LQG Mean-Field Games with ergodic cost in \mathbb{R}^{d}

Fabio S. Priuli
University of Roma Tor Vergata
joint work with: M. Bardi (Univ. Padova)
Padova, September 4th, 2013

Problems we are interested in:
I. Nash equilibria for N-players LQG games with ergodic cost (via HJB + KFP equations)

Problems we are interested in:

I. Nash equilibria for N-players LQG games with ergodic cost (via HJB + KFP equations)
II. Solutions to MFE obtained formally from the above (as in Lasry \& Lions)

Problems we are interested in:

I. Nash equilibria for N-players LQG games with ergodic cost (via HJB + KFP equations)
II. Solutions to MFE obtained formally from the above (as in Lasry \& Lions)
III. Rigorous relation between the two as $N \rightarrow+\infty$

Problems we are interested in:

I. Nash equilibria for N-players LQG games with ergodic cost (via HJB + KFP equations)
II. Solutions to MFE obtained formally from the above (as in Lasry \& Lions)
III. Rigorous relation between the two as $N \rightarrow+\infty$

Goal: Generalize results by Bardi (2011) in 1d case

Problems we are interested in:

I. Nash equilibria for N-players LQG games with ergodic cost (via HJB + KFP equations)
II. Solutions to MFE obtained formally from the above (as in Lasry \& Lions)
III. Rigorous relation between the two as $N \rightarrow+\infty$

Goal: Generalize results by Bardi (2011) in 1d case [see also Lasry \& Lions (2006, 2007), Guéant, Lasry \& Lions (2011), Huang, Caines \& Malhamé (2004, 2007), Bensoussan, Sung, Yam \& Yung (2011)]

N-players LQG games in \mathbb{R}^{d}

We consider games with
linear stochastic dynamics
w.r.t. state \& control
quadratic ergodic cost w.r.t. state \& control

N-players LQG games in \mathbb{R}^{d}

We consider games with
linear stochastic dynamics w.r.t. state \& control
quadratic ergodic cost w.r.t. state \& control

For simplicity we focus on nearly identical players, i.e., we assume

- all players have the same dynamics
- all players have the same cost for the control
- players are indistinguishable (symmetry assumption)
but analogous results hold also for general games!

Consider for $i=1, \ldots, N$

$$
d X_{t}^{i}=\left(A X_{t}^{i}-\alpha_{t}^{i}\right) d t+\sigma d W_{t}^{i} \quad X_{0}^{i}=x^{i} \in \mathbb{R}^{d}
$$

Consider for $i=1, \ldots, N$

$$
d X_{t}^{i}=\left(A X_{t}^{i}-\alpha_{t}^{i}\right) d t+\sigma d W_{t}^{i} \quad X_{0}^{i}=x^{i} \in \mathbb{R}^{d}
$$

where $A \in \mathbb{R}^{d \times d}, \alpha_{t}^{i}$ controls, σ invertible, W_{t}^{i} Brownian,

Consider for $i=1, \ldots, N$

$$
\begin{aligned}
d X_{t}^{i}=\left(A X_{t}^{i}-\alpha_{t}^{i}\right) d t+ & \sigma d W_{t}^{i} \quad X_{0}^{i}=x^{i} \in \mathbb{R}^{d} \\
J^{i}\left(X_{0}, \alpha^{1}, \ldots, \alpha^{N}\right) \doteq \liminf _{T \rightarrow \infty} & \frac{1}{T} \mathbb{E}\left[\int_{0}^{T} \frac{\left(\alpha_{t}^{i}\right)^{T} R \alpha_{t}^{i}}{2}\right. \\
& +\underbrace{\left(X_{t}-\overline{X_{i}}\right)^{T} Q^{i}\left(X_{t}-\overline{X_{i}}\right)}_{F^{i}\left(X^{1}, \ldots, X^{N}\right)} d t]
\end{aligned}
$$

where $A \in \mathbb{R}^{d \times d}, \alpha_{t}^{i}$ controls, σ invertible, W_{t}^{i} Brownian,

