LQG Mean-Field Games with ergodic cost in \mathbb{R}^d

Fabio S. Priuli University of Roma Tor Vergata

joint work with: M. Bardi (Univ. Padova)

Padova, September 4th, 2013

Fabio S. Priuli (Univ. Roma Tor Vergata)

Padova, September 4th, 2013

I. Nash equilibria for N-players LQG games with ergodic cost (via HJB + KFP equations)

- I. Nash equilibria for N-players LQG games with ergodic cost (via HJB + KFP equations)
- II. Solutions to MFE obtained formally from the above (as in LASRY & LIONS)

- I. Nash equilibria for N-players LQG games with ergodic cost (via HJB + KFP equations)
- II. Solutions to MFE obtained formally from the above (as in LASRY & LIONS)
- III. Rigorous relation between the two as $N \to +\infty$

- I. Nash equilibria for N-players LQG games with ergodic cost (via HJB + KFP equations)
- II. Solutions to MFE obtained formally from the above (as in LASRY & LIONS)
- III. Rigorous relation between the two as $N \to +\infty$

Goal: Generalize results by Bardi (2011) in 1d case

- I. Nash equilibria for N-players LQG games with ergodic cost (via HJB + KFP equations)
- II. Solutions to MFE obtained formally from the above (as in LASRY & LIONS)
- III. Rigorous relation between the two as $N \to +\infty$

Goal: Generalize results by Bardi (2011) in 1d case

[see also Lasry & Lions (2006, 2007), Guéant, Lasry & Lions (2011), Huang, Caines & Malhamé (2004, 2007), Bensoussan, Sung, Yam & Yung (2011)]

N-players LQG games in \mathbb{R}^d

We consider games with

linear stochastic dynamics w.r.t. state & control quadratic ergodic cost w.r.t. state & control

Fabio S. Priuli (Univ. Roma Tor Vergata)

Padova, September 4th, 2013

N-players LQG games in \mathbb{R}^d

We consider games with

linear stochastic dynamics w.r.t. state & control quadratic ergodic cost w.r.t. state & control

For simplicity we focus on nearly identical players, i.e., we assume

- all players have the same dynamics
- all players have the same cost for the control
- players are indistinguishable (symmetry assumption)

but analogous results hold also for general games!

$$dX_t^i = (AX_t^i - \alpha_t^i)dt + \sigma \, dW_t^i \qquad X_0^i = x^i \in \mathbb{R}^d$$

э

E + 4 E +

Image: A matrix and a matrix

$$dX_t^i = (AX_t^i - \alpha_t^i)dt + \sigma \, dW_t^i \qquad X_0^i = x^i \in \mathbb{R}^d$$

where $A \in \mathbb{R}^{d \times d}$, α_t^i controls, σ invertible, W_t^i Brownian,

Fabio S. Priuli (Univ. Roma Tor Vergata)

Padova, September 4th, 2013

$$dX_t^i = (AX_t^i - \alpha_t^i)dt + \sigma \, dW_t^i \qquad X_0^i = x^i \in \mathbb{R}^d$$
$$J^i(X_0, \alpha^1, \dots, \alpha^N) \doteq \liminf_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\int_0^T \frac{(\alpha_t^i)^T R \, \alpha_t^i}{2} + \underbrace{(X_t - \overline{X_i})^T Q^i(X_t - \overline{X_i})}_{F^i(X^1, \dots, X^N)} \, dt \right]$$

where $A \in \mathbb{R}^{d \times d}$, α_t^i controls, σ invertible, W_t^i Brownian,

$$dX_t^i = (AX_t^i - \alpha_t^i)dt + \sigma \, dW_t^i \qquad X_0^i = x^i \in \mathbb{R}^d$$
$$J^i(X_0, \alpha^1, \dots, \alpha^N) \doteq \liminf_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\int_0^T \frac{(\alpha_t^i)^T R \, \alpha_t^i}{2} + \underbrace{(X_t - \overline{X_i})^T Q^i(X_t - \overline{X_i})}_{F^i(X^1, \dots, X^N)} \, dt \right]$$

where $A \in \mathbb{R}^{d \times d}$, α_t^i controls, σ invertible, W_t^i Brownian, $R \in \mathbb{R}^{d \times d}$ symm. pos. def., $X_t = (X_t^1, \dots, X_t^N) \in \mathbb{R}^{Nd}$ state var., $\overline{X_i} = (\overline{X_i^1}, \dots, \overline{X_i^N}) \in \mathbb{R}^{Nd}$ vector of favorite positions, $Q^i \in \mathbb{R}^{Nd \times Nd}$ block matrix

$$\overline{X_i} = (\overline{X_i^1}, \dots, \overline{X_i^N}) \in \mathbb{R}^{Nd}$$
 s.t.

