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The microscopic model with non-overlapping
constraints

The model was introduced by B. Maury and J. Venel 1

A particle population q = (qi )i , i = 1, . . . ,N is modelized by disks
of radius R and the center of them are qi ∈ Ω.

Each particle would move with a velocity field u (depending on
space and time), but they are represented with rigid disks, hence
u should be modified in order to consider the non-overlapping
constraint.
This introduces the presence of a projection operator Padm(q)

acting on the velocities onto the set of admissible velocities:

q ∈ K := {q = (qi )i ∈ ΩN : |qi − qj | ≥ 2R},

adm(q) = {v = (vi )i : (vi−vj ) ·(qi−qj ) ≥ 0∀(i , j) : |qi−qj | = 2R}.

Finally we solve q′(t) = Padm(q(t))u(t) (with q(0) given).

1B. Maury, J. Venel, A discrete contact model for crowd motion, ESAIM Math.
Model. Numer. Anal. (2011)
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The continuous model - part 1

A (macroscopic) model developed by B. Maury, A. Roudneff-Chupin
and F. Santambrogio2 in 2010.

The model:
The population of the particles is described by a probability
measure (here actually we can identify probability measures with
their densities, because we are working only with absolutely
continuous measures) ρ ∈ P(Ω);

The non-overlapping constraint is replaced by the condition
ρ ∈ K := {ρ ∈ P(Ω) : ρ ≤ 1};
For every time t , we consider ut : Ω→ Rd a vector field, possibly
depending on ρ;

For every density ρ we have a set of admissible velocities,
characterized by the sign of the divergence on the saturated
region {ρ = 1}, so the set is:
adm(ρ) :=

{
v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1}

}
;

2Maury, B. et al. A macroscopic crowd motion model of gradient flow type, M3AS,
(2010)
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The continuous model - part 2

We consider the projection operator P, which is either the
projection in L2(Ld ) or in L2(ρ) (this will turn out to be the same,
since the only relevant zone is {ρ = 1});

Finally we solve the equation

∂tρt +∇ ·
(
ρtPadm(ρt )[ut ]

)
= 0, (1)

in the weak sense.
Main difficulty solving (1): the projected field is neither regular,
nor depending regularly on the density. A possible approach to
handle this: by duality.
Let us redefine adm(ρ) by duality

adm(ρ) =

{
v ∈ L2(ρ) :

∫
v · ∇p ≤ 0 ∀p ∈ H1(Ω) : p ≥ 0,p(1− ρ) = 0

}
.

In this sense v = Padm(ρ)[u] and u = v +∇p, v ∈ adm(ρ) and

p ∈ press(ρ) :=
{

p ∈ H1(Ω) : p ≥ 0,p(1− ρ) = 0
}
.

5 / 17



Deterministic case/Microscopic Deterministic case/Macroscopic Stochastic case Conclusions

The continuous model - part 2

We consider the projection operator P, which is either the
projection in L2(Ld ) or in L2(ρ) (this will turn out to be the same,
since the only relevant zone is {ρ = 1});
Finally we solve the equation

∂tρt +∇ ·
(
ρtPadm(ρt )[ut ]

)
= 0, (1)

in the weak sense.

Main difficulty solving (1): the projected field is neither regular,
nor depending regularly on the density. A possible approach to
handle this: by duality.
Let us redefine adm(ρ) by duality

adm(ρ) =

{
v ∈ L2(ρ) :

∫
v · ∇p ≤ 0 ∀p ∈ H1(Ω) : p ≥ 0,p(1− ρ) = 0

}
.

In this sense v = Padm(ρ)[u] and u = v +∇p, v ∈ adm(ρ) and

p ∈ press(ρ) :=
{

p ∈ H1(Ω) : p ≥ 0,p(1− ρ) = 0
}
.

5 / 17



Deterministic case/Microscopic Deterministic case/Macroscopic Stochastic case Conclusions

The continuous model - part 2

We consider the projection operator P, which is either the
projection in L2(Ld ) or in L2(ρ) (this will turn out to be the same,
since the only relevant zone is {ρ = 1});
Finally we solve the equation

∂tρt +∇ ·
(
ρtPadm(ρt )[ut ]

)
= 0, (1)

in the weak sense.
Main difficulty solving (1): the projected field is neither regular,
nor depending regularly on the density.

A possible approach to
handle this: by duality.
Let us redefine adm(ρ) by duality

adm(ρ) =

{
v ∈ L2(ρ) :

∫
v · ∇p ≤ 0 ∀p ∈ H1(Ω) : p ≥ 0,p(1− ρ) = 0

}
.

In this sense v = Padm(ρ)[u] and u = v +∇p, v ∈ adm(ρ) and

p ∈ press(ρ) :=
{

p ∈ H1(Ω) : p ≥ 0,p(1− ρ) = 0
}
.

