
SPECTRAL CONVERGENCE AND NONLINEAR DYNAMICS

JOSE M. ARRIETA†

These notes are divided in five sections, each of them constitute approximately the contents of
a lecture in the Minicourse.

1. Introduction and a fast overview on attractors.

The purpose of these notes is to address the behavior of the asymptotic dynamics of a reaction-
diffusion equation when the domain is perturbed. The equations are given by{

ut −∆u+ u = f(u) in Ωε
∂u
∂n = 0 in ∂Ωε.

(1.1)

where Ωε, 0 ≤ ε ≤ ε0, are bounded Lipschitz domains in RN , N ≥ 2. We analyze how the asymptotic
dynamics of the evolutionary problem (1.1) changes when we vary the domain. In particular, we
are interested in studying how the behavior of the spectral properties of the linear operator −∆
under variations of the domain, determines the behavior of the nonlinear dynamics of (1.1).

The nonlinearity f is assumed to be smooth enough, say C2 and to simplify, we will assume that
the following condition holds:

|f(s)|+ |f ′(s)|+ |f ′′(s)| ≤ Lf ∀s ∈ R (1.2)

for some positive constant Lf .
We will regard Ωε as a perturbation of the fixed domain Ω0 and to simplify the exposition, we

will assume throughout these notes that the domains are uniformly bounded, that the perturbation
is an “exterior” perturbation of the domain, and that they converge in measure. We summarize
this conditions in the following hypothesis:{

For each 0 ≤ ε ≤ ε0, Ωε is a Lipschitz domain, there exists R > 0
such that Ω0 ⊂ Ωε ⊂ B(0, R), and |Ωε \ Ω0| → 0, as ε→ 0

}
(1.3)

One of the main difficulties when treating domain perturbation problems is that our functions
live in different spaces (say uε ∈ H1(Ωε) and u0 ∈ H1(Ω0)) and therefore statements of the type
uε − u0 should be interpreted clearly. In these notes we wil consider the space

H1
ε = H1(Ω0)⊕H1(Ωε \ Ω̄0) (1.4)

that is H1
ε = {φ ∈ L2(Ωε), such that φ|Ω0

∈ H1(Ω0), φ|Ωε\Ω̄0
∈ H1(Ωε\Ω̄0)} with the norm ‖u‖2H1

ε
=

‖u‖2H1(Ω0) + ‖u‖2
H1(Ωε\Ω̄0)

. Notice that extending by zero outside Ω0 we have H1(Ω0) ↪→ H1
ε , with

embedding constant 1 and in a natural way we have H1(Ωε) ↪→ H1
ε , with embedding constant also

1. Hence if uε ∈ H1(Ωε), u0 ∈ H1(Ω0) we can write ‖uε − u0‖H1
ε
. Moreover with certain abuse of

notation we will say that uε → u0 in H1
ε if ‖uε − u0‖H1

ε
→ 0 as ε→ 0.

Also, with an extension by zero outside Ωε or Ω0, L2(Ωε) ↪→ L2(RN ) and L2(Ω0) ↪→ L2(RN ).
Hence, for functions Vε ∈ L2(Ωε), V0 ∈ L2(Ω0), statements of the type Vε → V0 in L2(RN ) or
w−L2(RN ) make perfect sense. Moreover, if we have an operator T acting on L2(Ωε) we may also
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regard this operator as acting on L2(Ω0) by just viewing any element u0 ∈ L2(Ω0) as an element
of L2(Ωε) by extending u0 outside Ω0 by zero and then making the restriction to Ωε. Similarly we
can do with operators defined in L2(Ω0) with the restriction operator.

Notice also, that since the domain Ω0 is Lipschitz, we have a bounded extension operator,
E : H1(Ω0)→ H1(RN ), which is also a extension operator from L2(Ω0)→ L2(RN ).