Fabio S. Priuli (Univ. Roma Tor Vergata)

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$\overline{X_i} = (\overline{X_i^1}, \dots, \overline{X_i^N}) \in \mathbb{R}^{Nd} \text{ s.t.}$$

- $\overline{X_i^i} = h \quad \forall i \text{ (preferred position)}$
- $\overline{X_i^j} = r \quad \forall j \neq i \text{ (reference position)}$

$$\overline{X_i} = (\overline{X_i^1}, \dots, \overline{X_i^N}) \in \mathbb{R}^{Nd} \text{ s.t.}$$

•
$$\overline{X_i^i} = h \quad \forall i \text{ (preferred position)}$$

•
$$X_i^j = r \quad \forall j \neq i \text{ (reference position)}$$

 $Q^i \in \mathbb{R}^{Nd \times Nd}$ block matrix $(Q^i_{jk})_{j,k} \in \mathbb{R}^{d \times d}$ s.t.

$$F^{i}(X^{1},\ldots,X^{N}) = \sum_{j,k=1}^{N} (X^{j}_{t} - \overline{X^{j}_{i}})^{T} Q^{i}_{jk} (X^{k}_{t} - \overline{X^{k}_{i}})$$

satisfies

< 47 ▶

$$\overline{X_i} = (\overline{X_i^1}, \dots, \overline{X_i^N}) \in \mathbb{R}^{Nd} \text{ s.t.}$$

•
$$\overline{X_i^i} = h \quad \forall i \text{ (preferred position)}$$

•
$$X_i^j = r \quad \forall j \neq i \text{ (reference position)}$$

 $Q^i \in \mathbb{R}^{Nd \times Nd}$ block matrix $(Q^i_{jk})_{j,k} \in \mathbb{R}^{d \times d}$ s.t.

$$F^{i}(X^{1},\ldots,X^{N}) = \sum_{j,k=1}^{N} (X^{j}_{t} - \overline{X^{j}_{i}})^{T} Q^{i}_{jk} (X^{k}_{t} - \overline{X^{k}_{i}})$$

satisfies

•
$$Q_{ii}^i = Q$$
 symm. pos. def. $\forall i$
• $Q_{ij}^i = Q_{ji}^i = B \quad \forall j \neq i$

Fabio S. Priuli (Univ. Roma Tor Vergata)

< 47 ▶

$$\overline{X_i} = (\overline{X_i^1}, \dots, \overline{X_i^N}) \in \mathbb{R}^{Nd} \text{ s.t.}$$

•
$$\overline{X_i^i} = h \quad \forall i \text{ (preferred position)}$$

•
$$X_i^j = r \quad \forall j \neq i \text{ (reference position)}$$

 $Q^i \in \mathbb{R}^{Nd \times Nd}$ block matrix $(Q^i_{jk})_{j,k} \in \mathbb{R}^{d \times d}$ s.t.

$$F^{i}(X^{1},\ldots,X^{N}) = \sum_{j,k=1}^{N} (X^{j}_{t} - \overline{X^{j}_{i}})^{T} Q^{i}_{jk} (X^{k}_{t} - \overline{X^{k}_{i}})$$

satisfies

•
$$Q_{ii}^i = Q$$
 symm. pos. def. $\forall i$
• $Q_{ij}^i = Q_{ji}^i = B \quad \forall j \neq i$
• $Q_{jj}^i = C_i \quad \forall j \neq i$
• $Q_{jk}^i = Q_{kj}^i = D_i \quad \forall j \neq k \neq i \neq j$

< 47 ▶

Admissible strategies

A control α^i_t adapted to W^i_t is an *admissible strategy* if

- $\mathbb{E}[X_t^i], \mathbb{E}[X_t^i(X_t^i)^T] \le C$ for all t > 0
- \exists probability measure m_{α^i} s.t.

$$\lim_{T \to +\infty} \frac{1}{T} \mathbb{E}\left[\int_0^T g(X_t^i) \, dt\right] = \int_{\mathbb{R}^d} g(\xi) \, dm_{\alpha^i}(\xi)$$

for any polynomial g, with $\deg(g) \leq 2$, loc. unif. in X_0^i .