5 / 17



Deterministic case/Microscopic Deterministic case/Macroscopic Stochastic case Conclusions

The continuous model - part 2

We consider the projection operator P, which is either the
projection in L2(Ld ) or in L2(ρ) (this will turn out to be the same,
since the only relevant zone is {ρ = 1});
Finally we solve the equation

∂tρt +∇ ·
(
ρtPadm(ρt )[ut ]

)
= 0, (1)

in the weak sense.
Main difficulty solving (1): the projected field is neither regular,
nor depending regularly on the density. A possible approach to
handle this: by duality.

Let us redefine adm(ρ) by duality

adm(ρ) =

{
v ∈ L2(ρ) :

∫
v · ∇p ≤ 0 ∀p ∈ H1(Ω) : p ≥ 0,p(1− ρ) = 0

}
.

In this sense v = Padm(ρ)[u] and u = v +∇p, v ∈ adm(ρ) and

p ∈ press(ρ) :=
{

p ∈ H1(Ω) : p ≥ 0,p(1− ρ) = 0
}
.

5 / 17



Deterministic case/Microscopic Deterministic case/Macroscopic Stochastic case Conclusions

The continuous model - part 2

We consider the projection operator P, which is either the
projection in L2(Ld ) or in L2(ρ) (this will turn out to be the same,
since the only relevant zone is {ρ = 1});
Finally we solve the equation

∂tρt +∇ ·
(
ρtPadm(ρt )[ut ]

)
= 0, (1)

in the weak sense.
Main difficulty solving (1): the projected field is neither regular,
nor depending regularly on the density. A possible approach to
handle this: by duality.
Let us redefine adm(ρ) by duality

adm(ρ) =

{
v ∈ L2(ρ) :

∫
v · ∇p ≤ 0 ∀p ∈ H1(Ω) : p ≥ 0,p(1− ρ) = 0

}
.

In this sense v = Padm(ρ)[u] and u = v +∇p, v ∈ adm(ρ) and

p ∈ press(ρ) :=
{

p ∈ H1(Ω) : p ≥ 0,p(1− ρ) = 0
}
.

5 / 17



Deterministic case/Microscopic Deterministic case/Macroscopic Stochastic case Conclusions

The continuous model - part 2

We consider the projection operator P, which is either the
projection in L2(Ld ) or in L2(ρ) (this will turn out to be the same,
since the only relevant zone is {ρ = 1});
Finally we solve the equation

∂tρt +∇ ·
(
ρtPadm(ρt )[ut ]

)
= 0, (1)

in the weak sense.
Main difficulty solving (1): the projected field is neither regular,
nor depending regularly on the density. A possible approach to
handle this: by duality.
Let us redefine adm(ρ) by duality

adm(ρ) =

{
v ∈ L2(ρ) :

∫
v · ∇p ≤ 0 ∀p ∈ H1(Ω) : p ≥ 0,p(1− ρ) = 0

}
.

In this sense v = Padm(ρ)[u] and u = v +∇p, v ∈ adm(ρ) and

p ∈ press(ρ) :=
{

p ∈ H1(Ω) : p ≥ 0,p(1− ρ) = 0
}
.

5 / 17



Deterministic case/Microscopic Deterministic case/Macroscopic Stochastic case Conclusions

Wasserstein distances and Kantorovich potentials

For two (absolutely cont.) probability measures µ, ν ∈ P(Ω) de
define

W 2
2 (µ, ν) : = inf

{∫
1
2
|x − T (x)|2dµ : T : Ω→ Ω,T#µ = ν

}
= supφ,ψ∈Lip(Ω)

{∫
φdµ+

∫
ψdν : φ(x) + ψ(y) ≤ |x − y |2

2

}
.

Under suitable assumptions there exists T (optimal transport
map) and (φ, ψ) (Kantorovich potentials) and they are linked via

T (x) = x −∇φ(x).

W2 metrizes the weak-* topology on P(Ω) for compact domains
Ω.
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Solution of the continuity equation for gradient fields

If the vector field of the particles is given by ut := −∇Vt ,∀t , then
the solution of (1) can be obtained by the gradient flow of the
functional

F(ρ) :=

∫
Ω

Vt (x)dρ(x) + IK (ρ),

where IK is the indicator function of K := {ρ ∈ P(Ω) : ρ ≤ 1},
which is 0 in K and +∞ outside of K ;

Use the JKO scheme to get a solution, which is for τ > 0,
ρτ0 := ρ0 and for k ∈ N, k ≥ 0 we consider the scheme

ρτk+1 ∈ argminρ∈P(Ω)

(
F(ρ) +

1
2τ

W 2
2 (ρ, ρτk )

)
(2)

Construct piecewise constant and geodesic interpolations;
Define the corresponding velocities;
Pass to the limit τ → 0.
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Deriving the pressure via the projection

For the projection in the Wasserstein sense of a measure ν ∈ P(Ω),
we have to solve

min
ρ∈K

1
2

W 2
2 (ρ, ν).

By duality, the optimal ρ have to optimize also minρ∈K
∫

Ω
φdρ, for the

Kantorovich potential φ from ρ to ν. This will imply that ∃l s.t.

ρ =

 1, on φ < l ,
∈ [0,1], on φ = l ,
0, on φ > l .

