
)

=
K∑

k=1

d∑
ik ,jk=1

nkikQ
k
ik jk

(
t, uk(t),

N1

|N1|
, · · · , NK

|NK |

)

×

[
f (· · · , Nk−1

|Nk−1|
,
N ik jk

k

|Nk |
,
Nk+1

|Nk+1|
, · · · )− f (

N1

|N1|
, · · · , NK

|NK |
)

]
,

where Nk = (nk1 , · · · , nkd) with elements totting up to |Nk |.



K players with coupled mean-field interaction

The limiting deterministic evolution

d

dt
x jk =

d∑
i=1

xiQij(t, uk(t), x1, · · · , xK ), j = 1, ..., d , k = 1, · · · ,K .

V h
k (t, x1, · · · , xk , u(.))

= Eu(.)
t,x1,··· ,xk

[∫ T

0

Jk

(
s, uk(s),

N1(s)

|N1|
, · · · , NK (s)

|NK |

)
ds

+V k
T

(
N1(T )

|N1|
, · · · , NK (T )

|NK |

)]
with given functions Jk (current payoffs) and V k

T (terminal
payoffs).
Results are the same.



Part II: setting

X is a locally compact separable metric space;
X j = X × · · · × X (j times) X = ∪∞

j=0X
j , Csym(X ) = C (SX ).

Pairing

(f , ρ) =

∫
f (x)ρ(dx)

= f 0ρ0 +
∞∑
n=1

∫
f (x1, ..., xn)ρ(dx1 · · · dxn),

f ∈ Csym(X ), ρ ∈ M(X ).

Inclusion SX to M(X ):

x = (x1, ..., xl) 7→ δx1 + · · ·+ δxl = δx,



Interacting particles: generators I
Interactions preserving the number of particles (mean field and
binary for simplicity):

n∑
i=1

(B1
µ)i f (x1, ..., xn) +

∑
{i ,j}⊂{1,...,n}

(B2
µ)ij f (x1, ..., xn), (15)

where (B1
µ)i and (B2

µ)ij denote the action of the operators B1
µ

and B2
µ on the variables xi and xi , xj respectively. Here B1

µ and
B2
µ are the Lévy-Khintchine type operators in C (x) and

C sym(X 2) respectively depending on a measure µ as on a
parameter, allowing for additional mean field interaction:

B1
µf (x) =

1

2
(Gµ(x)∇,∇)f (x) + (bµ(x),∇f (x))

+

∫
(f (x + y)− f (x)− (∇f (x), y)1B1(y))νµ(x , dy),



Interacting particles: generators II

B2
µf (x , y) =

[
(γµ(x , y)

∂

∂x
,
∂

∂y
)

+
1

2
(Gµ(x , y)

∂

∂x
,
∂

∂x
) +

1

2
(Gµ(y , x)

∂

∂y
,
∂

∂y
)
]
f (x , y)

+

[
(bµ(x , y),

∂

∂x
) + (bµ(y , x),

∂

∂y
)f (x , y)

]
+

∫
X 2

νµ(x , y , dv1dv2)
[
f (x + v1, y + v2)− f (x , y)

−(
∂f

∂x
(x , y), v1)1B1(v1)− (

∂f

∂y
(x , y), v2)1B1(v2)

]
,

where G (x , y) and γ(x , y) are symmetric matrices such that
γ(x , y) = γ(y , x) and the Lévy kernels ν enjoy the relation

νµ(x , y , dv1dv2) = νµ(y , x , dv2dv1).



Interacting particles: scaling
Scaling: B2 → hB2, function f (x) on SX to the functional
F (hδx) on measures:

(Λ1
h+Λ2

h)F (hδx) =
n∑

i=1

(B1
hδx)iF (hδx)+h

∑
{i ,j}⊂{1,...,n}

(B2
hδx)ijF (hδx).

Proposition If F is smooth enough, then

Λ1
hF (Y ) =

∫
X

(
B1
Y

δF

δY (.)

)
(x) + O(h)

Λ2
hF (Y ) =

1

2

∫
X 2

(
B2
Y

(
δF

δY (.)

)⊕
)
(x , y)Y (dx)Y (dy)+O(h),

where Y = hδx, x = (x1, ..., xn), and O(h) has an explicit
representation in terms of δ2F

δY (x)δY (y)
.



Interacting particles: Example: diffusions

A[t, µ]f (z) = (h(t, z , µ),∇f (z)) +
1

2
(G (t, z , µ)∇,∇)f (z),

(16)
and

ÂN
t [γ]f (x) = ÂN

t [γ]f (x1, · · · , xN) :=
N∑
i=1

Ai [t, µ]f (x1, · · · , xN),

(17)
with µ = 1

N

∑N
i=1 δxi . Then

ÂN
t F (µ) =

∫
Rd

[(
A[t, µ]

δF

δµ(.)