Admissible strategies

A control α_t^i adapted to W_t^i is an *admissible strategy* if

- $\mathbb{E}[X_t^i], \mathbb{E}[X_t^i(X_t^i)^T] \le C$ for all t > 0
- \exists probability measure m_{α^i} s.t.

$$\lim_{T \to +\infty} \frac{1}{T} \mathbb{E} \left[\int_0^T g(X_t^i) \, dt \right] = \int_{\mathbb{R}^d} g(\xi) \, dm_{\alpha^i}(\xi)$$

for any polynomial g, with $\deg(g) \leq 2$, loc. unif. in X_0^i .

Example. Any affine $\alpha^i(x) = Kx + c$ with "K - A > 0" is admissible and the corresponding diffusion process

$$dX_t^i = \left((A - K)X_t^i - c \right) dt + \sigma dW_t^i$$

is ergodic with $m_{\alpha^i} = multivariate$ Gaussian

Admissible strategies

A control α_t^i adapted to W_t^i is an *admissible strategy* if

- $\mathbb{E}[X_t^i], \mathbb{E}[X_t^i(X_t^i)^T] \le C$ for all t > 0
- \exists probability measure m_{α^i} s.t.

$$\lim_{T \to +\infty} \frac{1}{T} \mathbb{E}\left[\int_0^T g(X_t^i) \, dt\right] = \int_{\mathbb{R}^d} g(\xi) \, dm_{\alpha^i}(\xi)$$

for any polynomial g, with $\deg(g) \leq 2$, loc. unif. in X_0^i .

Nash equilibria

Any set of admissible strategies $\overline{\alpha}^1, \ldots, \overline{\alpha}^N$ such that

$$J^{i}(X, \overline{\alpha}^{1}, \dots, \overline{\alpha}^{N}) = \min_{\omega} J^{i}(X, \overline{\alpha}^{1}, \dots, \overline{\alpha}^{i-1}, \omega, \overline{\alpha}^{i+1}, \dots, \overline{\alpha}^{N})$$

For any $i = 1, \dots, N$

For this N-players game HJB+KFP are given by

$$\begin{cases} -\operatorname{tr}(\nu D^2 v^i) + H(x, \nabla v^i) + \lambda^i = f^i(x; m^1, \dots, m^N) \\ -\operatorname{tr}(\nu D^2 m^i) + \operatorname{div}\left(m^i \frac{\partial H}{\partial p}(x, \nabla v^i)\right) = 0 \\ x \in \mathbb{R}^d \qquad m^i > 0 \qquad \int_{\mathbb{R}^d} m^i(x) \, dx = 1 \end{cases}$$
(1)

where

$$\nu = \frac{\sigma^T \sigma}{2} \qquad H(x, p) = p^T \frac{R^{-1}}{2} p - p^T A x$$
$$f^i(x; m^1, \dots, m^N) \doteq \int_{\mathbb{R}^{(N-1)d}} F^i(\xi^1, \dots, \xi^{i-1}, x, \xi^{i+1}, \dots, \xi^N) \prod_{j \neq i} dm^j(\xi^j)$$

Fabio S. Priuli (Univ. Roma Tor Vergata)

< 一型

For this N-players game HJB+KFP are given by

$$\begin{cases} -\operatorname{tr}(\nu D^2 v^i) + H(x, \nabla v^i) + \lambda^i = f^i(x; m^1, \dots, m^N) \\ -\operatorname{tr}(\nu D^2 m^i) + \operatorname{div}\left(m^i \frac{\partial H}{\partial p}(x, \nabla v^i)\right) = 0 \\ x \in \mathbb{R}^d \qquad m^i > 0 \qquad \int_{\mathbb{R}^d} m^i(x) \, dx = 1 \end{cases}$$
(1)

where

$$\nu = \frac{\sigma^T \sigma}{2} \qquad H(x, p) = p^T \frac{R^{-1}}{2} p - p^T A x$$
$$f^i(x; m^1, \dots, m^N) \doteq \int_{\mathbb{R}^{(N-1)d}} F^i(\xi^1, \dots, \xi^{i-1}, x, \xi^{i+1}, \dots, \xi^N) \prod_{j \neq i} dm^j(\xi^j)$$

2N equations with unknowns λ^i, v^i, m^i , but always $x \in \mathbb{R}^d$!

