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and F. Santambrogio? in 2010.
The model:

@ The population of the particles is described by a probability
measure (here actually we can identify probability measures with
their densities, because we are working only with absolutely
continuous measures) p € P(Q);

@ The non-overlapping constraint is replaced by the condition
peK={peP():p<1}

@ For every time t, we consider u; : Q — RY a vector field, possibly
depending on p;

@ For every density p we have a set of admissible velocities,
characterized by the sign of the divergence on the saturated
region {p = 1}, so the set is:
adm(p) :={v:Q—>RI:V-v>0o0n{p=1}};

2Maury, B. et al. A macroscopic crowd motion model of gradient flow type, M3AS,
(2010)
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@ We consider the projection operator P, which is either the
projection in L2(£9) or in L2(p) (this will turn out to be the same,
since the only relevant zone is {p = 1});

@ Finally we solve the equation

Opt + V - (ptPagm(pnltt]) = 0, (1)

in the weak sense.

@ Main difficulty solving (1): the projected field is neither regular,
nor depending regularly on the density. A possible approach to
handle this: by duality.

@ Let us redefine adm(p) by duality

adm(p)z{veLz(p):/v-VngVpeH‘(Q):pzo,pU —p):O}

@ In this sense v = Pagm(p)[u] and u = v + Vp, v € adm(p) and

p € press(p) == {pe H'(Q) : p>0,p(1—p) =0}.
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@ For two (absolutely cont.) probability measures p, v € P(Q2) de
define

W2(u,v) : _inf{/;|x TO)Pdu:T:Q—Q, T#,u—u}

_ 2
= SUPs yeLip() {/¢dﬁb+/wdu Co(x) +Y(y) < X 2}" }

@ Under suitable assumptions there exists T (optimal transport
map) and (¢, ¢) (Kantorovich potentials) and they are linked via

T(x) = x — V¢(x).

@ W, metrizes the weak-* topology on P(2) for compact domains
Q.
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@ If the vector field of the particles is given by u; := —V V4, Vt, then
the solution of (1) can be obtained by the gradient flow of the
functional

Flp) = /Q Vi(x)dp(x) + (o),

where I is the indicator function of K := {p € P(Q) : p < 1},
which is 0 in K and +oco outside of K;

@ Use the JKO scheme to get a solution, which is for 7 > 0,
pg = po and for k € N, k > 0 we consider the scheme

. 1 T
Priq € argmin e p(q) (]:(p) + > Wf(m Pk)) (2)

@ Construct piecewise constant and geodesic interpolations;
@ Define the corresponding velocities;
@ Pass to the limit 7 — 0.
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Deriving the pressure via the projection

For the projection in the Wasserstein sense of a measure v € P(Q),
we have to solve

.
min 5 W2 (p,v)-

By duality, the optimal p have to optimize also min,cx [, ¢dp, for the
Kantorovich potential ¢ from p to v. This will imply that 3/ s.t.

1, on ¢ < I,
p: E[071]’ 0n¢:l7
0, on¢ > I

It follows that p := (t — ¢)4 > 0 satisfies p(1 — p) = 0, hence itis an
admissible pressure, and we have that

T(x)=x—V¢(x)=x+Vp, p—ae.

is the optimal transport map from the projected field to the original
one.
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Deterministic case/Macroscopic

In our case

Remark that

IVPIlzr, ) = Walpnit, rit) < Walph, Brit) < Tlluncellz(oz)-

This indicates us to rescale the pressure with 7, hence we have

[ ]
pn (id 4 TUn. )~ o (id + TV P)Phi1

Remark: (id 4+ 7uUp, )" o (id + 7Vp) = id — 7(Un, — VP) + 0(7),
provided u is regular enough. This will allow us to take the limit as
7 — 0 and get a solution of the continuity equation.
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Adding a diffusion term

@ Motivation: initial point in the study of second order MFG
systems with density constraints.

@ The Fokker-Planck type equation, we get is
Orpt — Dpt + V- (Pagm(py[Utlpt) = 0, (3)
which is exactly

A\
Opt — Dpt +V - (Padm(p,) |:Ut - p[:t} Pt) =0,

because Y2 = 0on {p = 1}.
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3R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck
equation, SIAM J. Math. Anal., (1998).

