A second order model for macroscopic crowd movements with congestion

Alpár Richárd Mészáros

Laboratoire de Mathématiques d'Orsay, Université Paris-Sud (ongoing joint work F. Santambrogio)

Mean Field Games and Related Topics - 2, Padova, Sept. 4-6, 2013

The content of the talk

(1) Deterministic crowd movements with congestion 1-Microscopic model (briefly)

The content of the talk

(1) Deterministic crowd movements with congestion 1-Microscopic model (briefly)
(2) Deterministic crowd movements with congestion 2 - Macroscopic model via Optimal Transport

The content of the talk

(1) Deterministic crowd movements with congestion 1-Microscopic model (briefly)
(2) Deterministic crowd movements with congestion 2 - Macroscopic model via Optimal Transport
(0) Stochastic dynamics with density constraints

The content of the talk

(1) Deterministic crowd movements with congestion 1-Microscopic model (briefly)
(2) Deterministic crowd movements with congestion 2 - Macroscopic model via Optimal Transport
(3) Stochastic dynamics with density constraints
((Final remarks, conclusions, open questions

The microscopic model with non-overlapping constraints

- The model was introduced by B. Maury and J. Venel ${ }^{1}$

[^0] Model. Numer. Anal. (2011)

The microscopic model with non-overlapping constraints

- The model was introduced by B. Maury and J. Venel ${ }^{1}$
- A particle population $q=\left(q_{i}\right)_{i}, i=1, \ldots, N$ is modelized by disks of radius R and the center of them are $q_{i} \in \Omega$.

[^1] Model. Numer. Anal. (2011)

The microscopic model with non-overlapping constraints

- The model was introduced by B. Maury and J. Venel ${ }^{1}$
- A particle population $q=\left(q_{i}\right)_{i}, i=1, \ldots, N$ is modelized by disks of radius R and the center of them are $q_{i} \in \Omega$.
- Each particle would move with a velocity field u (depending on space and time), but they are represented with rigid disks, hence u should be modified in order to consider the non-overlapping constraint.

[^2]
The microscopic model with non-overlapping constraints

- The model was introduced by B. Maury and J. Venel ${ }^{1}$
- A particle population $q=\left(q_{i}\right)_{i}, i=1, \ldots, N$ is modelized by disks of radius R and the center of them are $q_{i} \in \Omega$.
- Each particle would move with a velocity field u (depending on space and time), but they are represented with rigid disks, hence u should be modified in order to consider the non-overlapping constraint.
- This introduces the presence of a projection operator $P_{a d m(q)}$ acting on the velocities onto the set of admissible velocities:

$$
\begin{gathered}
q \in K:=\left\{q=\left(q_{i}\right)_{i} \in \Omega^{N}:\left|q_{i}-q_{j}\right| \geq 2 R\right\}, \\
\operatorname{adm}(q)=\left\{v=\left(v_{i}\right)_{i}:\left(v_{i}-v_{j}\right) \cdot\left(q_{i}-q_{j}\right) \geq 0 \forall(i, j):\left|q_{i}-q_{j}\right|=2 R\right\} .
\end{gathered}
$$

[^3]
The microscopic model with non-overlapping constraints

- The model was introduced by B. Maury and J. Venel ${ }^{1}$
- A particle population $q=\left(q_{i}\right)_{i}, i=1, \ldots, N$ is modelized by disks of radius R and the center of them are $q_{i} \in \Omega$.
- Each particle would move with a velocity field u (depending on space and time), but they are represented with rigid disks, hence u should be modified in order to consider the non-overlapping constraint.
- This introduces the presence of a projection operator $P_{\text {adm }(q)}$ acting on the velocities onto the set of admissible velocities:

$$
\begin{gathered}
q \in K:=\left\{q=\left(q_{i}\right)_{i} \in \Omega^{N}:\left|q_{i}-q_{j}\right| \geq 2 R\right\} \\
\operatorname{adm}(q)=\left\{v=\left(v_{i}\right)_{i}:\left(v_{i}-v_{j}\right) \cdot\left(q_{i}-q_{j}\right) \geq 0 \forall(i, j):\left|q_{i}-q_{j}\right|=2 R\right\} .
\end{gathered}
$$

- Finally we solve $q^{\prime}(t)=P_{\text {adm }}(q(t)) u(t)$ (with $q(0)$ given).

[^4]
The continuous model - part 1

A (macroscopic) model developed by B. Maury, A. Roudneff-Chupin and F. Santambrogio ${ }^{2}$ in 2010.