For this $N\operatorname{-players}$ game HJB+KFP are given by

$$\begin{cases} -\operatorname{tr}(\nu D^2 v^i) + H(x, \nabla v^i) + \lambda^i = f^i(x; m^1, \dots, m^N) \\ -\operatorname{tr}(\nu D^2 m^i) + \operatorname{div}\left(m^i \frac{\partial H}{\partial p}(x, \nabla v^i)\right) = 0 \\ x \in \mathbb{R}^d \qquad m^i > 0 \qquad \int_{\mathbb{R}^d} m^i(x) \, dx = 1 \end{cases}$$
(1)

where

$$\nu = \frac{\sigma^T \sigma}{2} \qquad H(x, p) = p^T \frac{R^{-1}}{2} p - p^T A x$$
$$f^i(x; m^1, \dots, m^N) \doteq \int_{\mathbb{R}^{(N-1)d}} F^i(\xi^1, \dots, \xi^{i-1}, x, \xi^{i+1}, \dots, \xi^N) \prod_{j \neq i} dm^j(\xi^j)$$

Search for solutions of Quadratic–Gaussian (QG) type + identically distr.

$$\lambda^{i} \in \mathbb{R}$$
 $v^{i}(x) = x^{T} \frac{\Lambda}{2} x + \rho x$ $m^{i}(x) = \gamma \exp\left\{-\frac{1}{2}(x-\mu)^{T} \Sigma(x-\mu)\right\}$

Theorem 1. For N-players LQG game

• Existence & uniquess λ^i, v^i, m^i sol. to (1) with v^i, m^i QG \Leftrightarrow ALGEBRAIC CONDITIONS

Theorem 1. For N-players LQG game

- Existence & uniquess λ^i, v^i, m^i sol. to (1) with v^i, m^i QG \Leftrightarrow ALGEBRAIC CONDITIONS
- $\overline{\alpha}^i = R^{-1} \nabla v^i(x)$ provides Nash equilibria strategies and $\lambda^i = J^i(X_0, \overline{\alpha}^1, \dots, \overline{\alpha}^N)$ for $i = 1, \dots, N$

Theorem 1. For N-players LQG game

- Existence & uniquess λ^i, v^i, m^i sol. to (1) with v^i, m^i QG \Leftrightarrow ALGEBRAIC CONDITIONS
- $\overline{\alpha}^i = R^{-1} \nabla v^i(x)$ provides Nash equilibria strategies and $\lambda^i = J^i(X_0, \overline{\alpha}^1, \dots, \overline{\alpha}^N)$ for $i = 1, \dots, N$

Proof. (i) By plugging into (1)

$$v^{i}(x) = x^{T} \frac{\Lambda}{2} x + \rho x$$
 $m^{i}(x) = \gamma \exp\left\{-\frac{1}{2}(x-\mu)^{T} \Sigma(x-\mu)\right\}$

 \leadsto algebraic conditions on $\rho,\mu\in\mathbb{R}^d$, $\Lambda,\Sigma\!\in\!\mathbb{R}^{d\times d}$

(ii) Verification theorem, using Dynkin's formula and ergodicity

$$\nabla v^i(x) = \Lambda x + \rho$$
 $\nabla m^i(x) = -m^i(x)\Sigma(x-\mu)$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$abla v^i(x) = \Lambda x +
ho \qquad \qquad
abla m^i(x) = -m^i(x)\Sigma(x - \mu)$$

KFP

Fabio S. Priuli (Univ. Roma Tor Vergata)

э

A B > 4
 A

-

$$\nabla v^i(x) = \Lambda x + \rho$$
 $\nabla m^i(x) = -m^i(x)\Sigma(x - \mu)$

KFP

$$\Lambda = R(\nu \Sigma + A) \qquad \qquad \rho = -R\nu \Sigma \mu$$

Fabio S. Priuli (Univ. Roma Tor Vergata)