Consider for $i=1, \ldots, N$

$$
\begin{aligned}
d X_{t}^{i}=\left(A X_{t}^{i}-\alpha_{t}^{i}\right) d t+ & \sigma d W_{t}^{i} \quad X_{0}^{i}=x^{i} \in \mathbb{R}^{d} \\
J^{i}\left(X_{0}, \alpha^{1}, \ldots, \alpha^{N}\right) \doteq \liminf _{T \rightarrow \infty} & \frac{1}{T} \mathbb{E}\left[\int_{0}^{T} \frac{\left(\alpha_{t}^{i}\right)^{T} R \alpha_{t}^{i}}{2}\right. \\
& +\underbrace{\left(X_{t}-\overline{X_{i}}\right)^{T} Q^{i}\left(X_{t}-\overline{X_{i}}\right)}_{F^{i}\left(X^{1}, \ldots, X^{N}\right)} d t]
\end{aligned}
$$

where $A \in \mathbb{R}^{d \times d}$, α_{t}^{i} controls, σ invertible, W_{t}^{i} Brownian, $R \in \mathbb{R}^{d \times d}$ symm. pos. def., $X_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{N}\right) \in \mathbb{R}^{N d}$ state var., $\overline{X_{i}}=\left(\overline{X_{i}^{1}}, \ldots, \overline{X_{i}^{N}}\right) \in \mathbb{R}^{N d}$ vector of favorite positions, $Q^{i} \in \mathbb{R}^{N d \times N d}$ block matrix

$$
\overline{X_{i}}=\left(\overline{X_{i}^{1}}, \ldots, \overline{X_{i}^{N}}\right) \in \mathbb{R}^{N d} \text { s.t. }
$$

$\overline{X_{i}}=\left(\overline{X_{i}^{1}}, \ldots, \overline{X_{i}^{N}}\right) \in \mathbb{R}^{N d}$ s.t.

- $\overline{X_{i}^{i}}=h \forall i$ (preferred position)
- $\overline{X_{i}^{j}}=r \forall j \neq i$ (reference position)
$\overline{X_{i}}=\left(\overline{X_{i}^{1}}, \ldots, \overline{X_{i}^{N}}\right) \in \mathbb{R}^{N d}$ s.t.
- $\overline{X_{i}^{i}}=h \forall i$ (preferred position)
- $\overline{X_{i}^{j}}=r \forall j \neq i$ (reference position)
$Q^{i} \in \mathbb{R}^{N d \times N d}$ block matrix $\left(Q_{j k}^{i}\right)_{j, k} \in \mathbb{R}^{d \times d}$ s.t.

$$
F^{i}\left(X^{1}, \ldots, X^{N}\right)=\sum_{j, k=1}^{N}\left(X_{t}^{j}-\overline{X_{i}^{j}}\right)^{T} Q_{j k}^{i}\left(X_{t}^{k}-\overline{X_{i}^{k}}\right)
$$

satisfies
$\overline{X_{i}}=\left(\overline{X_{i}^{1}}, \ldots, \overline{X_{i}^{N}}\right) \in \mathbb{R}^{N d}$ s.t.

- $\overline{X_{i}^{i}}=h \forall i$ (preferred position)
- $\overline{X_{i}^{j}}=r \forall j \neq i$ (reference position)
$Q^{i} \in \mathbb{R}^{N d \times N d}$ block matrix $\left(Q_{j k}^{i}\right)_{j, k} \in \mathbb{R}^{d \times d}$ s.t.

$$
F^{i}\left(X^{1}, \ldots, X^{N}\right)=\sum_{j, k=1}^{N}\left(X_{t}^{j}-\overline{X_{i}^{j}}\right)^{T} Q_{j k}^{i}\left(X_{t}^{k}-\overline{X_{i}^{k}}\right)
$$

satisfies

- $Q_{i i}^{i}=Q$ symm. pos. def. $\forall i$
- $Q_{i j}^{i}=Q_{j i}^{i}=B \quad \forall j \neq i$
$\overline{X_{i}}=\left(\overline{X_{i}^{1}}, \ldots, \overline{X_{i}^{N}}\right) \in \mathbb{R}^{N d}$ s.t.
- $\overline{X_{i}^{i}}=h \forall i$ (preferred position)
- $\overline{X_{i}^{j}}=r \forall j \neq i$ (reference position)
$Q^{i} \in \mathbb{R}^{N d \times N d}$ block matrix $\left(Q_{j k}^{i}\right)_{j, k} \in \mathbb{R}^{d \times d}$ s.t.

$$
F^{i}\left(X^{1}, \ldots, X^{N}\right)=\sum_{j, k=1}^{N}\left(X_{t}^{j}-\overline{X_{i}^{j}}\right)^{T} Q_{j k}^{i}\left(X_{t}^{k}-\overline{X_{i}^{k}}\right)
$$

satisfies

- $Q_{i i}^{i}=Q$ symm. pos. def. $\forall i$
- $Q_{i j}^{i}=Q_{j i}^{i}=B \quad \forall j \neq i$
- $Q_{j j}^{i}=C_{i} \quad \forall j \neq i$
- $Q_{j k}^{i}=Q_{k j}^{i}=D_{i} \quad \forall j \neq k \neq i \neq j$

Admissible strategies

A control α_{t}^{i} adapted to W_{t}^{i} is an admissible strategy if

- $\mathbb{E}\left[X_{t}^{i}\right], \mathbb{E}\left[X_{t}^{i}\left(X_{t}^{i}\right)^{T}\right] \leq C$ for all $t>0$
- \exists probability measure $m_{\alpha^{i}}$ s.t.

