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Main problems

Problems we are interested in:

I. Nash equilibria for N–players LQG games with ergodic cost
(via HJB + KFP equations)

II. Solutions to MFE obtained formally from the above
(as in Lasry & Lions)

III. Rigorous relation between the two as N → +∞

Goal: Generalize results by Bardi (2011) in 1d case

[see also Lasry & Lions (2006, 2007), Guéant, Lasry & Lions (2011),
Huang, Caines & Malhamé (2004, 2007), Bensoussan, Sung, Yam &
Yung (2011)]
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N–players games Formulation of the problem

N–players LQG games in R
d

We consider games with

linear stochastic dynamics
w.r.t. state & control

quadratic ergodic cost
w.r.t. state & control
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N–players games Formulation of the problem

N–players LQG games in R
d

We consider games with

linear stochastic dynamics
w.r.t. state & control

quadratic ergodic cost
w.r.t. state & control

For simplicity we focus on nearly identical players, i.e., we assume

all players have the same dynamics

all players have the same cost for the control

players are indistinguishable (symmetry assumption)

but analogous results hold also for general games!
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N–players games Formulation of the problem

Consider for i = 1, . . . , N

dX i
t = (AX i

t − αi
t)dt+ σ dW i

t X i
0 = xi ∈ R

d
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N–players games Formulation of the problem

Consider for i = 1, . . . , N

dX i
t = (AX i

t − αi
t)dt+ σ dW i

t X i
0 = xi ∈ R

d

J i(X0, α
1, . . . , αN)

.
= lim inf

T→∞

1

T
E

[
∫ T

0

(αi
t)

TRαi
t

2

+ (Xt −Xi)
TQi(Xt −Xi)

︸ ︷︷ ︸

F i(X1,...,XN )

dt

]

where A ∈ R
d×d, αi

t controls, σ invertible, W i
t Brownian,
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N–players games Formulation of the problem

Consider for i = 1, . . . , N

dX i
t = (AX i

t − αi
t)dt+ σ dW i

t X i
0 = xi ∈ R

d

J i(X0, α
1, . . . , αN)

.
= lim inf

T→∞

1

T
E

[
∫ T

0

(αi
t)

TRαi
t

2

+ (Xt −Xi)
TQi(Xt −Xi)

︸ ︷︷ ︸

F i(X1,...,XN )

dt

]

where A ∈ R
d×d, αi

t controls, σ invertible, W i
t Brownian,

R ∈ R
d×d symm. pos. def., Xt = (X1

t , . . . , X
N
t ) ∈ R

Nd state var.,

Xi = (X1
i , . . . , X

N
i ) ∈ R

Nd vector of favorite positions,
Qi ∈ R

Nd×Nd block matrix
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N–players games Formulation of the problem

Xi = (X1
i , . . . , X

N
i ) ∈ R

Nd s.t.
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N–players games Formulation of the problem

Xi = (X1
i , . . . , X

N
i ) ∈ R

Nd s.t.

X i
i = h ∀i (preferred position)

X
j
i = r ∀j 6= i (reference position)
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Xi = (X1
i , . . . , X

N
i ) ∈ R

Nd s.t.

X i
i = h ∀i (preferred position)

X
j
i = r ∀j 6= i (reference position)

Qi ∈ R
Nd×Nd block matrix (Qi

jk)j,k ∈ R
d×d s.t.

F i(X1, . . . , XN) =
N∑
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(Xj
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j
i )

TQi
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k
t −Xk
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N–players games Formulation of the problem

Xi = (X1
i , . . . , X

N
i ) ∈ R

Nd s.t.

X i
i = h ∀i (preferred position)

X
j
i = r ∀j 6= i (reference position)

Qi ∈ R
Nd×Nd block matrix (Qi

jk)j,k ∈ R
d×d s.t.