We want to analyze equation (1.1) for a fixed value of ε, establishing the existence of solutions and
obtaining basic properties. We regard the differential operator −∆ + I as an unbounded operator

Aε : D(Aε) ⊂ L2(Ωε) → L2(Ωε)
u → −∆u+ u

where D(Aε) = {u ∈ H2(Ωε) : ∂u
∂n = 0 on ∂Ωε}. This operator is selfadjoint, that is, (Au, v)L2 =

(u,Av)L2 and since Ωε is bounded and smooth, the spectrum is discrete. That is, σ(Aε) = {λεi}∞i=1
with 1 = λε1 ≤ λε2 ≤ .... where λεm → +∞ as m → +∞. Notice that the first eigenvalue is λε1 = 1,
due to the Neumann boundary condition and the fact that Aε = −∆ + I. The eigenfunctions are
denoted by {φεi}∞i=1 which we will assume they form a complete orthonormal set in L2(Ωε), that is,

(φεi , φ
ε
j)L2(Ωε) =

∫
Ωε

φεi(x)φεj(x)dx = δij

and they form a basis in L2(Ωε) (and also in H1(Ωε)). We will always denote by (·, ·) the inner
product in L2(Ωε). Notice that if zε ∈ L2(Ωε) we can write zε =

∑∞
i=1(zε, φεi)φ

ε
i . In particular,

‖zε‖2L2(Ωε)
=
∞∑
i=1

(zε, φεi)
2.

In case zε ∈ H1(Ωε) we also have

‖zε‖2H1(Ωε)
=
∞∑
i=1

(zε, φεi)
2λεi

and if zε ∈ D(Aε) we have

‖zε‖2H2(Ωε)
≤ Cε

∞∑
i=1

(zε, φεi)
2(λεi)

2,

where the constant Cε comes from the embedding D(Aε) ↪→ H2(Ωε) and D(Aε) is endowed with
the graph norm ‖Aε · ‖L2(Ωε).

Moreover, the operator Aε generates a family of operators Sε(t) ≡ e−Aεt,

e−Aεt : L2(Ωε) → L2(Ωε)
zε → e−Aεtzε

which is defined as the unique solution of the linear evolution problem
ut −∆u+ u = 0 in Ωε
∂u
∂n = 0 in ∂Ωε

u(0) = zε ∈ L2(Ωε)
(1.5)

This operators admit a very nice expression in terms of the eigenvalues and eigenfunctions of the
operators Aε. As a matter of fact, we may write
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e−Aεtzε =
∞∑
i=1

(zε, φεi)e
−λεi tφεi .

This operator, which we will also denote as Sε(t) has several nice properties:
• e−Aεt is a bounded operator from L2(Ωε) into itself, with bound ‖e−Aεtzε‖L2(Ωε) ≤ e−λ

ε
1t‖zε‖L2(Ωε) =

e−t‖zε‖L2(Ωε), where we have used that λε1 = 1. We also have ‖e−Aεtzε‖H1(Ωε) ≤ e−t‖zε‖H1(Ωε)

• For fixed t > 0 the operator e−Aεt : L2(Ωε) → L2(Ωε) is a compact operator. As a matter
of fact, it is not difficult to see that Sε(t) transforms L2(Ωε) in H1(Ωε) and it is a bounded
operator between these two spaces. Actually,

‖e−Aεtzε‖2H1(Ωε)
=
∞∑
i=1

(zε, φεi)
2λεie

−2λεi t = t−1e−λ
ε
1t
∞∑
i=1

(zε, φεi)
2λεite

−λεi t

but
λεite

−λεi t ≤ sup
x≥0

xe−x = e−1 ≤ 1

which implies that
‖e−Aεtzε‖2H1(Ωε)

≤ e−tt−1‖zε‖2L2(Ωε)

where we have used that λε1 ≥ 1. This implies,

‖e−Aεt‖L(L2(Ωε),H1(Ωε)) ≤ e
−t/2t−1/2 (1.6)

A very similar argument will show that e−Aεt : L2(Ωε) → H2(Ωε) and it is a bounded
operator. This time the estimate obtained is of the type

‖e−Aεt‖L(L2(Ωε),H2(Ωε)) ≤ Cεe
−t/2t−1 (1.7)

where the constant Cε comes from the embedding of D(Aε) ↪→ H2(Ωε).
• Sε(0) = I
• Sε(t+ s) = Sε(t) ◦ Sε(s), for each t, s ≥ 0 (this is the semigroup property).

