Time to build :

mfg monotone systems approach

 Padoue, mfg2013
from a joint work with
Pierre Noël Giraud et Pierre Louis Lions

Time to build

Old topic in economics :

- « Time to build and aggregate fluctuations », Kyland and Prescott, Econometrica, 1982
- MFG monotone systems provide a new mathematical tool to investigate this topic
- aim : detail this claim through a « toy » model

agenda

Industry of power plants : modelling stylized dynamics :

- a) One type of power plants (didactic case)
- b) Two different types of power plants
- c) Impact of tax and other non market features on methodology : MFG vs BP optimisation
- We focus on the industry of power plants as an example of an industry for which «time to build» is a serious issue
- Of course, this « toy » model is more generic, i-e: this modelling framework can be abblied to manv other industries.

Model with identical power plants

Cliquez pour modifier le style des sous-titres du masque

Stationary equilibrium : value function

- Focus on stationary equilibrium
- Value function $\mathrm{u}(\mathrm{x})=$ discounted pay off per one unit of capacity of production
- x is the production capacity $=$ number of production units
- Agents (owners of production units) are atomized independent competitors with constant discounting rate r .

06/09/13

Flow of entrants : the time tn hıild iccıı

- q^{*} is the flow of entrants = number of new units
- Cost of a new units is exogenous: C(q)
- C is the cost function of the industry which produce new power plants
- Competitive equilibrium of entrants :
- $C^{\prime}\left(q^{*}\right)=u(x)$
- Ex: $C(q)=1 / 2 q 2$ for $q>0$, hence $q^{*}=u(t, x)$ for $u>0$
- Convexity of the cost function C embodies (in this model) the « time to build » issue

Dynamics of the production ranarity

The dynamics of x is

$$
d x=\left(q^{*}-a\right) d t
$$

where $q^{*}=\max (u, 0)$ is the flow of entrants and a is a constant aging rate

Demand and pay off

. The demand is exogenous : $y=D(p)$, where y is the production and p the price
Example :

- $D(p)=1 / p a$
- $D(p)=b-c p \quad$ for $p<b / c$
- Constant cost e per unit of produced energy
- Power plants are identical, demand/offer competitive equilibrium : $x=$ D(p)
- Pay off per one production unit : D-1(x)-e

Recursive (mfg) equation

- We look for a stationary equilibrium:
- $u(x)=(1-r d t-a d t) u(x+d x)+(D-1(x)-e) d t$
- $d x=\left(q^{*}-a\right) d t$, with $q^{*}=\max (u, 0)$

$$
0=-c u+g(u) u x+f(x)
$$

$$
g(u)=\max (u, 0)-a ; \quad f(x)=D-1(x)-e ; \quad c=r+a
$$

- g and -f are increasing functions 06/09/13

HJB and BP

- Define G,F and U has primitives of g, f and u:
(i-e : G'=g, F'=f, Ux=u)
- then U satisfies the HJB equation:

$$
0=-c U+G(U x)+F(x)
$$

- Hence U is the Bellman value function of the control problem :

MFG vs BP

- This means that in this case, the MFG equilibrium is identical to a Benevolent Planner optimisation problem
- We will come back later on this important point
- The BP optimisation problem is not the Monopolist optimisation problem

MFG - BP / Monopolist ayamnla

Time to build:

Industry dynamics with two
timoe nf nnisior nlonte ond tisin

oveview (1/3)

- Two types of power plants
- Type 1: expensive to build, produce unexpensive energy
- Type 2: unexpensive to build, produce expensive energy
- Two markets for energy
- Peak hours: high demand for energy, both unexpensive and expensive energy can be sold
- Off peak hours: low demand for energy, only unexpensive energy can be sold

oveview (2/3)

- Type 2 power plants
- Receive only earnings from peak hours market,
- but are less expensive to build
- Model will tackle interaction of :
- Time to build with
- Competition of two populations of producers on two markets
oveview (3/3)

Value functions

- State of the world in this model is $x=(x 1, x 2)$ where is $x i$ is the existing number of units of type i
- The values functions $u 1(x 1, x 2)$ and $u 2(x 1, x 2)$ are defined as (expected) discounted pay off for the owner of one unit of type i
- We look for a stationnary competitive equilibrium, i-e: producers are price takers