F i(X1, . . . , XN) =
N∑

j,k=1

(Xj
t −X

j
i )

TQi
jk(X

k
t −Xk

i )

satisfies

Qi
ii = Q symm. pos. def. ∀i

Qi
ij = Qi

ji = B ∀j 6= i

Qi
jj = Ci ∀j 6= i

Qi
jk = Qi

kj = Di ∀j 6= k 6= i 6= j
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N–players games Formulation of the problem

Admissible strategies

A control αi
t adapted to W i

t is an admissible strategy if

E[X i
t ],E[X

i
t(X

i
t)

T ] ≤ C for all t > 0

∃ probability measure mαi s.t.

lim
T→+∞

1

T
E

[∫ T

0

g(X i
t) dt

]

=

∫

Rd

g(ξ) dmαi(ξ)

for any polynomial g, with deg(g) ≤ 2, loc. unif. in X i
0.
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Admissible strategies

A control αi
t adapted to W i

t is an admissible strategy if

E[X i
t ],E[X

i
t(X

i
t)

T ] ≤ C for all t > 0

∃ probability measure mαi s.t.

lim
T→+∞

1

T
E

[∫ T

0

g(X i
t) dt

]

=

∫

Rd

g(ξ) dmαi(ξ)

for any polynomial g, with deg(g) ≤ 2, loc. unif. in X i
0.

Example. Any affine αi(x) = Kx+ c with “K −A > 0” is admissible
and the corresponding diffusion process

dX i
t =

(
(A−K)X i

t − c
)
dt+ σdW i

t

is ergodic with mαi = multivariate Gaussian
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N–players games Formulation of the problem

Admissible strategies

A control αi
t adapted to W i

t is an admissible strategy if

E[X i
t ],E[X

i
t(X

i
t)

T ] ≤ C for all t > 0

∃ probability measure mαi s.t.

lim
T→+∞

1

T
E

[∫ T

0

g(X i
t) dt

]

=

∫

Rd

g(ξ) dmαi(ξ)

for any polynomial g, with deg(g) ≤ 2, loc. unif. in X i
0.

Nash equilibria

Any set of admissible strategies α1, . . . , αN such that

J i(X,α1, . . . , αN ) = min
ω

J i(X,α1, . . . , αi−1, ω, αi+1, . . . , αN)

for any i = 1, . . . , N
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N–players games HJB+KFP

For this N–players game HJB+KFP are given by







−tr(νD2vi) +H(x,∇vi) + λi = f i(x;m1, . . . ,mN )

−tr(νD2mi) + div
(

mi ∂H
∂p

(x,∇vi)
)

= 0

x ∈ R
d mi > 0

∫

Rd

mi(x) dx = 1

(1)

where

ν =
σTσ

2
H(x, p) = pT

R−1

2
p− pTAx

f i(x;m1, . . . ,mN )
.
=

∫

R(N−1)d

F i(ξ1, . . . , ξi−1, x, ξi+1, . . . ξN )
∏

j 6=i

dmj(ξj)
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For this N–players game HJB+KFP are given by







−tr(νD2vi) +H(x,∇vi) + λi = f i(x;m1, . . . ,mN )

−tr(νD2mi) + div
(

mi ∂H
∂p

(x,∇vi)
)

= 0

x ∈ R
d mi > 0

∫

Rd

mi(x) dx = 1

(1)

where

ν =
σTσ

2
H(x, p) = pT

R−1

2
p− pTAx

f i(x;m1, . . . ,mN )
.
=

∫

R(N−1)d

F i(ξ1, . . . , ξi−1, x, ξi+1, . . . ξN )
∏

j 6=i

dmj(ξj)

2N equations with unknowns λi, vi,mi, but always x ∈ R
d!
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N–players games HJB+KFP

For this N–players game HJB+KFP are given by







−tr(νD2vi) +H(x,∇vi) + λi = f i(x;m1, . . . ,mN )

−tr(νD2mi) + div
(

mi ∂H
∂p

(x,∇vi)
)

= 0

x ∈ R
d mi > 0

∫

Rd

mi(x) dx = 1

(1)

where

ν =
σTσ

2
H(x, p) = pT

R−1

2
p− pTAx

f i(x;m1, . . . ,mN )
.
=

∫

R(N−1)d

F i(ξ1, . . . , ξi−1, x, ξi+1, . . . ξN )
∏

j 6=i

dmj(ξj)

Search for solutions of Quadratic–Gaussian (QG) type + identically distr.