The continuous model - part 1

A (macroscopic) model developed by B. Maury, A. Roudneff-Chupin and F. Santambrogio ${ }^{2}$ in 2010.
The model:
${ }^{2}$ Maury, B. et al. A macroscopic crowd motion model of gradient flow type, M3AS, (2010)

The continuous model - part 1

A (macroscopic) model developed by B. Maury, A. Roudneff-Chupin and F. Santambrogio ${ }^{2}$ in 2010.
The model:

- The population of the particles is described by a probability measure (here actually we can identify probability measures with their densities, because we are working only with absolutely continuous measures) $\rho \in \mathcal{P}(\Omega)$;
${ }^{2}$ Maury, B. et al. A macroscopic crowd motion model of gradient flow type, M3AS, (2010)

The continuous model - part 1

A (macroscopic) model developed by B. Maury, A. Roudneff-Chupin and F. Santambrogio ${ }^{2}$ in 2010.
The model:

- The population of the particles is described by a probability measure (here actually we can identify probability measures with their densities, because we are working only with absolutely continuous measures) $\rho \in \mathcal{P}(\Omega)$;
- The non-overlapping constraint is replaced by the condition $\rho \in K:=\{\rho \in \mathcal{P}(\Omega): \rho \leq 1\} ;$

[^5]
The continuous model - part 1

A (macroscopic) model developed by B. Maury, A. Roudneff-Chupin and F. Santambrogio ${ }^{2}$ in 2010.
The model:

- The population of the particles is described by a probability measure (here actually we can identify probability measures with their densities, because we are working only with absolutely continuous measures) $\rho \in \mathcal{P}(\Omega)$;
- The non-overlapping constraint is replaced by the condition $\rho \in K:=\{\rho \in \mathcal{P}(\Omega): \rho \leq 1\} ;$
- For every time t, we consider $u_{t}: \Omega \rightarrow \mathbb{R}^{d}$ a vector field, possibly depending on ρ;

[^6]
The continuous model - part 1

A (macroscopic) model developed by B. Maury, A. Roudneff-Chupin and F. Santambrogio ${ }^{2}$ in 2010.
The model:

- The population of the particles is described by a probability measure (here actually we can identify probability measures with their densities, because we are working only with absolutely continuous measures) $\rho \in \mathcal{P}(\Omega)$;
- The non-overlapping constraint is replaced by the condition $\rho \in K:=\{\rho \in \mathcal{P}(\Omega): \rho \leq 1\} ;$
- For every time t, we consider $u_{t}: \Omega \rightarrow \mathbb{R}^{d}$ a vector field, possibly depending on ρ;
- For every density ρ we have a set of admissible velocities, characterized by the sign of the divergence on the saturated region $\{\rho=1\}$, so the set is:

$$
\operatorname{adm}(\rho):=\left\{v: \Omega \rightarrow \mathbb{R}^{d}: \nabla \cdot v \geq 0 \text { on }\{\rho=1\}\right\} ;
$$

[^7]
The continuous model - part 2

- We consider the projection operator P, which is either the projection in $L^{2}\left(\mathcal{L}^{d}\right)$ or in $L^{2}(\rho)$ (this will turn out to be the same, since the only relevant zone is $\{\rho=1\}$);

The continuous model - part 2

- We consider the projection operator P, which is either the projection in $L^{2}\left(\mathcal{L}^{d}\right)$ or in $L^{2}(\rho)$ (this will turn out to be the same, since the only relevant zone is $\{\rho=1\}$);
- Finally we solve the equation

$$
\begin{equation*}
\partial_{t} \rho_{t}+\nabla \cdot\left(\rho_{t} P_{\operatorname{adm}\left(\rho_{t}\right)}\left[u_{t}\right]\right)=0, \tag{1}
\end{equation*}
$$

in the weak sense.

The continuous model - part 2

- We consider the projection operator P, which is either the projection in $L^{2}\left(\mathcal{L}^{d}\right)$ or in $L^{2}(\rho)$ (this will turn out to be the same, since the only relevant zone is $\{\rho=1\}$);
- Finally we solve the equation

$$
\begin{equation*}
\partial_{t} \rho_{t}+\nabla \cdot\left(\rho_{t} P_{\operatorname{adm}\left(\rho_{t}\right)}\left[u_{t}\right]\right)=0 \tag{1}
\end{equation*}
$$

in the weak sense.

- Main difficulty solving (1): the projected field is neither regular, nor depending regularly on the density.

The continuous model - part 2

- We consider the projection operator P, which is either the projection in $L^{2}\left(\mathcal{L}^{d}\right)$ or in $L^{2}(\rho)$ (this will turn out to be the same, since the only relevant zone is $\{\rho=1\}$);
- Finally we solve the equation

$$
\begin{equation*}
\partial_{t} \rho_{t}+\nabla \cdot\left(\rho_{t} P_{\operatorname{adm}\left(\rho_{t}\right)}\left[u_{t}\right]\right)=0 \tag{1}
\end{equation*}
$$

in the weak sense.