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} \mathbb{E}\left[\int_{0}^{T} g\left(X_{t}^{i}\right) d t\right]=\int_{\mathbb{R}^{d}} g(\xi) d m_{\alpha^{i}}(\xi)
$$

for any polynomial g, with $\operatorname{deg}(g) \leq 2$, loc. unif. in X_{0}^{i}.

Admissible strategies

A control α_{t}^{i} adapted to W_{t}^{i} is an admissible strategy if

- $\mathbb{E}\left[X_{t}^{i}\right], \mathbb{E}\left[X_{t}^{i}\left(X_{t}^{i}\right)^{T}\right] \leq C$ for all $t>0$
- \exists probability measure $m_{\alpha^{i}}$ s.t.

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} \mathbb{E}\left[\int_{0}^{T} g\left(X_{t}^{i}\right) d t\right]=\int_{\mathbb{R}^{d}} g(\xi) d m_{\alpha^{i}}(\xi)
$$

for any polynomial g, with $\operatorname{deg}(g) \leq 2$, loc. unif. in X_{0}^{i}.
Example. Any affine $\alpha^{i}(x)=K x+c$ with " $K-A>0$ " is admissible and the corresponding diffusion process

$$
d X_{t}^{i}=\left((A-K) X_{t}^{i}-c\right) d t+\sigma d W_{t}^{i}
$$

is ergodic with $m_{\alpha^{i}}=$ multivariate Gaussian

Admissible strategies

A control α_{t}^{i} adapted to W_{t}^{i} is an admissible strategy if

- $\mathbb{E}\left[X_{t}^{i}\right], \mathbb{E}\left[X_{t}^{i}\left(X_{t}^{i}\right)^{T}\right] \leq C$ for all $t>0$
- \exists probability measure $m_{\alpha^{i}}$ s.t.

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} \mathbb{E}\left[\int_{0}^{T} g\left(X_{t}^{i}\right) d t\right]=\int_{\mathbb{R}^{d}} g(\xi) d m_{\alpha^{i}}(\xi)
$$

for any polynomial g, with $\operatorname{deg}(g) \leq 2$, loc. unif. in X_{0}^{i}.

Nash equilibria

Any set of admissible strategies $\bar{\alpha}^{1}, \ldots, \bar{\alpha}^{N}$ such that

$$
J^{i}\left(X, \bar{\alpha}^{1}, \ldots, \bar{\alpha}^{N}\right)=\min _{\omega} J^{i}\left(X, \bar{\alpha}^{1}, \ldots, \bar{\alpha}^{i-1}, \omega, \bar{\alpha}^{i+1}, \ldots, \bar{\alpha}^{N}\right)
$$

for any $i=1, \ldots, N$

For this N-players game HJB+KFP are given by

$$
\left\{\begin{array}{l}
-\operatorname{tr}\left(\nu D^{2} v^{i}\right)+H\left(x, \nabla v^{i}\right)+\lambda^{i}=f^{i}\left(x ; m^{1}, \ldots, m^{N}\right) \tag{1}\\
-\operatorname{tr}\left(\nu D^{2} m^{i}\right)+\operatorname{div}\left(m^{i} \frac{\partial H}{\partial p}\left(x, \nabla v^{i}\right)\right)=0 \\
x \in \mathbb{R}^{d} \quad m^{i}>0 \quad \int_{\mathbb{R}^{d}} m^{i}(x) d x=1
\end{array}\right.
$$

where

$$
\begin{gathered}
\nu=\frac{\sigma^{T} \sigma}{2} \\
H(x, p)=p^{T} \frac{R^{-1}}{2} p-p^{T} A x \\
f^{i}\left(x ; m^{1}, \ldots, m^{N}\right) \doteq \int_{\mathbb{R}^{(N-1) d}} F^{i}\left(\xi^{1}, \ldots, \xi^{i-1}, x, \xi^{i+1}, \ldots \xi^{N}\right) \prod_{j \neq i} d m^{j}\left(\xi^{j}\right)
\end{gathered}
$$