λi ∈ R vi(x) = xT Λ

2
x+ ρx mi(x) = γ exp

{

− 1

2
(x − µ)TΣ(x− µ)

}
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N–players games Main result

Theorem 1. For N–players LQG game

Existence & uniquess λi, vi, mi sol. to (1) with vi, mi QG
⇔ Algebraic conditions
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N–players games Main result

Theorem 1. For N–players LQG game

Existence & uniquess λi, vi, mi sol. to (1) with vi, mi QG
⇔ Algebraic conditions

αi = R−1∇vi(x) provides Nash equilibria strategies and
λi = J i(X0, α

1, . . . , αN) for i = 1, . . . , N

Proof.
(i) By plugging into (1)

vi(x) = xT Λ

2
x+ ρx mi(x) = γ exp

{

− 1

2
(x− µ)TΣ(x− µ)

}

 algebraic conditions on ρ, µ ∈ R
d, Λ,Σ∈R

d×d

(ii) Verification theorem, using Dynkin’s formula and ergodicity
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N–players games Algebraic conditions

Indeed,

∇vi(x) = Λx+ ρ ∇mi(x) = −mi(x)Σ(x− µ)
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N–players games Algebraic conditions

Indeed,

∇vi(x) = Λx+ ρ ∇mi(x) = −mi(x)Σ(x− µ)

KFP
Λ = R

(
νΣ+A

)
ρ = −RνΣµ
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N–players games Algebraic conditions

Indeed,

∇vi(x) = Λx+ ρ ∇mi(x) = −mi(x)Σ(x− µ)

KFP
Λ = R

(
νΣ+A

)
ρ = −RνΣµ

HJB

Σ
νRν

2
Σ− ATRA

2
= Q

−
(

ATRA

2
+Q+ (N − 1)B

)

µ = −Qh− (N − 1)Br

(µ)T
ΣνRνΣ

2
µ− tr(νRνΣ+ νRA) + λi = fi(Σ, µ)
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HJB

Σ solves ARE X
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2
X −

(
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2
+Q

)

= 0

−
(
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2
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)
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∇vi(x) = Λx+ ρ ∇mi(x) = −mi(x)Σ(x− µ)

KFP
Λ = R

(
νΣ+A

)
ρ = −RνΣµ

HJB

Σ solves ARE X
νRν

2
X −

(
ATRA

2
+Q

)

= 0

µ solves linear system By = C for B .
=

ATRA

2
+Q+ (N − 1)B

(µ)T
ΣνRνΣ

2
µ− tr(νRνΣ+ νRA) + λi = fi(Σ, µ)
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N–players games Algebraic conditions

Indeed,

∇vi(x) = Λx+ ρ ∇mi(x) = −mi(x)Σ(x− µ)

KFP
Λ = R

(
νΣ+A

)
ρ = −RνΣµ

HJB

Σ solves ARE X
νRν

2
X −

(
ATRA

2
+Q

)

= 0

µ solves linear system By = C for B .
=

ATRA

2
+Q+ (N − 1)B

λi = explicit function of Σ and µ
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N–players games Algebraic conditions

Algebraic conditions

Existence

Uniqueness
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N–players games Algebraic conditions

Algebraic conditions

Existence

there holds
rank B = rank [B, C]

[iff the system By = C has solutions]

Uniqueness
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N–players games Algebraic conditions

Algebraic conditions

Existence

there holds
rank B = rank [B, C]

[iff the system By = C has solutions]

the unique Σ > 0 that solves ARE also solves Sylvester’s eq.

