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Time to build
• Old topic in economics :

– « Time to build and aggregate fluctuations », Kyland 
and Prescott, Econometrica, 1982

• MFG monotone systems provide a new 
mathematical tool to investigate this topic

• aim : detail this claim through a « toy » model
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agenda
Industry of power plants : modelling stylized dynamics :
• a) One type of power plants (didactic case)
• b) Two different types of power plants
• c) Impact of tax and other non market features on methodology : 

MFG vs BP optimisation

• We focus on the industry of  power plants as an example of  an industry for which 
« time to build » is a serious issue 

• Of  course, this « toy » model is more generic, i-e: this modelling framework can be 
applied to many other industries.
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Model with identical power plants
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Stationary equilibrium : value 
function

• Focus on stationary equilibrium
• Value function u(x) = discounted pay off 

per one unit of capacity of production
• x is the production capacity  = number 

of production units
• Agents (owners of production units) are 

atomized independent competitors with 
constant discounting rate r.



 06/09/13  

Flow of entrants : 
the time to build issue

• q* is the flow of entrants = number of new units
• Cost of a new units is exogenous : C(q)
• C is the cost function of the industry which produce 

new power plants
• Competitive equilibrium of entrants :  
• C’(q*)= u(x)     
• Ex:  C(q) = ½ q2 for q>0 , hence q*= u(t,x)  for u>0
• Convexity of the cost function C embodies (in this 

model) the « time to build » issue
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Dynamics of the production 
capacity

• The dynamics of x is 
              dx = (q*- a) dt 
   where q*=max(u,0) is the flow of entrants
   and a is a constant aging rate
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Demand and pay off
• The demand is exogenous : y=D(p), where y is the production and p 

the price
• Example : 

– D(p)= 1/p   a
– D(p) = b-cp    for p < b/c

• Constant cost e per unit of produced energy
• Power plants are identical, demand/offer competitive equilibrium :  x = 

D(p)
• Pay off per one production unit :   D-1(x) - e



 06/09/13  

Recursive (mfg) equation 
• We look for a stationary equilibrium:
• u(x) = (1-rdt-adt) u(x+dx) + (D-1(x) – e) dt
• dx = (q*-a) dt ,  with  q*= max(u,0)

0  =  –  c u  +   g(u) ux  +   f(x)

 g(u) = max(u,0) – a;    f(x) = D-1(x) – e;    c=r+a

• g and –f  are increasing functions
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HJB and BP 
• Define G,F and U has primitives of g,f and 

u :
    (i-e : G’=g,  F’=f , Ux=u ) 
• then U satisfies the HJB equation:
         0  =  –  c U  +  G(Ux)  +  F(x)
• Hence U is the Bellman value function of the 

control problem :



 06/09/13  

MFG vs BP
• This means that in this case, the MFG 

equilibrium is identical to a Benevolent 
Planner optimisation problem

• We will come back later on this important 
point

•  The BP optimisation problem is not the 
Monopolist optimisation problem 
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MFG - BP / Monopolist
example
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Time to build:
Industry dynamics with two 

types of power plants and two 
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oveview (1/3)
• Two types of power plants

– Type 1: expensive to build, produce unexpensive energy
– Type 2: unexpensive to build, produce expensive energy

• Two markets for energy
– Peak hours: high demand for energy, both unexpensive 

and expensive energy can be sold
– Off peak hours: low demand for energy, only unexpensive 

energy can be sold
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oveview (2/3)
• Type 2 power plants 

– Receive only earnings from peak hours market, 
– but are less expensive to build

• Model will tackle interaction of :
– Time to build with
– Competition of two populations of producers on 

two markets 
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oveview (3/3)
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Value functions
• State of the world in this model is x=(x1,x2) where is 

xi is the existing number of units of type i
• The values functions u1(x1,x2)   and u2(x1,x2)  are 

defined as (expected) discounted pay off for the 
owner of one unit of type i

• We look for a stationnary competitive equilibrium, i-e: 
producers are price takers
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Two flows of entrants
• For i=1,2,    qi =  flow of entrants of type i = number of new units of 

type i
• Ci(qi) =  cost to build one new unit of type i 
• Convexity of Ci will express the « time to build issue » in this model
• Cost to build Ci(q) is assumed to be greater for type 1 units :  C1(q) 

> C2(q)
• Cost to produce one unit of energy ei is greater for type 2 units :   

e1  <  e2 
• (NB = notations imply a adequate choice of units)



 06/09/13  

Two flows of entrants
• For the sake of analytical simplicity, we assume           

    C(q) = ½ ciq2 for q>0
• C1(q) > C2(q) , hence :     c1   >   c2
• At equilibrium entrants flows satifies 

– Ci’(qi*) = ui (x1,x2)     i=1,2
– ciqi* = ui (x1,x2)     i=1,2
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Peak and off-peak demand

• Dj(pj) is the demand function and pj the energy 
price

– Off peak hours j=0
– Peak hours j=1

• Linear case : Dj(p) = aj – bj p ,    for p < aj/bj 
• Example   

–  a0 <<  a1       b0=b1   
– hence off-peak demand D0  lower than peak 

demand D1
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Demand and offer 
peak and off-peak equilibria
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Pay off
• The net pay off for one unit of type 2 is                   

f2(x1,x2)=p1(x1,x2)-e2 as this unit produce only for 
the peak hours market

• The pay off for one unit of type 1 is                        
f2(x1,x2)=p0(x1,x2)+p1(x1,x2)-e1 as this unit 
produces both for the peak and off-peak market

• For the sake of simplicity, we will restrict (here) to the 
case    e1 < p0 < e2 < p1

• Hence p0(x1,x2)=p0(x1) and p1(x1,x2) = p1(x1+x2)
• More specificaly :  p0=a0-x1 and  p1= a1-(x1+x2) 
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The stationary equilibrium 
equations

• ui(x1,x2) = (1-rdt-kdt) ui(x1+dx1,x2+dx2) + 
fi(x1,x2)dt

• dxi = gi(x1,x2) dt ,  with
• gi(u1,u2) = qi*-k = ui(x1,x2)/ci –k
   (where k is the rate of aging of all units)
   Hence :
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The previous MFG monotone 
system  is the « gradient » of an 
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MFG vs « HJB BP » (1/2)
• Lucas Prescott : any competitive market equilibrium can be 

framed as the optimal control problem of some (adequatly 
defined) Benevolent Planer; hence solution proceed in two steps 
: found the right BP; one can solve the optimization problem of 
this BP using all classic tools of optimal control (Euler-Lagrange; 
HJB;..)

• The previous slide illustrate strongly the Lucas Prescott 
viewpoint : when the MFG equilibrium is a competitive market 
equilibrium, then the MFG system is the « gradient » of an HJB 
equation, i-e the HJB equation of the BP optimisation problem
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MFG vs « HJB BP » (2/2)
• This defines more clearly the role of MFG systems :
• As soon as there are « non market interactions » 

between agents:
– The  equivalent BP optimization problem does not exist 

anymore
– Then the MFG system become inescapable

• « non market interactions » might be: 
– tax, 
– frictions, 
– externalities,..
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Ex. :  Tax impact on equilibrium
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Remark: analytic solution 
in the linear case
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A glance to agregate shocks 
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