For this N-players game HJB+KFP are given by

$$
\left\{\begin{array}{l}
-\operatorname{tr}\left(\nu D^{2} v^{i}\right)+H\left(x, \nabla v^{i}\right)+\lambda^{i}=f^{i}\left(x ; m^{1}, \ldots, m^{N}\right) \tag{1}\\
-\operatorname{tr}\left(\nu D^{2} m^{i}\right)+\operatorname{div}\left(m^{i} \frac{\partial H}{\partial p}\left(x, \nabla v^{i}\right)\right)=0 \\
x \in \mathbb{R}^{d} \quad m^{i}>0 \quad \int_{\mathbb{R}^{d}} m^{i}(x) d x=1
\end{array}\right.
$$

where

$$
\begin{gathered}
\nu=\frac{\sigma^{T} \sigma}{2} \\
f^{i}\left(x ; m^{1}, \ldots, m^{N}\right) \doteq \int_{\mathbb{R}^{(N-1) d}} F^{i}\left(\xi^{1}, \ldots, \xi^{i-1}, x, \xi^{i+1}, \ldots \xi^{N}\right) \prod_{j \neq i} d m^{j}\left(\xi^{j}\right)
\end{gathered}
$$

$2 N$ equations with unknowns $\lambda^{i}, v^{i}, m^{i}$, but always $x \in \mathbb{R}^{d}$!

For this N-players game HJB+KFP are given by

$$
\left\{\begin{array}{l}
-\operatorname{tr}\left(\nu D^{2} v^{i}\right)+H\left(x, \nabla v^{i}\right)+\lambda^{i}=f^{i}\left(x ; m^{1}, \ldots, m^{N}\right) \tag{1}\\
-\operatorname{tr}\left(\nu D^{2} m^{i}\right)+\operatorname{div}\left(m^{i} \frac{\partial H}{\partial p}\left(x, \nabla v^{i}\right)\right)=0 \\
x \in \mathbb{R}^{d} \quad m^{i}>0 \quad \int_{\mathbb{R}^{d}} m^{i}(x) d x=1
\end{array}\right.
$$

where

$$
\begin{gathered}
\nu=\frac{\sigma^{T} \sigma}{2} \\
H(x, p)=p^{T} \frac{R^{-1}}{2} p-p^{T} A x \\
f^{i}\left(x ; m^{1}, \ldots, m^{N}\right) \doteq \int_{\mathbb{R}^{(N-1) d}} F^{i}\left(\xi^{1}, \ldots, \xi^{i-1}, x, \xi^{i+1}, \ldots \xi^{N}\right) \prod_{j \neq i} d m^{j}\left(\xi^{j}\right)
\end{gathered}
$$

Search for solutions of Quadratic-Gaussian (QG) type + identically distr.

$$
\lambda^{i} \in \mathbb{R} \quad v^{i}(x)=x^{T} \frac{\Lambda}{2} x+\rho x \quad m^{i}(x)=\gamma \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma(x-\mu)\right\}
$$

Theorem 1. For N-players LQG game

- Existence \& uniquess $\lambda^{i}, v^{i}, m^{i}$ sol. to (1) with v^{i}, m^{i} QG \Leftrightarrow Algebraic conditions

Theorem 1. For N-players LQG game

- Existence \& uniquess $\lambda^{i}, v^{i}, m^{i}$ sol. to (1) with v^{i}, m^{i} QG \Leftrightarrow Algebraic conditions
- $\bar{\alpha}^{i}=R^{-1} \nabla v^{i}(x)$ provides Nash equilibria strategies and $\lambda^{i}=J^{i}\left(X_{0}, \bar{\alpha}^{1}, \ldots, \bar{\alpha}^{N}\right)$ for $i=1, \ldots, N$

Theorem 1. For N-players LQG game

- Existence \& uniquess $\lambda^{i}, v^{i}, m^{i}$ sol. to (1) with v^{i}, m^{i} QG \Leftrightarrow Algebraic conditions
- $\bar{\alpha}^{i}=R^{-1} \nabla v^{i}(x)$ provides Nash equilibria strategies and $\lambda^{i}=J^{i}\left(X_{0}, \bar{\alpha}^{1}, \ldots, \bar{\alpha}^{N}\right)$ for $i=1, \ldots, N$

Proof.