- Main difficulty solving (1): the projected field is neither regular, nor depending regularly on the density. A possible approach to handle this: by duality.

The continuous model - part 2

- We consider the projection operator P, which is either the projection in $L^{2}\left(\mathcal{L}^{d}\right)$ or in $L^{2}(\rho)$ (this will turn out to be the same, since the only relevant zone is $\{\rho=1\}$);
- Finally we solve the equation

$$
\begin{equation*}
\partial_{t} \rho_{t}+\nabla \cdot\left(\rho_{t} P_{a d m\left(\rho_{t}\right)}\left[u_{t}\right]\right)=0, \tag{1}
\end{equation*}
$$

in the weak sense.

- Main difficulty solving (1): the projected field is neither regular, nor depending regularly on the density. A possible approach to handle this: by duality.
- Let us redefine $\operatorname{adm}(\rho)$ by duality

$$
\operatorname{adm}(\rho)=\left\{v \in L^{2}(\rho): \int v \cdot \nabla p \leq 0 \forall p \in H^{1}(\Omega): p \geq 0, p(1-\rho)=0\right\}
$$

The continuous model - part 2

- We consider the projection operator P, which is either the projection in $L^{2}\left(\mathcal{L}^{d}\right)$ or in $L^{2}(\rho)$ (this will turn out to be the same, since the only relevant zone is $\{\rho=1\}$);
- Finally we solve the equation

$$
\begin{equation*}
\partial_{t} \rho_{t}+\nabla \cdot\left(\rho_{t} P_{a d m\left(\rho_{t}\right)}\left[u_{t}\right]\right)=0, \tag{1}
\end{equation*}
$$

in the weak sense.

- Main difficulty solving (1): the projected field is neither regular, nor depending regularly on the density. A possible approach to handle this: by duality.
- Let us redefine $\operatorname{adm}(\rho)$ by duality

$$
\operatorname{adm}(\rho)=\left\{v \in L^{2}(\rho): \int v \cdot \nabla p \leq 0 \forall p \in H^{1}(\Omega): p \geq 0, p(1-\rho)=0\right\}
$$

- In this sense $v=P_{\operatorname{adm}(\rho)}[u]$ and $u=v+\nabla p, v \in \operatorname{adm}(\rho)$ and

$$
p \in \operatorname{press}(\rho):=\left\{p \in H^{1}(\Omega): p \geq 0, p(1-\rho)=0\right\} .
$$

Wasserstein distances and Kantorovich potentials

- For two (absolutely cont.) probability measures $\mu, \nu \in \mathcal{P}(\Omega)$ de define

$$
\begin{aligned}
W_{2}^{2}(\mu, \nu): & =\inf \left\{\int \frac{1}{2}|x-T(x)|^{2} d \mu: T: \Omega \rightarrow \Omega, T_{\#} \mu=\nu\right\} \\
& =\sup _{\phi, \psi \in \operatorname{Lip}(\Omega)}\left\{\int \phi d \mu+\int \psi d \nu: \phi(x)+\psi(y) \leq \frac{|x-y|^{2}}{2}\right\}
\end{aligned}
$$

Wasserstein distances and Kantorovich potentials

- For two (absolutely cont.) probability measures $\mu, \nu \in \mathcal{P}(\Omega)$ de define

$$
\begin{aligned}
W_{2}^{2}(\mu, \nu): & =\inf \left\{\int \frac{1}{2}|x-T(x)|^{2} d \mu: T: \Omega \rightarrow \Omega, T_{\#} \mu=\nu\right\} \\
& =\sup _{\phi, \psi \in \operatorname{Lip}(\Omega)}\left\{\int \phi d \mu+\int \psi d \nu: \phi(x)+\psi(y) \leq \frac{|x-y|^{2}}{2}\right\}
\end{aligned}
$$

- Under suitable assumptions there exists T (optimal transport map) and (ϕ, ψ) (Kantorovich potentials) and they are linked via

$$
T(x)=x-\nabla \phi(x) .
$$

Wasserstein distances and Kantorovich potentials

- For two (absolutely cont.) probability measures $\mu, \nu \in \mathcal{P}(\Omega)$ de define

$$
\begin{aligned}
W_{2}^{2}(\mu, \nu): & =\inf \left\{\int \frac{1}{2}|x-T(x)|^{2} d \mu: T: \Omega \rightarrow \Omega, T_{\#} \mu=\nu\right\} \\
& =\sup _{\phi, \psi \in L i p(\Omega)}\left\{\int \phi d \mu+\int \psi d \nu: \phi(x)+\psi(y) \leq \frac{|x-y|^{2}}{2}\right\}
\end{aligned}
$$

- Under suitable assumptions there exists T (optimal transport map) and (ϕ, ψ) (Kantorovich potentials) and they are linked via

$$
T(x)=x-\nabla \phi(x) .
$$

- W_{2} metrizes the weak-* topology on $\mathcal{P}(\Omega)$ for compact domains Ω.