э

A B > 4
 A

$$\nabla v^i(x) = \Lambda x + \rho$$
 $\nabla m^i(x) = -m^i(x)\Sigma(x - \mu)$

KFP

$$\Lambda = R \big(\nu \Sigma + A \big) \qquad \qquad \rho = -R \nu \Sigma \mu$$

HJB

$$\nabla v^i(x) = \Lambda x + \rho$$
 $\nabla m^i(x) = -m^i(x)\Sigma(x - \mu)$

KFP

$$\Lambda = R(\nu\Sigma + A) \qquad \qquad \rho = -R\nu\Sigma\mu$$

HJB

$$\Sigma \frac{\nu R \nu}{2} \Sigma - \frac{A^T R A}{2} = Q$$

$$-\left(\frac{A^{T}RA}{2} + Q + (N-1)B\right)\mu = -Qh - (N-1)Br$$

$$(\mu)^T \frac{\Sigma \nu R \nu \Sigma}{2} \mu - \operatorname{tr}(\nu R \nu \Sigma + \nu R A) + \lambda^i = \mathfrak{f}^i(\Sigma, \mu)$$

$$\nabla v^{i}(x) = \Lambda x + \rho$$
 $\nabla m^{i}(x) = -m^{i}(x)\Sigma(x - \mu)$

KFP

$$\Lambda = R(\nu\Sigma + A) \qquad \qquad \rho = -R\nu\Sigma\mu$$

HJB

$$\Sigma$$
 solves ARE $X \frac{\nu R \nu}{2} X - \left(\frac{A^T R A}{2} + Q\right) = 0$

$$-\left(\frac{A^T R A}{2} + Q + (N-1)B\right)\mu = -Qh - (N-1)Br$$

$$(\mu)^T \frac{\Sigma \nu R \nu \Sigma}{2} \mu - \operatorname{tr}(\nu R \nu \Sigma + \nu R A) + \lambda^i = \mathfrak{f}^i(\Sigma, \mu)$$

.

$$\nabla v^i(x) = \Lambda x + \rho$$
 $\nabla m^i(x) = -m^i(x)\Sigma(x - \mu)$

KFP

$$\Lambda = R(\nu\Sigma + A) \qquad \qquad \rho = -R\nu\Sigma\mu$$

HJB

$$\Sigma$$
 solves ARE $X \frac{\nu R \nu}{2} X - \left(\frac{A^T R A}{2} + Q\right) = 0$

 μ solves linear system

$$By = \mathcal{C}$$
 for $\mathcal{B} \doteq \frac{A^T R A}{2} + Q + (N-1)B$

$$(\mu)^T \frac{\Sigma \nu R \nu \Sigma}{2} \mu - \operatorname{tr}(\nu R \nu \Sigma + \nu R A) + \lambda^i = \mathfrak{f}^i(\Sigma, \mu)$$

.

$$\nabla v^i(x) = \Lambda x + \rho$$
 $\nabla m^i(x) = -m^i(x)\Sigma(x - \mu)$

KFP

$$\Lambda = R(\nu\Sigma + A) \qquad \qquad \rho = -R\nu\Sigma\mu$$

HJB

$$\Sigma$$
 solves ARE $X \frac{\nu R \nu}{2} X - \left(\frac{A^T R A}{2} + Q\right) = 0$

 μ solves linear system

$$\mathcal{B}y = \mathcal{C}$$
 for $\mathcal{B} \doteq \frac{A^T R A}{2} + Q + (N-1)B$

 $\lambda^i = {
m explicit function of } \Sigma$ and μ

ALGEBRAIC CONDITIONS

EXISTENCE

UNIQUENESS

Fabio S. Priuli (Univ. Roma Tor Vergata)

-

< A

Algebraic conditions

EXISTENCE

• there holds

rank $\mathcal{B} = \operatorname{rank} [\mathcal{B}, \mathcal{C}]$

[iff the system $\mathcal{B}y = \mathcal{C}$ has solutions]

UNIQUENESS

Algebraic conditions

EXISTENCE

• there holds

rank
$$\mathcal{B} = \operatorname{rank} [\mathcal{B}, \mathcal{C}]$$

[iff the system $\mathcal{B}y = \mathcal{C}$ has solutions]

• the unique $\Sigma>0$ that solves ARE also solves Sylvester's eq.

$$X\nu R - R\nu X = RA - A^T R$$

[iff $R(\nu\Sigma + A)$ symm. matrix]

UNIQUENESS

Algebraic conditions

EXISTENCE

• there holds

rank
$$\mathcal{B} = \operatorname{rank} [\mathcal{B}, \mathcal{C}]$$

[iff the system $\mathcal{B}y = \mathcal{C}$ has solutions]