(i) By plugging into (1)

$$
v^{i}(x)=x^{T} \frac{\Lambda}{2} x+\rho x \quad m^{i}(x)=\gamma \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma(x-\mu)\right\}
$$

\rightsquigarrow algebraic conditions on $\rho, \mu \in \mathbb{R}^{d}, \Lambda, \Sigma \in \mathbb{R}^{d \times d}$
(ii) Verification theorem, using Dynkin's formula and ergodicity

Indeed,

$$
\nabla v^{i}(x)=\Lambda x+\rho
$$

$$
\nabla m^{i}(x)=-m^{i}(x) \Sigma(x-\mu)
$$

Indeed,

$$
\nabla v^{i}(x)=\Lambda x+\rho \quad \nabla m^{i}(x)=-m^{i}(x) \Sigma(x-\mu)
$$

KFP

Indeed,

$$
\nabla v^{i}(x)=\Lambda x+\rho \quad \nabla m^{i}(x)=-m^{i}(x) \Sigma(x-\mu)
$$

KFP

$$
\Lambda=R(\nu \Sigma+A) \quad \rho=-R \nu \Sigma \mu
$$

Indeed,

$$
\nabla v^{i}(x)=\Lambda x+\rho \quad \nabla m^{i}(x)=-m^{i}(x) \Sigma(x-\mu)
$$

KFP

$$
\Lambda=R(\nu \Sigma+A) \quad \rho=-R \nu \Sigma \mu
$$

HJB

Indeed,

$$
\nabla v^{i}(x)=\Lambda x+\rho \quad \nabla m^{i}(x)=-m^{i}(x) \Sigma(x-\mu)
$$

KFP

$$
\Lambda=R(\nu \Sigma+A) \quad \rho=-R \nu \Sigma \mu
$$

HJB

$$
\begin{gathered}
\Sigma \frac{\nu R \nu}{2} \Sigma-\frac{A^{T} R A}{2}=Q \\
-\left(\frac{A^{T} R A}{2}+Q+(N-1) B\right) \mu=-Q h-(N-1) B r \\
(\mu)^{T} \frac{\Sigma \nu R \nu \Sigma}{2} \mu-\operatorname{tr}(\nu R \nu \Sigma+\nu R A)+\lambda^{i}=f^{i}(\Sigma, \mu)
\end{gathered}
$$

Indeed,

$$
\nabla v^{i}(x)=\Lambda x+\rho \quad \nabla m^{i}(x)=-m^{i}(x) \Sigma(x-\mu)
$$

KFP

$$
\Lambda=R(\nu \Sigma+A) \quad \rho=-R \nu \Sigma \mu
$$

HJB

$$
\begin{aligned}
& \Sigma \text { solves ARE } \quad X \frac{\nu R \nu}{2} X-\left(\frac{A^{T} R A}{2}+Q\right)=0 \\
& -\left(\frac{A^{T} R A}{2}+Q+(N-1) B\right) \mu=-Q h-(N-1) B r \\
& (\mu)^{T} \frac{\Sigma \nu R \nu \Sigma}{2} \mu-\operatorname{tr}(\nu R \nu \Sigma+\nu R A)+\lambda^{i}=f^{i}(\Sigma, \mu)
\end{aligned}
$$

Indeed,

$$
\nabla v^{i}(x)=\Lambda x+\rho \quad \nabla m^{i}(x)=-m^{i}(x) \Sigma(x-\mu)
$$

KFP

$$
\Lambda=R(\nu \Sigma+A) \quad \rho=-R \nu \Sigma \mu
$$

HJB

$$
\Sigma \text { solves ARE } \quad X \frac{\nu R \nu}{2} X-\left(\frac{A^{T} R A}{2}+Q\right)=0
$$

μ solves linear system $\quad \mathcal{B} y=\mathcal{C}$ for $\mathcal{B} \doteq \frac{A^{T} R A}{2}+Q+(N-1) B$

$$
(\mu)^{T} \frac{\Sigma \nu R \nu \Sigma}{2} \mu-\operatorname{tr}(\nu R \nu \Sigma+\nu R A)+\lambda^{i}=\mathfrak{f}^{i}(\Sigma, \mu)
$$

Indeed,

$$
\nabla v^{i}(x)=\Lambda x+\rho \quad \nabla m^{i}(x)=-m^{i}(x) \Sigma(x-\mu)
$$

KFP

$$
\Lambda=R(\nu \Sigma+A) \quad \rho=-R \nu \Sigma \mu
$$

HJB
Σ solves ARE

$$
X \frac{\nu R \nu}{2} X-\left(\frac{A^{T} R A}{2}+Q\right)=0
$$

μ solves linear system $\quad \mathcal{B} y=\mathcal{C}$ for $\mathcal{B} \doteq \frac{A^{T} R A}{2}+Q+(N-1) B$
$\lambda^{i}=$ explicit function of Σ and μ

Algebraic CONDITIONS

Existence

Uniqueness

Algebraic conditions

Existence

- there holds

$$
\operatorname{rank} \mathcal{B}=\operatorname{rank}[\mathcal{B}, \mathcal{C}]
$$