)
(x)

+
1

2N

(
G (t, x , µ)

∂

∂x
,
∂

∂y

)
δ2F

δµ(x)δµ(y)

∣∣∣
y=x

]
µ(dx),



Differentiation with variational derivatives

To get above result we use the rule

∂

∂xi
F (δx/N) =

1

N

∂

∂xi

δF (Y )

δY (xi)
, Y = δx/N , x = (x1, ..., xN) ∈ RdN ,

which implies(
G

∂

∂xi
,
∂

∂xi

)
F (δx/N)

=
1

N

(
G

∂

∂xi
,
∂

∂xi

)
δF (Y )

δY (xi)
+

1

N2

(
G

∂

∂y
,
∂

∂z

)
δ2F (Y )

δY (y)δY (z)
|y=z=xi ,

and hence the above formulas.
Main conclusion: we need first and second order derivatives of
the solutions to kinetic equations with respect to initial data
(as in discrete case).



Interacting diffusions: Theorem on LLN
(Under some natural regularity assumptions for coefficients)
suppose the initial conditions

µN
0 =

1

N
(δXN

1,0
+ · · ·+ δXN

N,0
)

converge in D∗ = (C 2
∞(Rd))∗, as N → ∞, to a probability law

µ0 ∈ P(Rd) so that

∥µN
0 − µ0∥D∗ ≤ κ1

N
(18)

with a constant κ1 > 0. Then, for t ∈ [0,T ] with any T > 0,

|[U0,t
N F ](µN

0 )− [Φ0,t(F )](µ0)| ≤
C (T )

N
(t∥F∥C2,2×2

∞ (MΛ(Rd ))+κ1)

(19)
with a constant C (T ) > 0. Extension: Dynamic Law of Large
Numbers with a Tagged Particle.



Interacting particles: fluctuations
Recall

B1
µf (x) =

1

2
(Gµ(x)∇,∇)f (x) + (bµ(x),∇f (x))

+

∫
(f (x + y)− f (x)− (∇f (x), y)1B1(y))νµ(x , dy).

and µt solves the corresponding mean field kinetic equation

d

dt
(g , µt) = (B1

µt
g , µt).

Set
Ωh

t (Y ) = h−1/2(Y − µt).

Generators, weak CLT in various models: Boltzmann,
Smoluchovski, McKean-Vlasov, Landau-Fokker-Planck,
evolutionary games, etc.



Part III: objectives
Recall: for ϵ > 0, a strategy profile Γ in a game of N players
with payoffs Vi(Γ), i = 1, · · · ,N , is an ϵ-equilibrium (or ϵ-Nash
equilibrium) if, for each player i and an eligible strategy ui ,

Vi(Γ) ≥ Vi(Γ−i , ui)− ϵ,

where (Γ−i , ui) denotes the profile obtained from Γ by
substituting the strategy of player i with ui . A profile of
dynamic strategies in a dynamic game on a time interval [0,T ]
is called a perfect ϵ-equilibrium, if it is an ϵ-equilibrium for any
subgame started any time t ∈ [0,T ].
Main consistency equation for MFG:

d

dt
(f , µt) = (A[t, µt , Γ(t, ., {µ≥t})]f , µt). (20)

Basic Banach spaces B = C∞(Rd) and D = C 2
∞(Rd).



Part III: theorem
Suppose {A[t, µ, u] : t ≥ 0, µ ∈ MΛ(Rd), u ∈ U} is a family of
linear operators D → C∞(Rd) of the form:

A[t, µ, u]f (z) = (h(t, z , µ, u),∇f (z))+
1

2
(G (t, z , µ)∇,∇)f (z)

(21)
with smooth enough coefficients, terminal cost V T (x , µ) and
running costs J(t, x , µ, u) are smooth enough and

∥µN
0 − µ0∥D∗ ≤ κ1

N
, ||XN

1,0 − X1,0|| ≤
κ2

N
.

Let {µ.} be a solution to equation (20) with a continuous
strategy profile u = Γ(t, x , {µ.}) which is Lipschitz continuous
in x and defined via corresponding HJB.
Then this strategy profile u = Γ(t, x , {µ.}) is a perfect
ϵ-equilibrium in an N agents game, with

ϵ =
C (T )

N
(||J ||C([0,T ]×U,C2;2,2×2

∞ (Rd×MΛ(Rd ))) + ||V T ||C2
∞(Rd ) + 1).
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