• the unique $\Sigma>0$ that solves ARE also solves Sylvester's eq.

$$X\nu R - R\nu X = RA - A^T R$$

[iff $R(\nu\Sigma + A)$ symm. matrix]

UNIQUENESS

• *B* is invertible

[iff the system $\mathcal{B}y = \mathcal{C}$ has solutions]

Mean field equations

Nearly identical players implies that the costs $F^i(X^1, \ldots, X^N)$ can be written as function of the empirical density of other players

$$F^{i}(X^{1},\ldots,X^{N}) = \overline{V}_{N}^{i} \left[\frac{1}{N-1} \sum_{j \neq i} \delta_{X^{j}}\right] (X^{i})$$

Mean field equations

Nearly identical players implies that the costs $F^i(X^1, \ldots, X^N)$ can be written as function of the empirical density of other players

$$F^{i}(X^{1},\ldots,X^{N}) = \overline{V}_{N}^{i} \left[\frac{1}{N-1} \sum_{j \neq i} \delta_{X^{j}}\right] (X^{i})$$

where

$$\overline{V}_N^i$$
: {prob. meas. on \mathbb{R}^d } \rightarrow {quadratic polynomials on \mathbb{R}^d }

Mean field equations

Nearly identical players implies that the costs $F^i(X^1, \ldots, X^N)$ can be written as function of the empirical density of other players

$$F^{i}(X^{1},\ldots,X^{N}) = \overline{V}_{N}^{i} \left[\frac{1}{N-1} \sum_{j \neq i} \delta_{X^{j}}\right] (X^{i})$$

where

$$\begin{split} \overline{V}_{N}^{i} \colon \left\{ \text{prob. meas. on } \mathbb{R}^{d} \right\} &\to \left\{ \text{quadratic polynomials on } \mathbb{R}^{d} \right\} \\ \overline{V}_{N}^{i}[m](X) \doteq (X-h)^{T}Q^{N}(X-h) \\ &\quad + (N-1) \int_{\mathbb{R}^{d}} \left((X-h)^{T} \frac{B^{N}}{2} \left(\xi - r \right) + (\xi - r)^{T} \frac{B^{N}}{2} \left(X - h \right) \right) dm(\xi) \\ &\quad + (N-1) \int_{\mathbb{R}^{d}} \left(\xi - r \right)^{T} (C_{i}^{N} - D_{i}^{N}) (\xi - r) dm(\xi) \\ &\quad + \left((N-1) \int_{\mathbb{R}^{d}} \left(\xi - r \right) dm(\xi) \right)^{T} D_{i}^{N} \left((N-1) \int_{\mathbb{R}^{d}} \left(\xi - r \right) dm(\xi) \right) \end{split}$$

Fabio S. Priuli (Univ. Roma Tor Vergata)

Assuming that the coefficients scale as follows as $N \to \infty$

$$\begin{array}{ll} Q^N \rightarrow \hat{Q} > 0 & & B^N(N-1) \rightarrow \hat{B} \\ C^N_i(N-1) \rightarrow \hat{C} & & D^N_i(N-1)^2 \rightarrow \hat{D} \end{array}$$

then for any prob. measure m on \mathbb{R}^d and all $i = 1, \ldots, N$

 $\overline{V}_N^i[{\pmb m}](X) o \hat{V}[{\pmb m}](X)$ loc. unif. in X

Assuming that the coefficients scale as follows as $N \to \infty$

$$\begin{array}{ll} Q^N \rightarrow \hat{Q} > 0 & & B^N(N-1) \rightarrow \hat{B} \\ C^N_i(N-1) \rightarrow \hat{C} & & D^N_i(N-1)^2 \rightarrow \hat{D} \end{array}$$

then for any prob. measure m on \mathbb{R}^d and all $i=1,\ldots,N$

$$\overline{V}_N^i[{m m}](X) o \hat{V}[{m m}](X)$$
 loc. unif. in X

where

$$\begin{split} \hat{V}[m](X) &\doteq (X-h)^T \hat{Q}(X-h) \\ &+ \int_{\mathbb{R}^d} \left((X-h)^T \frac{\hat{B}}{2} \, (\xi-r) + (\xi-r)^T \frac{\hat{B}}{2} \, (X-h) \right) \, dm(\xi) \\ &+ \int_{\mathbb{R}^d} (\xi-r)^T \hat{C}(\xi-r) \, dm(\xi) \\ &+ \left(\int_{\mathbb{R}^d} (\xi-r) \, dm(\xi) \right)^T \hat{D} \left(\int_{\mathbb{R}^d} (\xi-r) \, dm(\xi) \right) \end{split}$$