Solution of the continuity equation for gradient fields

- If the vector field of the particles is given by $u_{t}:=-\nabla V_{t}, \forall t$, then the solution of (1) can be obtained by the gradient flow of the functional

$$
\mathcal{F}(\rho):=\int_{\Omega} V_{t}(x) d \rho(x)+I_{K}(\rho),
$$

where I_{K} is the indicator function of $K:=\{\rho \in \mathcal{P}(\Omega): \rho \leq 1\}$, which is 0 in K and $+\infty$ outside of K;

Solution of the continuity equation for gradient fields

- If the vector field of the particles is given by $u_{t}:=-\nabla V_{t}, \forall t$, then the solution of (1) can be obtained by the gradient flow of the functional

$$
\mathcal{F}(\rho):=\int_{\Omega} V_{t}(x) d \rho(x)+I_{K}(\rho),
$$

where I_{K} is the indicator function of $K:=\{\rho \in \mathcal{P}(\Omega): \rho \leq 1\}$, which is 0 in K and $+\infty$ outside of K;

- Use the JKO scheme to get a solution, which is for $\tau>0$, $\rho_{0}^{\tau}:=\rho_{0}$ and for $k \in \mathbb{N}, k \geq 0$ we consider the scheme

$$
\begin{equation*}
\rho_{K+1}^{\tau} \in \operatorname{argmin}_{\rho \in \mathcal{P}(\Omega)}\left(\mathcal{F}(\rho)+\frac{1}{2 \tau} W_{2}^{2}\left(\rho, \rho_{K}^{\tau}\right)\right) \tag{2}
\end{equation*}
$$

Solution of the continuity equation for gradient fields

- If the vector field of the particles is given by $u_{t}:=-\nabla V_{t}, \forall t$, then the solution of (1) can be obtained by the gradient flow of the functional

$$
\mathcal{F}(\rho):=\int_{\Omega} V_{t}(x) d \rho(x)+I_{K}(\rho),
$$

where I_{K} is the indicator function of $K:=\{\rho \in \mathcal{P}(\Omega): \rho \leq 1\}$, which is 0 in K and $+\infty$ outside of K;

- Use the JKO scheme to get a solution, which is for $\tau>0$, $\rho_{0}^{\tau}:=\rho_{0}$ and for $k \in \mathbb{N}, k \geq 0$ we consider the scheme

$$
\begin{equation*}
\rho_{k+1}^{\tau} \in \operatorname{argmin}_{\rho \in \mathcal{P}(\Omega)}\left(\mathcal{F}(\rho)+\frac{1}{2 \tau} W_{2}^{2}\left(\rho, \rho_{k}^{\tau}\right)\right) \tag{2}
\end{equation*}
$$

- Construct piecewise constant and geodesic interpolations;

Solution of the continuity equation for gradient fields

- If the vector field of the particles is given by $u_{t}:=-\nabla V_{t}, \forall t$, then the solution of (1) can be obtained by the gradient flow of the functional

$$
\mathcal{F}(\rho):=\int_{\Omega} V_{t}(x) d \rho(x)+I_{K}(\rho)
$$

where I_{K} is the indicator function of $K:=\{\rho \in \mathcal{P}(\Omega): \rho \leq 1\}$, which is 0 in K and $+\infty$ outside of K;

- Use the JKO scheme to get a solution, which is for $\tau>0$, $\rho_{0}^{\tau}:=\rho_{0}$ and for $k \in \mathbb{N}, k \geq 0$ we consider the scheme

$$
\begin{equation*}
\rho_{k+1}^{\tau} \in \operatorname{argmin}_{\rho \in \mathcal{P}(\Omega)}\left(\mathcal{F}(\rho)+\frac{1}{2 \tau} W_{2}^{2}\left(\rho, \rho_{k}^{\tau}\right)\right) \tag{2}
\end{equation*}
$$

- Construct piecewise constant and geodesic interpolations;
- Define the corresponding velocities;

Solution of the continuity equation for gradient fields

- If the vector field of the particles is given by $u_{t}:=-\nabla V_{t}, \forall t$, then the solution of (1) can be obtained by the gradient flow of the functional

$$
\mathcal{F}(\rho):=\int_{\Omega} V_{t}(x) d \rho(x)+I_{K}(\rho)
$$

where I_{K} is the indicator function of $K:=\{\rho \in \mathcal{P}(\Omega): \rho \leq 1\}$, which is 0 in K and $+\infty$ outside of K;