4L. Ambrosio, N. Gigli, G. Savaré, Grandient flows in metric spaces and in the space
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11 /17



Stochastic case

How to show the existence of a solution of (3)?

If the velocity field is again a gradient (u; = —V V;), then we can argue
similarly as in the deterministic case by the JKO scheme?® using the
gradient flow* of the perturbed entropy functional

F(p) :=/Qthp+/Qp|np+/K(p)-

For general fields let us construct the discrete densities.

3R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck
equation, SIAM J. Math. Anal., (1998).
4L. Ambrosio, N. Gigli, G. Savaré, Grandient flows in metric spaces and in the space

of probability measures, Birkhauser, (2005). 730



Stochastic case

How to show the existence of a solution of (3)?

If the velocity field is again a gradient (u; = —V V;), then we can argue
similarly as in the deterministic case by the JKO scheme?® using the
gradient flow* of the perturbed entropy functional

F(p) :=/Qthp+/Qp|np+/K(p)-

For general fields let us construct the discrete densities.
Fix 7 > 0 and for p], we construct p7, ;.

3R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck
equation, SIAM J. Math. Anal., (1998).

4L. Ambrosio, N. Gigli, G. Savaré, Grandient flows in metric spaces and in the space
of probability measures, Birkhauser, (2005).
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@ Take a random variable with X ~ p7.

@ Constructanew r.v. Y = (id + 7un,) o X + W,, where W is a
Brownian motion independent of X.

@ Define p],,., = L(Y) and p},,y = Px(p},1)-
@ In this case
i1 = ((fd + TUrn)gpp) * 07,
where 7y is a Gaussian of size 6.

Second approach
Solve the Fokker-Planck equation with initial datum p7,

{ Opt — Dpt + V - (Utsnrpr) =0
po = pp-

Set Phyt = PK(ﬁ;JA ), where Prit = Pr-

12/17
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The splitting algorithms - part 2

Some difficulties:

@ Getting uniform estimates as = — 0 involve uniform estimations
for Wa(pn, pnt1), which are linked roughly to some estimations on
the heat equation between time 0 and 7.

@ These are available under higher regularity assumptions (BV for
the initial data).

Third approach which is working, but not so natural:
@ Construct 57, := (id + TUnr) 4P}
@ Define

. 1 ~
Pt = argmln,,eK/QplnpﬂL §W§(p,pﬁ+1)~

13/17
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Stochastic case

Deriving the Fokker-Planck equation

As in the deterministic case the optimizer in the above problem for the
optimal p we have: that 3/ s.t.

1, on (Inp+2) <1,
p=13 €[0,1], on (Inp+2)=1,
0, on (Inp+2)>1,

from where we define the admissible pressure p := (t —Inp— $)+
This will imply that the optimal transport map from o7, to 47, is
id + 7 (Vp + %) .

The situation is described on the picture below:

14/17



Stochastic case

Prt
n+ &
<00 77]%0
8% 0
\ ;ej
Ppn® <- """ TTo oo oo Tom oo moo oo .P;+1
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Stochastic case

Notice again, that
(id+7Un:) "o <id +7 <Vp + vp’0)> = id—T1 <u,,T - Vp-— V;)) +o(7),
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Stochastic case

Notice again, that

(id+run7)1o<id +7 <Vp + vp’0)> = id—T1 <u,,T - Vp-— vf)%—o(r),

provided u has enough regularity.
Hence letting = — 0, we derive

Opt — Dpt +V - (pe(ur — Vpr)) = 0.

15/17
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Conclusions

Final conclusions, remarks and perspectives

@ The presented model generalizes the deterministic setting,
adding a diffusion term.

@ Need more work on the first two approaches to get uniform
estimates.

@ Open question: Invariance of the BV densities under the
projection Pgk.

@ Perspective: insert this model into second order MFG systems
with density constraints.
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Conclusions

Thank you for your attention!
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