Thus passing formally to the limit as $N \to \infty$ in HJB+KFP

$$\begin{cases} -\operatorname{tr}(\nu D^{2}u) + H(x, Du) + \lambda = \hat{V}[m](x) \\ -\operatorname{tr}(\nu D^{2}m) - \operatorname{div}\left(m \frac{\partial H}{\partial p}(x, Du)\right) = 0 \\ x \in \mathbb{R}^{d} \quad m > 0 \quad \int_{\mathbb{R}^{d}} m(x) \, dx = 1 \end{cases}$$
(MFE)

We look for solutions λ, u, m such that u, m is QG

$$\boldsymbol{u}(x) = x^T \, \frac{\Lambda}{2} \, x + \rho x \qquad \qquad \boldsymbol{m}(x) = \gamma \exp\left\{-\frac{1}{2}(x-\mu)^T \boldsymbol{\Sigma}(x-\mu)\right\}$$

Fabio S. Priuli (Univ. Roma Tor Vergata)

Thus passing formally to the limit as $N \to \infty$ in HJB+KFP

$$\begin{cases} -\operatorname{tr}(\nu D^{2}u) + H(x, Du) + \lambda = \hat{V}[m](x) \\ -\operatorname{tr}(\nu D^{2}m) - \operatorname{div}\left(m \frac{\partial H}{\partial p}(x, Du)\right) = 0 \\ x \in \mathbb{R}^{d} \quad m > 0 \qquad \int_{\mathbb{R}^{d}} m(x) \, dx = 1 \end{cases}$$
(MFE)

Theorem 2.

• Existence & uniquess λ, u, m sol. to MFE with u, m QG \Leftrightarrow ALGEBRAIC CONDITIONS

Thus passing formally to the limit as $N \to \infty$ in HJB+KFP

$$\begin{cases} -\operatorname{tr}(\nu D^{2}u) + H(x, Du) + \lambda = \hat{V}[m](x) \\ -\operatorname{tr}(\nu D^{2}m) - \operatorname{div}\left(m \frac{\partial H}{\partial p}(x, Du)\right) = 0 \\ x \in \mathbb{R}^{d} \quad m > 0 \qquad \int_{\mathbb{R}^{d}} m(x) \, dx = 1 \end{cases}$$
(MFE)

Theorem 2.

- Existence & uniquess λ, u, m sol. to MFE with $u, m \text{ QG} \iff$ ALGEBRAIC CONDITIONS
- \hat{V} is a monotone operator iff $\hat{B} \geq 0$ and if so QG sol. is the unique solution to MFE

Limit as $N \to \infty$

Theorem 3. Assume

(i) $\begin{array}{ll} Q^N \to \hat{Q} & B^N(N-1) \to \hat{B} \\ C^N_i(N-1) \to \hat{C} & D^N_i(N-1)^2 \to \hat{D} \end{array}$

(ii) HJB+KFP for N-players admit QG sol. $(v_N, m_N, \lambda_N^1, \dots, \lambda_N^N)$ (iii) MFE admits unique QG solution (u, m, λ)

Limit as $N \to \infty$

Theorem 3. Assume

(i)
$$\begin{array}{ll} Q^N \to \hat{Q} & B^N(N-1) \to \hat{B} \\ C^N_i(N-1) \to \hat{C} & D^N_i(N-1)^2 \to \hat{D} \end{array}$$

(ii) HJB+KFP for N-players admit QG sol. $(v_N, m_N, \lambda_N^1, \dots, \lambda_N^N)$ (iii) MFE admits unique QG solution (u, m, λ)

Then

•
$$v_N \to u$$
 in $\mathbf{C}^2_{loc}(\mathbb{R}^d)$
• $m_N \to m$ in $\mathbf{C}^k(\mathbb{R}^d)$ for all k
• $\lambda^i_N \to \lambda$ for all i

Conclusions

Fabio S. Priuli (Univ. Roma Tor Vergata)