With respect to the nonlinear evolution problem (1.1), we first notice that if the nonlinearity f
satisfies (1.2), then considering the composition operator generated by f acting in L2(Ωε) we have,
that f ∈ C0,1(L2(Ωε), L2(Ωε)) with Lipschitz constant Lf , see (1.2) (which is uniformly bounded
in ε). This is not difficult to see:

‖f(u)− f(v)‖2L2(Ωε)
=
∫

Ωε

|f(uε(x))− f(vε(x))|2dx ≤ L2
f

∫
Ωε

|uε(x)− vε(x)|2dx = L2
f‖uε − vε‖2L2(Ωε)

Moreover f ∈ C1,θ(H1(Ωε), L2(Ωε)) where the value θ = 1 in dimension ≤ 4 and θ = 2/(N − 2)
in dimension N ≥ 5. As a matter of fact the differentiability is better in dimensions N = 1, 2, 3
but for the purposes of these notes, we will not need more than just the C1,θ regularity. To show
this, notice that the Frechet derivative of f at uε as function from H1(Ωε)→ L2(Ωε) is given by

Df(uε) : H1(Ωε) → L2(Ωε)
ϕε → f ′(uε)ϕε

which is well defined because of (1.2). Moreover,

‖Df(uε)ϕε −Df(vε)ϕε‖L2(Ωε) = ‖(f ′(uε)− f ′(vε))ϕε‖L2(Ωε)

≤ ‖f ′(uε)− f ′(vε)‖LN (Ωε)‖ϕε‖L2N/(N−2)(Ωε)
≤ Cε‖f ′(uε)− f ′(vε)‖LN (Ωε)‖ϕε‖H1(Ωε)
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where Cε comes from the embedding H1(Ωε) ↪→ L2N/(N−2)(Ωε). Hence,

‖Df(uε)−Df(vε)‖L(H1(Ωε),L2(Ωε)) ≤ Cε‖f
′(uε)− f ′(vε)‖LN (Ωε)

But, from the fact that f ′ is Lipschitz and also bounded, (see (1.2)), we easily get

|f ′(uε(x))− f ′(vε(x))| ≤ 2Lf max{1, |uε(x)− vε(x)|}
and this implies that for any 0 < α ≤ 1, we have

|f ′(uε(x))− f ′(vε(x))| ≤ 2Lf |uε(x)− vε(x)|α

Hence, choosing α = 2/(N − 2) for N ≥ 4, we get

‖f ′(uε)− f ′(vε)‖LN (Ωε) ≤ Cε‖uε − vε‖
2/(N−2)

L2N/(N−2)(Ωε)

which shows the above result.

The solutions of (1.1) with initial condition u(0) = zε are obtained through the Variation of
Constant Formula:

u(t, zε) = e−Aεtzε +
∫ t

0
e−Aε(t−s)f(u(s, zε))ds, (1.8)

which is proved to have solutions through an appropriate fixed point argument.
Since the nonlinerity f is globally Lipschitz, we have that solutions of (1.1) or more exactly

of (1.8) are globally defined (that is, they exist for t ≥ 0). This allows us to define a family of
nonlinear operators

Tε(t) : H1(Ωε) → H1(Ωε)
zε → u(t, zε)

where u(t, zε) is given by (1.8). This family has the following properties
• Tε(0) = I
• Tε(t+ s) = Tε(t) ◦ Tε(s)
• Tε(t) ∈ C1(H1(Ωε), H1(Ωε))
• t→ Tε(t)zε is in C([0,∞), H1(Ωε))

and we will refer to it as the “nonlinear semigroup” (or nonlinear semiflow) generated by (1.1).
This nonlinear semigroup contains all the information of the solutions of (1.1). It actually enjoys
several nice properties in terms of the asymptotic behavior of the solutions of(1.1).