It follows that p := (t − φ)+ ≥ 0 satisfies p(1− ρ) = 0, hence it is an
admissible pressure, and we have that

T (x) = x −∇φ(x) = x +∇p, ρ− a.e.

is the optimal transport map from the projected field to the original
one.

8 / 17
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In our case

Remark that

||∇p||L2(ρτn+1) = W2(ρτn+1, ρ̃
τ
n+1) ≤W2(ρτn , ρ̃

τ
n+1) ≤ τ ||unτ ||L2(ρτn ).

This indicates us to rescale the pressure with τ, hence we have

•
ρτn

id
+
τunτ

•
ρ̃τn+1

id
+
τ∇p

•
ρτn+1(id + τunτ )−1 ◦ (id + τ∇p)

Remark: (id + τunτ )−1 ◦ (id + τ∇p) = id − τ(unτ −∇p) + o(τ),
provided u is regular enough. This will allow us to take the limit as
τ → 0 and get a solution of the continuity equation.
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Adding a diffusion term

Motivation: initial point in the study of second order MFG
systems with density constraints.

The Fokker-Planck type equation, we get is

∂tρt −∆ρt +∇ · (Padm(ρt )[ut ]ρt ) = 0, (3)

which is exactly

∂tρt −∆ρt +∇ ·
(

Padm(ρt )

[
ut −

∇ρt

ρt

]
ρt

)
= 0,

because ∇ρρ = 0 on {ρ = 1}.
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How to show the existence of a solution of (3)?

If the velocity field is again a gradient (ut = −∇Vt ), then we can argue
similarly as in the deterministic case by the JKO scheme3 using the
gradient flow4 of the perturbed entropy functional

F(ρ) :=

∫
Ω

Vtdρ+

∫
Ω

ρ ln ρ+ IK (ρ).

For general fields let us construct the discrete densities.
Fix τ > 0 and for ρτn we construct ρτn+1.

3R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck
equation, SIAM J. Math. Anal., (1998).

4L. Ambrosio, N. Gigli, G. Savaré, Grandient flows in metric spaces and in the space
of probability measures, Birkhäuser, (2005).
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The splitting algorithms

First approach
Take a random variable with X ∼ ρτn .
Construct a new r.v. Y = (id + τunτ ) ◦ X + Wτ , where W is a
Brownian motion independent of X .
Define ρ̃τn+1 = L(Y ) and ρτn+1 = PK (ρ̃τn+1).

In this case
ρ̃τn+1 = ((id + τuτn)#ρ

τ
n ) ∗ η√τ ,

where ηθ is a Gaussian of size θ.
Second approach
Solve the Fokker-Planck equation with initial datum ρτn{

∂tρt −∆ρt +∇ · (ut+nτρt ) = 0
ρ0 = ρτn .

Set ρτn+1 = PK (ρ̃τn+1), where ρ̃τn+1 = ρτ .
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The splitting algorithms - part 2

Some difficulties:

Getting uniform estimates as τ → 0 involve uniform estimations
for W2(ρn, ρ̃n+1), which are linked roughly to some estimations on
the heat equation between time 0 and τ.
These are available under higher regularity assumptions (BV for
the initial data).

Third approach which is working, but not so natural:
Construct ρ̃τn+1 := (id + τunτ )#ρ

τ
n .

Define

ρτn+1 := argminρ∈K

∫
Ω

ρ ln ρ+
1
2τ

W 2
2 (ρ, ρ̃τn+1).
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Deriving the Fokker-Planck equation

As in the deterministic case the optimizer in the above problem for the
optimal ρ we have: that ∃l s.t.

ρ =


1, on

(
ln ρ+ φ

τ

)
< l ,

∈ [0,1], on
(

ln ρ+ φ
τ

)
= l ,

0, on
(

ln ρ+ φ
τ

)
> l ,

from where we define the admissible pressure p :=
(

t − ln ρ− φ
τ

)
+
.

This will imply that the optimal transport map from ρτn+1 to ρ̃τn+1 is

id + τ
(
∇p + ∇ρ

ρ

)
.

The situation is described on the picture below:
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•ρτn

id +
τunτ

•
ρ̃τn+1 id +

τ(∇p + ∇ρ
ρ )

•ρτn+1
id −τ(unτ−∇p−∇ρρ )+o(τ)

Notice again, that

(id+τunτ )−1◦
(

id + τ

(
∇p +

∇ρ
ρ

))
= id−τ

(
unτ −∇p − ∇ρ

ρ

)
+o(τ),

provided u has enough regularity.
Hence letting τ → 0, we derive

∂tρt −∆ρt +∇ · (ρt (ut −∇pt )) = 0.
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Final conclusions, remarks and perspectives

The presented model generalizes the deterministic setting,
adding a diffusion term.

Need more work on the first two approaches to get uniform
estimates.
Open question: Invariance of the BV densities under the
projection PK .

Perspective: insert this model into second order MFG systems
with density constraints.
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Thank you for your attention!
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