[iff the system $\mathcal{B} y=\mathcal{C}$ has solutions]

Uniqueness

Algebraic Conditions

Existence

- there holds

$$
\operatorname{rank} \mathcal{B}=\operatorname{rank}[\mathcal{B}, \mathcal{C}]
$$

[iff the system $\mathcal{B} y=\mathcal{C}$ has solutions]

- the unique $\Sigma>0$ that solves ARE also solves Sylvester's eq.

$$
X \nu R-R \nu X=R A-A^{T} R
$$

[iff $R(\nu \Sigma+A)$ symm. matrix]
Uniqueness

Algebraic Conditions

Existence

- there holds

$$
\operatorname{rank} \mathcal{B}=\operatorname{rank}[\mathcal{B}, \mathcal{C}]
$$

[iff the system $\mathcal{B} y=\mathcal{C}$ has solutions]

- the unique $\Sigma>0$ that solves ARE also solves Sylvester's eq.

$$
X \nu R-R \nu X=R A-A^{T} R
$$

[iff $R(\nu \Sigma+A)$ symm. matrix]
Uniqueness

- \mathcal{B} is invertible
[iff the system $\mathcal{B} y=\mathcal{C}$ has solutions]

Mean field equations

Nearly identical players implies that the costs $F^{i}\left(X^{1}, \ldots, X^{N}\right)$ can be written as function of the empirical density of other players

$$
F^{i}\left(X^{1}, \ldots, X^{N}\right)=\bar{V}_{N}^{i}\left[\frac{1}{N-1} \sum_{j \neq i} \delta_{X^{j}}\right]\left(X^{i}\right)
$$

Mean field equations

Nearly identical players implies that the costs $F^{i}\left(X^{1}, \ldots, X^{N}\right)$ can be written as function of the empirical density of other players

$$
F^{i}\left(X^{1}, \ldots, X^{N}\right)=\bar{V}_{N}^{i}\left[\frac{1}{N-1} \sum_{j \neq i} \delta_{X^{j}}\right]\left(X^{i}\right)
$$

where
$\bar{V}_{N}^{i}:\left\{\right.$ prob. meas. on $\left.\mathbb{R}^{d}\right\} \rightarrow\left\{\right.$ quadratic polynomials on $\left.\mathbb{R}^{d}\right\}$

Mean field equations

Nearly identical players implies that the costs $F^{i}\left(X^{1}, \ldots, X^{N}\right)$ can be written as function of the empirical density of other players

$$
F^{i}\left(X^{1}, \ldots, X^{N}\right)=\bar{V}_{N}^{i}\left[\frac{1}{N-1} \sum_{j \neq i} \delta_{X^{j}}\right]\left(X^{i}\right)
$$

where
$\bar{V}_{N}^{i}:\left\{\right.$ prob. meas. on $\left.\mathbb{R}^{d}\right\} \rightarrow$ quadratic polynomials on $\left.\mathbb{R}^{d}\right\}$ $\bar{V}_{N}^{i}[m](X) \doteq(X-h)^{T} Q^{N}(X-h)$

$$
+(N-1) \int_{\mathbb{R}^{d}}\left((X-h)^{T} \frac{B^{N}}{2}(\xi-r)+(\xi-r)^{T} \frac{B^{N}}{2}(X-h)\right) d m(\xi)
$$

$$
+(N-1) \int_{\mathbb{R}^{d}}(\xi-r)^{T}\left(C_{i}^{N}-D_{i}^{N}\right)(\xi-r) d m(\xi)
$$

$$
+\left((N-1) \int_{\mathbb{R}^{d}}(\xi-r) d m(\xi)\right)^{T} D_{i}^{N}\left((N-1) \int_{\mathbb{R}^{d}}(\xi-r) d m(\xi)\right)
$$

Assuming that the coefficients scale as follows as $N \rightarrow \infty$

$$
\begin{array}{ll}
Q^{N} \rightarrow \hat{Q}>0 & B^{N}(N-1) \rightarrow \hat{B} \\
C_{i}^{N}(N-1) \rightarrow \hat{C} & D_{i}^{N}(N-1)^{2} \rightarrow \hat{D}
\end{array}
$$

then for any prob. measure m on \mathbb{R}^{d} and all $i=1, \ldots, N$

$$
\bar{V}_{N}^{i}[m](X) \rightarrow \hat{V}[m](X) \quad \text { loc. unif. in } X
$$