Dissipativity. This is a key property and it has to do with the “ultimate boundedness” of the
orbits of Tε. We will show that there exists R > 0 such that for any zε ∈ H1(Ωε) there exists a
positive time τ = τ(‖zε‖H1(Ωε)) with the property that

‖Tε(t)zε‖H1(Ωε) ≤ R, ∀t ≥ τ
Moreover, this R can be chosen independent to ε. To see this, let us consider an initial condition
zε ∈ H1(Ωε) and estimate in (1.8):

‖u(t, zε)‖H1(Ωε) ≤ e
−t‖zε‖H1(Ωε) +

∫ t

0
‖e−Aε(t−s)‖L(L2,H1)‖f(u(s, zε)‖L2ds

≤ e−t‖zε‖H1 + Lf |Ωε|1/2
∫ t

0
e−(t−s)/2(t− s)−1/2ds

≤ e−t‖zε‖H1 + C

∫ t

0
e−s/2s−1/2ds
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where C is an upper bound of Lf |Ωε|1/2. Now, if τ = log(1 + ‖zε‖H1) we have that for t ≥ τ ,

‖u(t)‖H1(Ωε) ≤ 1 + C

∫ ∞
0

e−s/2s−1/2ds ≡ R

Orbtis of bounded sets are bounded. We can see that if we have ρ > 0, then the positive orbit
of the bounded set {zε ∈ H1(Ωε) : ‖zε‖H1(Ωε) ≤}, that is⋃

t>0

⋃
‖zε‖≤ρ

Tε(t)zε

is bounded in H1(Ωε). Actually, from the dissipativity proof, we get that

‖Tε(t)zε‖H1(Ωε) ≤ ρ+ C

∫ ∞
0

e−s/2s−1/2ds

Compactness. For each t > 0 fixed, the nonlinear operator Tε(t) : H1(Ωε)→ H1(Ωε) is a compact
map. To see this, we just observe from (1.8) that Tε is the sum of two maps: a linear one, given by
e−Aεt and a nonlinear one given by the integral part. The linear is definitely compact as we have
shown above. The integral can be written as follows (where η > 0 is a small number):

∫ t

0
e−Aεsf(T (t− s)zε)ds =

∫ η

0
e−Aεsf(T (t− s)zε)ds+ e−Aεη

∫ t

η
e−Aε(s−η)f(T (t− s)zε)ds

But the first integral is as small as we want by making η → 0. The second integral lies in
a compact set of H1(Ωε) for each η > 0. This decomposition implies the compactness, see [5,
Theorem 4.2.2, page 73].

With these three properties we have

Theorem 1.1. The dynamical system Tε(t), generated by (1.1) has an attractor Aε ⊂ H1(Ωε)

Definition 1.2. The attractor of the dynamical system Tε(t) is the set Aε ⊂ H1(Ωε) which is:
• Invariant. That is, Tε(t)Aε = Aε.
• Compact.
• Attracts bounded sets: ∀B ⊂ H1(Ωε) bounded set, we have

distH1(Ωε)(Tε(t)B,Aε)→ 0, as t→ +∞

In the definition above distX is the (non-symmetric) Haussdorf distance in the metric space X
that is,

distX(A,B) = sup
a∈A

inf
b∈B

dX(a, b).

Because of the properties above, the attractor has the following properties:
(1) All bounded global orbits are contained in the attractor Aε. In particular all stationary

solutions (equilibria), all periodic orbits, all connecting orbits between orbits are contained
in the attractor Aε.

(2) For all ϕε ∈ Aε there exists a global orbit contained in the attractor passing through this
point.
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For the equation we are dealing with, we have some extra important tool:

Liapunov functions. Consider the functional E : H1(Ωε)→ R defined as

E(u) =
1
2

∫
Ω

(|∇u(x)|2 + |u(x)|2)dx−
∫

Ω
F (u(x))dx

where F is a primitive of f , that is F ′(s) = f(s) for all s ∈ R. It is not difficult to see that
E ∈ C1(H1(Ωε), R) and moreover

d

dt
E(Tε(t)zε) = DE(Tε(t)zε) ◦

d

dt
Tε(t) = −

∫
Ωε

u2
t ≤ 0.

So the function t→ E(Tε(t)zε) is non increasing along solutions (actually it is strictly decreasing
along solutions except at stationary solutions, where ut = 0). In particular this implies:

• No periodic orbits
• No homoclinic connections or even loops.

A system with a Lyapunov function is called a Gradient System and its attractor has the simplest
possible structure: it is formed by equilibria and connections among them.

In particular, if we have only a finite number of stationary solutions, {eε1, . . . , eεn} ⊂ H1(Ωε) then
the attractor is characterized as follows: zε ∈ Aε then we have only two possibilities

• zε is an equilibrium point, or
• zε has a global orbit γε(t) with γε(0) = zε and γε(t) → eεj as t → +∞ and γε(t) → eεi as
t→ −∞ for some i 6= j.