Padova, September 4th, 2013

3

・ロト ・聞ト ・ヨト ・ヨト

• Characterization of existence & uniqueness for QG sols to *N*-players LQG games, which give Nash equilibrium strategies

- Characterization of existence & uniqueness for QG sols to *N*-players LQG games, which give Nash equilibrium strategies
- Characterization of existence & uniqueness for QG sols to MFE + Characterization of monotonicity \hat{V}

- Characterization of existence & uniqueness for QG sols to *N*-players LQG games, which give Nash equilibrium strategies
- Characterization of existence & uniqueness for QG sols to MFE + Characterization of monotonicity \hat{V}
- $\bullet\,$ Convergence QG sols of HJB+KFP to sols of MFE as $N\to+\infty\,$

- Characterization of existence & uniqueness for QG sols to *N*-players LQG games, which give Nash equilibrium strategies
- Characterization of existence & uniqueness for QG sols to MFE + Characterization of monotonicity \hat{V}
- $\bullet\,$ Convergence QG sols of HJB+KFP to sols of MFE as $N\to+\infty\,$
- Algebraic conditions can be directly verified for some games

N-players game with $R = \mathfrak{r} I_d$, $\nu = \mathfrak{n} I_d$, A symmetric, $B \ge 0$

< □ > < A > >

N-players game with $R = \mathfrak{r}I_d$, $\nu = \mathfrak{n}I_d$, *A* symmetric, $B \ge 0$ ALGEBRAIC CONDITIONS

•
$$X \frac{\nu R \nu}{2} X = \frac{A^T R A}{2} + Q \implies X \nu R - R \nu X = R A - A^T R$$

becomes $\mathfrak{nr}(X - X) = \mathfrak{r}(A - A^T)$, true for all matrices X
• $\mathcal{B} = Q + \mathfrak{r} \frac{A^2}{2} + \frac{B}{2} > 0$

N-players game with $R = \mathfrak{r}I_d$, $\nu = \mathfrak{n}I_d$, *A* symmetric, $B \ge 0$ ALGEBRAIC CONDITIONS

•
$$X \frac{\nu R \nu}{2} X = \frac{A^T R A}{2} + Q \implies X \nu R - R \nu X = R A - A^T R$$

becomes $\mathfrak{nr}(X - X) = \mathfrak{r}(A - A^T)$, true for all matrices X
• $\mathcal{B} = Q + \mathfrak{r} \frac{A^2}{2} + \frac{B}{2} > 0$

 $\exists ! \text{ QG solution, with } \Sigma, \Lambda, \mu, \rho \text{ satisfying}$

$$\Sigma^{2} = \frac{2}{\mathfrak{rn}^{2}} \left(\mathfrak{r} \frac{A^{2}}{2} + Q \right) \qquad \qquad \mathcal{B}\mu = \mathcal{C}$$
$$\Lambda = \mathfrak{r}(\mathfrak{n}\Sigma + A) \qquad \qquad \rho = -\mathfrak{rn}\Sigma\mu$$

N-players game with $R = \mathfrak{r}I_d$, $\nu = \mathfrak{n}I_d$, *A* symmetric, $B \ge 0$ ALGEBRAIC CONDITIONS

•
$$X \frac{\nu R \nu}{2} X = \frac{A^T R A}{2} + Q \implies X \nu R - R \nu X = R A - A^T R$$

becomes $\mathfrak{nr}(X - X) = \mathfrak{r}(A - A^T)$, true for all matrices X
• $\mathcal{B} = Q + \mathfrak{r} \frac{A^2}{2} + \frac{B}{2} > 0$

 $\exists ! \text{ QG solution, with } \Sigma, \Lambda, \mu, \rho \text{ satisfying}$

$$\Sigma = \frac{2}{\mathfrak{n}\sqrt{\mathfrak{r}}}\sqrt{\mathfrak{r}\frac{A^2}{2} + Q} \qquad \mu = \mathcal{B}^{-1}\mathcal{C}$$
$$\Lambda = \mathfrak{r}(\mathfrak{n}\Sigma + A) \qquad \rho = -\mathfrak{r}\mathfrak{n}\Sigma\mu$$

Fabio S. Priuli (Univ. Roma Tor Vergata)

Thanks for Your Attention!

Fabio S. Priuli (Univ. Roma Tor Vergata)

Padova, September 4th, 2013