- Use the JKO scheme to get a solution, which is for $\tau>0$, $\rho_{0}^{\tau}:=\rho_{0}$ and for $k \in \mathbb{N}, k \geq 0$ we consider the scheme

$$
\begin{equation*}
\rho_{k+1}^{\tau} \in \operatorname{argmin}_{\rho \in \mathcal{P}(\Omega)}\left(\mathcal{F}(\rho)+\frac{1}{2 \tau} W_{2}^{2}\left(\rho, \rho_{k}^{\tau}\right)\right) \tag{2}
\end{equation*}
$$

- Construct piecewise constant and geodesic interpolations;
- Define the corresponding velocities;
- Pass to the limit $\tau \rightarrow 0$.

Deriving the pressure via the projection

For the projection in the Wasserstein sense of a measure $\nu \in \mathcal{P}(\Omega)$, we have to solve

$$
\min _{\rho \in K} \frac{1}{2} W_{2}^{2}(\rho, \nu) .
$$

Deriving the pressure via the projection

For the projection in the Wasserstein sense of a measure $\nu \in \mathcal{P}(\Omega)$, we have to solve

$$
\min _{\rho \in K} \frac{1}{2} W_{2}^{2}(\rho, \nu) .
$$

By duality, the optimal ρ have to optimize also $\min _{\rho \in K} \int_{\Omega} \phi d \rho$, for the Kantorovich potential ϕ from ρ to ν.

Deriving the pressure via the projection

For the projection in the Wasserstein sense of a measure $\nu \in \mathcal{P}(\Omega)$, we have to solve

$$
\min _{\rho \in K} \frac{1}{2} W_{2}^{2}(\rho, \nu) .
$$

By duality, the optimal ρ have to optimize also $\min _{\rho \in K} \int_{\Omega} \phi d \rho$, for the Kantorovich potential ϕ from ρ to ν. This will imply that $\exists /$ s.t.

$$
\rho= \begin{cases}1, & \text { on } \phi<I, \\ \in[0,1], & \text { on } \phi=I, \\ 0, & \text { on } \phi>I .\end{cases}
$$

Deriving the pressure via the projection

For the projection in the Wasserstein sense of a measure $\nu \in \mathcal{P}(\Omega)$, we have to solve

$$
\min _{\rho \in K} \frac{1}{2} W_{2}^{2}(\rho, \nu) .
$$

By duality, the optimal ρ have to optimize also $\min _{\rho \in K} \int_{\Omega} \phi d \rho$, for the Kantorovich potential ϕ from ρ to ν. This will imply that $\exists /$ s.t.

$$
\rho= \begin{cases}1, & \text { on } \phi<I \\ \in[0,1], & \text { on } \phi=I \\ 0, & \text { on } \phi>I\end{cases}
$$

It follows that $p:=(t-\phi)_{+} \geq 0$ satisfies $p(1-\rho)=0$, hence it is an admissible pressure, and we have that

$$
T(x)=x-\nabla \phi(x)=x+\nabla p, \rho-\text { a.e. }
$$

is the optimal transport map from the projected field to the original one.

In our case

Remark that

$$
\|\nabla p\|_{L^{2}\left(\rho_{n+1}^{\tau}\right)}=W_{2}\left(\rho_{n+1}^{\tau}, \tilde{\rho}_{n+1}^{\tau}\right) \leq W_{2}\left(\rho_{n}^{\tau}, \tilde{\rho}_{n+1}^{\tau}\right) \leq \tau\left\|u_{n \tau}\right\|_{L^{2}\left(\rho_{n}^{\tau}\right)} .
$$

In our case

Remark that

$$
\|\nabla p\|_{L^{2}\left(\rho_{n+1}^{\tau}\right)}=W_{2}\left(\rho_{n+1}^{\tau}, \tilde{\rho}_{n+1}^{\tau}\right) \leq W_{2}\left(\rho_{n}^{\tau}, \tilde{\rho}_{n+1}^{\tau}\right) \leq \tau\left\|u_{n \tau}\right\|_{L^{2}\left(\rho_{n}^{\tau}\right)} .
$$

This indicates us to rescale the pressure with τ, hence we have

In our case

Remark that

$$
\|\nabla p\|_{L^{2}\left(\rho_{n+1}^{\tau}\right)}=W_{2}\left(\rho_{n+1}^{\tau}, \tilde{\rho}_{n+1}^{\tau}\right) \leq W_{2}\left(\rho_{n}^{\tau}, \tilde{\rho}_{n+1}^{\tau}\right) \leq \tau\left\|u_{n \tau}\right\|_{L^{2}\left(\rho_{n}^{\tau}\right)}
$$

This indicates us to rescale the pressure with τ, hence we have

Remark: $\left(i d+\tau u_{n \tau}\right)^{-1} \circ(i d+\tau \nabla p)=i d-\tau\left(u_{n \tau}-\nabla p\right)+o(\tau)$, provided u is regular enough. This will allow us to take the limit as $\tau \rightarrow 0$ and get a solution of the continuity equation.