XνR− RνX = RA− ATR

[iff R
(
νΣ + A

)
symm. matrix]

Uniqueness
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N–players games Algebraic conditions

Algebraic conditions

Existence

there holds
rank B = rank [B, C]

[iff the system By = C has solutions]

the unique Σ > 0 that solves ARE also solves Sylvester’s eq.

XνR− RνX = RA− ATR

[iff R
(
νΣ + A

)
symm. matrix]

Uniqueness

B is invertible

[iff the system By = C has solutions]

Fabio S. Priuli (Univ. Roma Tor Vergata) Padova, September 4th, 2013



Mean field equations Formulation of the problem

Mean field equations

Nearly identical players implies that the costs F i(X1, . . . , XN) can
be written as function of the empirical density of other players

F i(X1, . . . , XN) = V
i

N

[

1

N − 1

∑

j 6=i

δXj

]

(X i)
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Mean field equations

Nearly identical players implies that the costs F i(X1, . . . , XN) can
be written as function of the empirical density of other players

F i(X1, . . . , XN) = V
i

N

[

1

N − 1

∑

j 6=i

δXj

]

(X i)

where

V
i

N : {prob. meas. on R
d} → {quadratic polynomials on R

d}
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Mean field equations Formulation of the problem

Mean field equations

Nearly identical players implies that the costs F i(X1, . . . , XN) can
be written as function of the empirical density of other players

F i(X1, . . . , XN) = V
i

N

[

1

N − 1

∑

j 6=i

δXj

]

(X i)

where

V
i

N : {prob. meas. on R
d} → {quadratic polynomials on R

d}
V

i

N [m](X)
.
= (X − h)TQN (X − h)

+ (N − 1)

∫

Rd

(

(X − h)T
BN

2
(ξ − r) + (ξ − r)T

BN

2
(X − h)

)

dm(ξ)

+ (N − 1)

∫

Rd

(ξ − r)T (CN
i −DN

i )(ξ − r) dm(ξ)

+

(

(N − 1)

∫

Rd

(ξ − r) dm(ξ)

)T

DN
i

(

(N − 1)

∫

Rd

(ξ − r) dm(ξ)

)
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Mean field equations Formulation of the problem

Assuming that the coefficients scale as follows as N → ∞

QN → Q̂ > 0 BN (N − 1) → B̂

CN
i (N − 1) → Ĉ DN

i (N − 1)2 → D̂

then for any prob. measure m on R
d and all i = 1, . . . , N

V
i
N [m](X) → V̂ [m](X) loc. unif. in X
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Mean field equations Formulation of the problem

Assuming that the coefficients scale as follows as N → ∞

QN → Q̂ > 0 BN (N − 1) → B̂

CN
i (N − 1) → Ĉ DN

i (N − 1)2 → D̂

then for any prob. measure m on R
d and all i = 1, . . . , N

V
i
N [m](X) → V̂ [m](X) loc. unif. in X

where

V̂ [m](X)
.
= (X − h)T Q̂(X − h)

+

∫

Rd

(

(X − h)T
B̂

2
(ξ − r) + (ξ − r)T

B̂

2
(X − h)

)

dm(ξ)

+

∫

Rd

(ξ − r)T Ĉ(ξ − r) dm(ξ)

+

(∫

Rd

(ξ − r) dm(ξ)

)T

D̂

(∫

Rd

(ξ − r) dm(ξ)

)
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Mean field equations Formulation of the problem

Thus passing formally to the limit as N → ∞ in HJB+KFP







−tr(νD2u) +H(x,Du) + λ = V̂ [m](x)

−tr(νD2m)− div
(

m ∂H
∂p

(x,Du)
)

= 0

x ∈ R
d m > 0

∫

Rd

m(x) dx = 1

(MFE)

We look for solutions λ, u,m such that u,m is QG

u(x) = xT Λ

2
x+ ρx m(x) = γ exp

{

− 1

2
(x− µ)TΣ(x− µ)

}
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Mean field equations Main result

Thus passing formally to the limit as N → ∞ in HJB+KFP







−tr(νD2u) +H(x,Du) + λ = V̂ [m](x)

−tr(νD2m)− div
(

m ∂H
∂p

(x,Du)
)

= 0

x ∈ R
d m > 0

∫

Rd

m(x) dx = 1

(MFE)

Theorem 2.