Two flows of entrants

- For $\mathrm{i}=1,2, \mathrm{qi}=$ flow of entrants of type $\mathrm{i}=$ number of new units of type i
- $\mathrm{Ci}(q i)=$ cost to build one new unit of type i
- Convexity of Ci will express the « time to build issue » in this model
- Cost to build $\mathrm{Ci}(\mathrm{q})$ is assumed to be greater for type 1 units : $\mathrm{C} 1(\mathrm{q})$ > C2(q)
- Cost to produce one unit of energy ei is greater for type 2 units : e1 < e2
- (NB = notations imply a adequate choice of units)

Two flows of entrants

For the sake of analytical simplicity, we assume $C(q)=1 / 2$ ciq 2 for $q>0$
$\mathrm{C} 1(\mathrm{q})>\mathrm{C} 2(\mathrm{q})$, hence: $\mathrm{c} 1>\mathrm{c} 2$
At equilibrium entrants flows satifies

- Ci' $\left(q i^{*}\right)=u i(x 1, x 2) \quad i=1,2$
- ciqi* $=$ ui $(x 1, x 2) \quad i=1,2$

Peak and off-peak demand

$\mathrm{Dj}(\mathrm{pj})$ is the demand function and pj the energy price

- Off peak hours $\mathrm{j}=0$
- Peak hours $\mathrm{j}=1$

Linear case : $\operatorname{Dj}(p)=a j-b j p, \quad$ for $p<a j / b j$
Example

- a0 << a1 b0=b1
- hence off-peak demand DO lower than peak 06めQethrand D1

Demand and offer neat and nff-neak anıilihria

Pay off

- The net pay off for one unit of type 2 is $\mathrm{f} 2(\mathrm{x} 1, \mathrm{x} 2)=\mathrm{p} 1(\mathrm{x} 1, \mathrm{x} 2)$-e2 as this unit produce only for the peak hours market
- The pay off for one unit of type 1 is $\mathrm{f} 2(\mathrm{x} 1, \mathrm{x} 2)=\mathrm{p} 0(\mathrm{x} 1, \mathrm{x} 2)+\mathrm{p} 1(\mathrm{x} 1, \mathrm{x} 2)$-e1 as this unit produces both for the peak and off-peak market
- For the sake of simplicity, we will restrict (here) to the case $\mathrm{e} 1<\mathrm{p} 0<\mathrm{e} 2<\mathrm{p} 1$
- Hence $\mathrm{p} 0(\mathrm{x} 1, \mathrm{x} 2)=\mathrm{p} 0(\mathrm{x} 1)$ and $\mathrm{p} 1(\mathrm{x} 1, \mathrm{x} 2)=\mathrm{p} 1(\mathrm{x} 1+\mathrm{x} 2)$
- More specificaly : $\mathrm{p} 0=a 0-\mathrm{x} 1$ and $\mathrm{p} 1=\mathrm{a} 1-(\mathrm{x} 1+\mathrm{x} 2)$

The stationary equilibrium anııatinnc

ui $(x 1, x 2)=(1-r d t-k d t) u i(x 1+d x 1, x 2+d x 2)+$ fi(x1,x2)dt
$d x i=g i(x 1, x 2) d t$, with
gi(u1,u2) $=q i^{*}-k=u i(x 1, x 2) / c i-k$
(where k is the rate of aging of all units) Hence :

The previous MFG monotone cuctem is the " rradiont» of an

MFG vs « HJB BP » (1/2)

- Lucas Prescott : any competitive market equilibrium can be framed as the optimal control problem of some (adequatly defined) Benevolent Planer; hence solution proceed in two steps : found the right BP; one can solve the optimization problem of this BP using all classic tools of optimal control (Euler-Lagrange; HJB;..)
- The previous slide illustrate strongly the Lucas Prescott viewpoint : when the MFG equilibrium is a competitive market equilibrium, then the MFG system is the « gradient» of an HJB equation, i-e the HJB equation of the BP optimisation problem

MFG vs « HJB BP » (2/2)

- This defines more clearly the role of MFG systems :
- As soon as there are « non market interactions » between agents:
- The equivalent BP optimization problem does not exist anymore
- Then the MFG system become inescapable
- « non market interactions » might be:
- tax,
- frictions,
- externalities,..

Ex. : Tax impact on equilibrium

Remark: analytic solution in the linear race

A glance to agregate shocks