Adding a diffusion term

- Motivation: initial point in the study of second order MFG systems with density constraints.

Adding a diffusion term

- Motivation: initial point in the study of second order MFG systems with density constraints.
- The Fokker-Planck type equation, we get is

$$
\begin{equation*}
\partial_{t} \rho_{t}-\Delta \rho_{t}+\nabla \cdot\left(P_{a d m\left(\rho_{t}\right)}\left[u_{t}\right] \rho_{t}\right)=0, \tag{3}
\end{equation*}
$$

which is exactly

$$
\partial_{t} \rho_{t}-\Delta \rho_{t}+\nabla \cdot\left(P_{a d m\left(\rho_{t}\right)}\left[u_{t}-\frac{\nabla \rho_{t}}{\rho_{t}}\right] \rho_{t}\right)=0,
$$

because $\frac{\nabla \rho}{\rho}=0$ on $\{\rho=1\}$.

How to show the existence of a solution of (3)?

If the velocity field is again a gradient $\left(u_{t}=-\nabla V_{t}\right)$, then we can argue similarly as in the deterministic case by the JKO scheme ${ }^{3}$ using the gradient flow ${ }^{4}$ of the perturbed entropy functional

$$
\mathcal{F}(\rho):=\int_{\Omega} V_{t} d \rho+\int_{\Omega} \rho \ln \rho+I_{K}(\rho) .
$$

[^8]
How to show the existence of a solution of (3)?

If the velocity field is again a gradient $\left(u_{t}=-\nabla V_{t}\right)$, then we can argue similarly as in the deterministic case by the JKO scheme ${ }^{3}$ using the gradient flow ${ }^{4}$ of the perturbed entropy functional

$$
\mathcal{F}(\rho):=\int_{\Omega} V_{t} d \rho+\int_{\Omega} \rho \ln \rho+I_{K}(\rho) .
$$

For general fields let us construct the discrete densities.

[^9]
How to show the existence of a solution of (3)?

If the velocity field is again a gradient $\left(u_{t}=-\nabla V_{t}\right)$, then we can argue similarly as in the deterministic case by the JKO scheme ${ }^{3}$ using the gradient flow ${ }^{4}$ of the perturbed entropy functional

$$
\mathcal{F}(\rho):=\int_{\Omega} V_{t} d \rho+\int_{\Omega} \rho \ln \rho+I_{K}(\rho) .
$$

For general fields let us construct the discrete densities.
Fix $\tau>0$ and for ρ_{n}^{τ} we construct ρ_{n+1}^{τ}.

[^10]
The splitting algorithms

First approach

- Take a random variable with $X \sim \rho_{n}^{\tau}$.
- Construct a new r.v. $Y=\left(i d+\tau u_{n \tau}\right) \circ X+W_{\tau}$, where W is a Brownian motion independent of X.
- Define $\tilde{\rho}_{n+1}^{\tau}=\mathcal{L}(Y)$ and $\rho_{n+1}^{\tau}=P_{K}\left(\tilde{\rho}_{n+1}^{\tau}\right)$.

The splitting algorithms

First approach

- Take a random variable with $X \sim \rho_{n}^{\tau}$.
- Construct a new r.v. $Y=\left(i d+\tau u_{n \tau}\right) \circ X+W_{\tau}$, where W is a Brownian motion independent of X.
- Define $\tilde{\rho}_{n+1}^{\tau}=\mathcal{L}(Y)$ and $\rho_{n+1}^{\tau}=P_{K}\left(\tilde{\rho}_{n+1}^{\tau}\right)$.
- In this case

$$
\left.\tilde{\rho}_{n+1}^{\tau}=\left(\left(i d+\tau u_{\tau n}\right) \not\right)_{n}^{\tau}\right) * \eta_{\sqrt{\tau}},
$$

where η_{θ} is a Gaussian of size θ.