Assuming that the coefficients scale as follows as $N \rightarrow \infty$

$$
\begin{array}{ll}
Q^{N} \rightarrow \hat{Q}>0 & B^{N}(N-1) \rightarrow \hat{B} \\
C_{i}^{N}(N-1) \rightarrow \hat{C} & D_{i}^{N}(N-1)^{2} \rightarrow \hat{D}
\end{array}
$$

then for any prob. measure m on \mathbb{R}^{d} and all $i=1, \ldots, N$

$$
\bar{V}_{N}^{i}[m](X) \rightarrow \hat{V}[m](X) \quad \text { loc. unif. in } X
$$

where

$$
\begin{aligned}
\hat{V}[m](X) \doteq & \doteq(X-h)^{T} \hat{Q}(X-h) \\
& +\int_{\mathbb{R}^{d}}\left((X-h)^{T} \frac{\hat{B}}{2}(\xi-r)+(\xi-r)^{T} \frac{\hat{B}}{2}(X-h)\right) d m(\xi) \\
& +\int_{\mathbb{R}^{d}}(\xi-r)^{T} \hat{C}(\xi-r) d m(\xi) \\
& +\left(\int_{\mathbb{R}^{d}}(\xi-r) d m(\xi)\right)^{T} \hat{D}\left(\int_{\mathbb{R}^{d}}(\xi-r) d m(\xi)\right)
\end{aligned}
$$

Thus passing formally to the limit as $N \rightarrow \infty$ in HJB+KFP

$$
\left\{\begin{array}{l}
-\operatorname{tr}\left(\nu D^{2} u\right)+H(x, D u)+\lambda=\hat{V}[m](x) \\
-\operatorname{tr}\left(\nu D^{2} m\right)-\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, D u)\right)=0 \tag{MFE}\\
x \in \mathbb{R}^{d} \quad m>0 \quad \int_{\mathbb{R}^{d}} m(x) d x=1
\end{array}\right.
$$

We look for solutions λ, u, m such that u, m is QG

$$
u(x)=x^{T} \frac{\Lambda}{2} x+\rho x \quad m(x)=\gamma \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma(x-\mu)\right\}
$$

Thus passing formally to the limit as $N \rightarrow \infty$ in HJB+KFP

$$
\left\{\begin{array}{l}
-\operatorname{tr}\left(\nu D^{2} u\right)+H(x, D u)+\lambda=\hat{V}[m](x) \\
-\operatorname{tr}\left(\nu D^{2} m\right)-\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, D u)\right)=0 \\
x \in \mathbb{R}^{d} \quad m>0 \quad \int_{\mathbb{R}^{d}} m(x) d x=1
\end{array}\right.
$$

Theorem 2.

- Existence \& uniquess λ, u, m sol. to MFE with u, m QG \Leftrightarrow Algebraic conditions

Thus passing formally to the limit as $N \rightarrow \infty$ in HJB+KFP

$$
\left\{\begin{array}{l}
-\operatorname{tr}\left(\nu D^{2} u\right)+H(x, D u)+\lambda=\hat{V}[m](x) \\
-\operatorname{tr}\left(\nu D^{2} m\right)-\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, D u)\right)=0 \\
x \in \mathbb{R}^{d} \quad m>0 \quad \int_{\mathbb{R}^{d}} m(x) d x=1
\end{array}\right.
$$

Theorem 2.

- Existence \& uniquess λ, u, m sol. to MFE with u, m QG \Leftrightarrow Algebraic conditions
- \hat{V} is a monotone operator iff $\hat{B} \geq 0$ and if so QG sol. is the unique solution to MFE

Limit as $N \rightarrow \infty$

Theorem 3. Assume
(i) $\begin{array}{ll}Q^{N} \rightarrow \hat{Q} & B^{N}(N-1) \rightarrow \hat{B} \\ C_{i}^{N}(N-1) \rightarrow \hat{C} & D_{i}^{N}(N-1)^{2} \rightarrow \hat{D}\end{array}$ (ii)
(ii) HJB + KFP for N-players admit QG sol. $\left(v_{N}, m_{N}, \lambda_{N}^{1}, \ldots \lambda_{N}^{N}\right)$
(iii) MFE admits unique QG solution (u, m, λ)

Limit as $N \rightarrow \infty$

Theorem 3. Assume
(i) $\begin{aligned} & Q^{N} \rightarrow \hat{Q} \\ & C_{i}^{N}(N-1) \rightarrow \hat{C}\end{aligned}$

$$
\begin{aligned}
& B^{N}(N-1) \rightarrow \hat{B} \\
& D_{i}^{N}(N-1)^{2} \rightarrow \hat{D}
\end{aligned}
$$

(ii) HJB + KFP for N-players admit QG sol. $\left(v_{N}, m_{N}, \lambda_{N}^{1}, \ldots \lambda_{N}^{N}\right)$
(iii) MFE admits unique QG solution (u, m, λ)