Existence & uniquess λ, u,m sol. to MFE with u,m QG ⇔
Algebraic conditions
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Mean field equations Main result

Thus passing formally to the limit as N → ∞ in HJB+KFP







−tr(νD2u) +H(x,Du) + λ = V̂ [m](x)

−tr(νD2m)− div
(

m ∂H
∂p

(x,Du)
)

= 0

x ∈ R
d m > 0

∫

Rd

m(x) dx = 1

(MFE)

Theorem 2.

Existence & uniquess λ, u,m sol. to MFE with u,m QG ⇔
Algebraic conditions

V̂ is a monotone operator iff B̂ ≥ 0 and if so QG sol. is the
unique solution to MFE
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Theorem 3. Assume

(i)
QN → Q̂ BN(N − 1) → B̂

CN
i (N − 1) → Ĉ DN

i (N − 1)2 → D̂

(ii) HJB+KFP for N–players admit QG sol. (vN , mN , λ
1
N , . . . λ

N
N)

(iii) MFE admits unique QG solution (u,m, λ)
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Limit as N → ∞

Theorem 3. Assume

(i)
QN → Q̂ BN(N − 1) → B̂

CN
i (N − 1) → Ĉ DN

i (N − 1)2 → D̂

(ii) HJB+KFP for N–players admit QG sol. (vN , mN , λ
1
N , . . . λ

N
N)

(iii) MFE admits unique QG solution (u,m, λ)

Then
vN → u in C

2
loc(R

d)

mN → m in C
k(Rd) for all k

λi
N → λ for all i
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Conclusions

Characterization of existence & uniqueness for QG sols to
N–players LQG games, which give Nash equilibrium strategies

Characterization of existence & uniqueness for QG sols to MFE
+ Characterization of monotonicity V̂

Convergence QG sols of HJB+KFP to sols of MFE as N → +∞

Algebraic conditions can be directly verified for some games
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N–players game with R = rId, ν = nId, A symmetric, B ≥ 0

Algebraic conditions

X
νRν

2
X =

ATRA

2
+Q =⇒ XνR− RνX = RA−ATR

becomes nr(X −X) = r(A− AT ), true for all matrices X

B = Q + r
A2

2
+

B

2
> 0
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Algebraic conditions

X
νRν

2
X =

ATRA

2
+Q =⇒ XνR− RνX = RA−ATR

becomes nr(X −X) = r(A− AT ), true for all matrices X

B = Q + r
A2

2
+

B

2
> 0

∃! QG solution, with Σ,Λ, µ, ρ satisfying

Σ2 =
2

rn2

(

r
A2

2
+Q

)

Bµ = C

Λ = r
(
nΣ + A

)
ρ = −rnΣµ
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Conclusions Example

N–players game with R = rId, ν = nId, A symmetric, B ≥ 0

Algebraic conditions

X
νRν

2
X =

ATRA

2
+Q =⇒ XνR− RνX = RA−ATR

becomes nr(X −X) = r(A− AT ), true for all matrices X

B = Q + r
A2

2
+

B

2
> 0

∃! QG solution, with Σ,Λ, µ, ρ satisfying

Σ =
2

n
√
r

√

r
A2

2
+Q µ = B−1C

Λ = r
(
nΣ + A

)
ρ = −rnΣµ
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And Finally...

Thanks
for Your Attention!

Fabio S. Priuli (Univ. Roma Tor Vergata) Padova, September 4th, 2013
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