The splitting algorithms

First approach

- Take a random variable with $X \sim \rho_{n}^{\tau}$.
- Construct a new r.v. $Y=\left(i d+\tau u_{n \tau}\right) \circ X+W_{\tau}$, where W is a Brownian motion independent of X.
- Define $\tilde{\rho}_{n+1}^{\tau}=\mathcal{L}(Y)$ and $\rho_{n+1}^{\tau}=P_{K}\left(\tilde{\rho}_{n+1}^{\tau}\right)$.
- In this case

$$
\tilde{\rho}_{n+1}^{\tau}=\left(\left(i d+\tau u_{\tau n}\right) \# \rho_{n}^{\tau}\right) * \eta_{\sqrt{\tau}},
$$

where η_{θ} is a Gaussian of size θ.
Second approach
Solve the Fokker-Planck equation with initial datum ρ_{n}^{τ}

$$
\left\{\begin{array}{l}
\partial_{t} \rho_{t}-\Delta \rho_{t}+\nabla \cdot\left(u_{t+n \tau} \rho_{t}\right)=0 \\
\rho_{0}=\rho_{n}^{\tau} .
\end{array}\right.
$$

The splitting algorithms

First approach

- Take a random variable with $X \sim \rho_{n}^{\tau}$.
- Construct a new r.v. $Y=\left(i d+\tau u_{n \tau}\right) \circ X+W_{\tau}$, where W is a Brownian motion independent of X.
- Define $\tilde{\rho}_{n+1}^{\tau}=\mathcal{L}(Y)$ and $\rho_{n+1}^{\tau}=P_{K}\left(\tilde{\rho}_{n+1}^{\tau}\right)$.
- In this case

$$
\left.\tilde{\rho}_{n+1}^{\tau}=\left(\left(i d+\tau u_{\tau n}\right) \not\right)_{n}^{\tau}\right) * \eta_{\sqrt{\tau}},
$$

where η_{θ} is a Gaussian of size θ.
Second approach
Solve the Fokker-Planck equation with initial datum ρ_{n}^{τ}

$$
\left\{\begin{array}{l}
\partial_{t} \rho_{t}-\Delta \rho_{t}+\nabla \cdot\left(u_{t+n \tau} \rho_{t}\right)=0 \\
\rho_{0}=\rho_{n}^{\tau}
\end{array}\right.
$$

Set $\rho_{n+1}^{\tau}=P_{K}\left(\tilde{\rho}_{n+1}^{\tau}\right)$, where $\tilde{\rho}_{n+1}^{\tau}=\rho_{\tau}$.

The splitting algorithms - part 2

Some difficulties:

The splitting algorithms - part 2

Some difficulties:

- Getting uniform estimates as $\tau \rightarrow 0$ involve uniform estimations for $W_{2}\left(\rho_{n}, \tilde{\rho}_{n+1}\right)$, which are linked roughly to some estimations on the heat equation between time 0 and τ.

The splitting algorithms - part 2

Some difficulties:

- Getting uniform estimates as $\tau \rightarrow 0$ involve uniform estimations for $W_{2}\left(\rho_{n}, \tilde{\rho}_{n+1}\right)$, which are linked roughly to some estimations on the heat equation between time 0 and τ.
- These are available under higher regularity assumptions (BV for the initial data).

The splitting algorithms - part 2

Some difficulties:

- Getting uniform estimates as $\tau \rightarrow 0$ involve uniform estimations for $W_{2}\left(\rho_{n}, \tilde{\rho}_{n+1}\right)$, which are linked roughly to some estimations on the heat equation between time 0 and τ.
- These are available under higher regularity assumptions (BV for the initial data).
Third approach which is working, but not so natural:
- Construct $\tilde{\rho}_{n+1}^{\tau}:=\left(i d+\tau u_{n \tau}\right)_{\#} \rho_{n}^{\tau}$.
- Define

$$
\rho_{n+1}^{\tau}:=\operatorname{argmin}_{\rho \in K} \int_{\Omega} \rho \ln \rho+\frac{1}{2 \tau} W_{2}^{2}\left(\rho, \tilde{\rho}_{n+1}^{\tau}\right) .
$$

Deriving the Fokker-Planck equation

As in the deterministic case the optimizer in the above problem for the optimal ρ we have: that $\exists l$ s.t.

$$
\rho= \begin{cases}1, & \text { on }\left(\ln \rho+\frac{\phi}{\tau}\right)<I, \\ \in[0,1], & \text { on }\left(\ln \rho+\frac{\phi}{\tau}\right)=I, \\ 0, & \text { on }\left(\ln \rho+\frac{\phi}{\tau}\right)>I,\end{cases}
$$

Deriving the Fokker-Planck equation

As in the deterministic case the optimizer in the above problem for the optimal ρ we have: that $\exists /$ s.t.

$$
\rho= \begin{cases}1, & \text { on }\left(\ln \rho+\frac{\phi}{\tau}\right)<I \\ \in[0,1], & \text { on }\left(\ln \rho+\frac{\phi}{\tau}\right)=I, \\ 0, & \text { on }\left(\ln \rho+\frac{\phi}{\tau}\right)>I\end{cases}
$$

from where we define the admissible pressure $p:=\left(t-\ln \rho-\frac{\phi}{\tau}\right)_{+}$.
This will imply that the optimal transport map from ρ_{n+1}^{τ} to $\tilde{\rho}_{n+1}^{\tau}$ is $i d+\tau\left(\nabla p+\frac{\nabla \rho}{\rho}\right)$.