Then

- $v_{N} \rightarrow u$ in $\mathrm{C}_{l o c}^{2}\left(\mathbb{R}^{d}\right)$
- $m_{N} \rightarrow m$ in $\mathbf{C}^{k}\left(\mathbb{R}^{d}\right)$ for all k
- $\lambda_{N}^{i} \rightarrow \lambda$ for all i

Conclusions

Conclusions

- Characterization of existence \& uniqueness for QG sols to N-players LQG games, which give Nash equilibrium strategies

Conclusions

- Characterization of existence \& uniqueness for QG sols to N-players LQG games, which give Nash equilibrium strategies
- Characterization of existence \& uniqueness for QG sols to MFE + Characterization of monotonicity \hat{V}

Conclusions

- Characterization of existence \& uniqueness for QG sols to N-players LQG games, which give Nash equilibrium strategies
- Characterization of existence \& uniqueness for QG sols to MFE + Characterization of monotonicity \hat{V}
- Convergence QG sols of HJB+KFP to sols of MFE as $N \rightarrow+\infty$

Conclusions

- Characterization of existence \& uniqueness for QG sols to N-players LQG games, which give Nash equilibrium strategies
- Characterization of existence \& uniqueness for QG sols to MFE + Characterization of monotonicity \hat{V}
- Convergence QG sols of HJB+KFP to sols of MFE as $N \rightarrow+\infty$
- Algebraic conditions can be directly verified for some games
N-players game with $R=\mathfrak{r} \mathrm{I}_{d}, \nu=\mathfrak{n} \mathrm{I}_{d}, A$ symmetric, $B \geq 0$
N-players game with $R=\mathfrak{r I}_{d}, \nu=\mathfrak{n I}_{d}, A$ symmetric, $B \geq 0$
Algebraic conditions
- $X \frac{\nu R \nu}{2} X=\frac{A^{T} R A}{2}+Q \Longrightarrow X \nu R-R \nu X=R A-A^{T} R$ becomes $\mathfrak{n r}(X-X)=\mathfrak{r}\left(A-A^{T}\right)$, true for all matrices X
- $\mathcal{B}=Q+\mathfrak{r} \frac{A^{2}}{2}+\frac{B}{2}>0$
N-players game with $R=\mathfrak{r I}_{d}, \nu=\mathfrak{n I}_{d}, A$ symmetric, $B \geq 0$

Algebraic conditions

- $X \frac{\nu R \nu}{2} X=\frac{A^{T} R A}{2}+Q \Longrightarrow X \nu R-R \nu X=R A-A^{T} R$ becomes $\mathfrak{n r}(X-X)=\mathfrak{r}\left(A-A^{T}\right)$, true for all matrices X
- $\mathcal{B}=Q+\mathfrak{r} \frac{A^{2}}{2}+\frac{B}{2}>0$
\exists ! QG solution, with $\Sigma, \Lambda, \mu, \rho$ satisfying

$$
\begin{aligned}
\Sigma^{2} & =\frac{2}{\mathfrak{r n}^{2}}\left(\mathfrak{r} \frac{A^{2}}{2}+Q\right) \quad \mathcal{B} \mu=\mathcal{C} \\
\Lambda & =\mathfrak{r}(\mathfrak{n} \Sigma+A) \quad \rho=-\mathfrak{r n} \Sigma \mu
\end{aligned}
$$

N-players game with $R=\mathfrak{r I}_{d}, \nu=\mathfrak{n I}_{d}, A$ symmetric, $B \geq 0$

Algebraic conditions

- $X \frac{\nu R \nu}{2} X=\frac{A^{T} R A}{2}+Q \Longrightarrow X \nu R-R \nu X=R A-A^{T} R$ becomes $\mathfrak{n r}(X-X)=\mathfrak{r}\left(A-A^{T}\right)$, true for all matrices X
- $\mathcal{B}=Q+\mathfrak{r} \frac{A^{2}}{2}+\frac{B}{2}>0$
\exists ! QG solution, with $\Sigma, \Lambda, \mu, \rho$ satisfying

$$
\begin{gathered}
\Sigma=\frac{2}{\mathfrak{n} \sqrt{\mathfrak{r}}} \sqrt{\mathfrak{r} \frac{A^{2}}{2}+Q} \quad \quad \quad \mu=\mathcal{B}^{-1} \mathcal{C} \\
\Lambda=\mathfrak{r}(\mathfrak{n} \Sigma+A) \quad \rho=-\mathfrak{r n} \Sigma \mu
\end{gathered}
$$

Thanks
 for Your Attention!