Deriving the Fokker-Planck equation

As in the deterministic case the optimizer in the above problem for the optimal ρ we have: that $\exists /$ s.t.

$$
\rho= \begin{cases}1, & \text { on }\left(\ln \rho+\frac{\phi}{\tau}\right)<I \\ \in[0,1], & \text { on }\left(\ln \rho+\frac{\phi}{\tau}\right)=I \\ 0, & \text { on }\left(\ln \rho+\frac{\phi}{\tau}\right)>I\end{cases}
$$

from where we define the admissible pressure $p:=\left(t-\ln \rho-\frac{\phi}{\tau}\right)_{+}$.
This will imply that the optimal transport map from ρ_{n+1}^{τ} to $\tilde{\rho}_{n+1}^{\tau}$ is $i d+\tau\left(\nabla p+\frac{\nabla \rho}{\rho}\right)$.
The situation is described on the picture below:

Notice again, that
$\left(i d+\tau u_{n \tau}\right)^{-1} \circ\left(i d+\tau\left(\nabla p+\frac{\nabla \rho}{\rho}\right)\right)=i d-\tau\left(u_{n \tau}-\nabla p-\frac{\nabla \rho}{\rho}\right)+o(\tau)$,
provided u has enough regularity.

Notice again, that
$\left(i d+\tau u_{n \tau}\right)^{-1} \circ\left(i d+\tau\left(\nabla p+\frac{\nabla \rho}{\rho}\right)\right)=i d-\tau\left(u_{n \tau}-\nabla p-\frac{\nabla \rho}{\rho}\right)+o(\tau)$,
provided u has enough regularity. Hence letting $\tau \rightarrow 0$, we derive

$$
\partial_{t} \rho_{t}-\Delta \rho_{t}+\nabla \cdot\left(\rho_{t}\left(u_{t}-\nabla p_{t}\right)\right)=0
$$

Final conclusions, remarks and perspectives

- The presented model generalizes the deterministic setting, adding a diffusion term.

Final conclusions, remarks and perspectives

- The presented model generalizes the deterministic setting, adding a diffusion term.
- Need more work on the first two approaches to get uniform estimates.

Final conclusions, remarks and perspectives

- The presented model generalizes the deterministic setting, adding a diffusion term.
- Need more work on the first two approaches to get uniform estimates.
- Open question: Invariance of the BV densities under the projection P_{K}.

Final conclusions, remarks and perspectives

- The presented model generalizes the deterministic setting, adding a diffusion term.
- Need more work on the first two approaches to get uniform estimates.
- Open question: Invariance of the BV densities under the projection P_{K}.
- Perspective: insert this model into second order MFG systems with density constraints.

Thank you for your attention!

[^0]: ${ }^{1}$ B. Maury, J. Venel, A discrete contact model for crowd motion, ESAIM Math.

[^1]: ${ }^{1}$ B. Maury, J. Venel, A discrete contact model for crowd motion, ESAIM Math.

[^2]: ${ }^{1}$ B. Maury, J. Venel, A discrete contact model for crowd motion, ESAIM Math. Model. Numer. Anal. (2011)

[^3]: ${ }^{1}$ B. Maury, J. Venel, A discrete contact model for crowd motion, ESAIM Math. Model. Numer. Anal. (2011)

[^4]: ${ }^{1}$ B. Maury, J. Venel, A discrete contact model for crowd motion, ESAIM Math.
 Model. Numer. Anal. (2011)

[^5]: ${ }^{2}$ Maury, B. et al. A macroscopic crowd motion model of gradient flow type, M3AS, (2010)

[^6]: ${ }^{2}$ Maury, B. et al. A macroscopic crowd motion model of gradient flow type, M3AS, (2010)

[^7]: ${ }^{2}$ Maury, B. et al. A macroscopic crowd motion model of gradient flow type, M3AS, (2010)

[^8]: ${ }^{3}$ R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., (1998).
 ${ }^{4}$ L. Ambrosio, N. Gigli, G. Savaré, Grandient flows in metric spaces and in the space of probability measures, Birkhäuser, (2005).

[^9]: ${ }^{3}$ R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., (1998).
 ${ }^{4}$ L. Ambrosio, N. Gigli, G. Savaré, Grandient flows in metric spaces and in the space of probability measures, Birkhäuser, (2005).

[^10]: ${ }^{3}$ R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., (1998).
 ${ }^{4}$ L. Ambrosio, N. Gigli, G. Savaré, Grandient flows in metric spaces and in the space of probability measures, Birkhäuser, (2005).