So we are in a situation where for each value of the parameter ε we have an attractor Aε ⊂ H1(Ωε)
and we want to understand its behavior when we perturb the domain. As a matter of fact, in these
notes we give conditions on the behavior of Ωε as ε → 0 and on the unperturbed problem, (1.1)
with ε = 0, that guarantee the continuity (upper and lower semicontinuity) of the attractors Aε in
H1
ε as ε→ 0. More precisely, we show the following two results:
i) The upper semicontinuity of the attractors Aε in H1

ε , which is obtained just requiring
the spectral convergence in H1

ε of the Neumann Laplacian as ε → 0; that is, requiring that the
eigenvalues and eigenfunctions of the Laplace operator with homogeneous Neumann boundary
conditions behave continuously in H1

ε as ε→ 0.
ii) The lower semicontinuity of the attractors Aε in H1

ε . Once upper semicontinuity
is attained, lower semicontinuity in H1

ε is obtained by requiring that every equilibrium of the
unperturbed problem is hyperbolic. To obtain the lower semicontinuity we will use the gradient
structure of the flow.

By upper semicontinuity of the attractors in H1
ε we mean that

sup
uε∈Aε

inf
u0∈A0

‖uε − u0‖H1
ε
→ 0, as ε→ 0

By lower semicontinuity of the attractors in H1
ε we mean that

sup
u0∈A0

inf
uε∈Aε

‖uε − u0‖H1
ε
→ 0, as ε→ 0



SPECTRAL CONVERGENCE AND NONLINEAR DYNAMICS 7

2. Spectral behavior.

It will become very clear that understanding the spectral behavior of the Laplace operator is
extremely important when analysing the continuity properties of nonlinear dynamics. Therefore,
in this section we are interested in obtaining necessary and suficient conditions that guarantee that
the eigenvalues and eigenfunctions behave continuously when the domain undergoes a perturbation
satisfying (1.3).

As a matter of fact we will be a little more general and consider operators of the form −∆ + Vε
where the potentials may depend also on ε. We specify their behavior as ε → 0 in the following
definition.

Definition 2.1. A family {Vε : 0 ≤ ε ≤ ε0} of potentials is said admissible if Vε ∈ L∞(Ωε),
sup0≤ε≤ε0 ‖Vε‖L∞(Ωε) ≤ C <∞ and Vε → V0 weakly in L2(RN ).

To fix the notations we consider the eigenvalue problems{
−∆u+ Vεu = λu, Ωε
∂u
∂n = 0, ∂Ωε

where {Vε : 0 ≤ ε ≤ ε0} is admissible. We denote by {λεn}∞n=1, for ε ∈ [0, ε0], the set of eigenvalues,
ordered and counting multiplicity, of the operator −∆ + Vε with Neumann boundary conditions in
Ωε and by {φεn}∞n=1 a corresponding complete family of orthonormalized eigenfunctions.

Definition 2.2. We will say that the spectra behaves continuously at ε = 0, if for fixed n ∈ N
we have that λεn → λ0

n as ε → 0 and the spectral projections converge in H1
ε , that is, if a 6∈

{λ0
n}∞n=0, and λ0

n < a < λ0
n+1, then if we define the projections P εa : L2(RN ) → H1(Ωε), P εa(ψ) =∑n

i=1(φεi , ψ)L2(Ωε)φ
ε
i then

sup{‖P εa(ψ)− P 0
a (ψ)‖H1

ε
, ψ ∈ L2(RN ), ‖ψ‖L2(RN ) = 1} → 0, as ε→ 0.

Remark 2.3. The convergence of the spectral projections is equivalent to the following: for each
sequence εk → 0 there exists a subsequence, that we denote again by εk and a complete system
of orthonormal eigenfunctions of the limiting problem {φ0

n}∞n=1 such that ‖φεkn − φ0
n‖H1

εk
→ 0 as

k →∞.

In order to characterize when the spectra behaves continuously we define

τε = inf
φ∈H1(Ωε)

φ=0, in Ω0

∫
Ωε

|∇φ|2∫
Ωε

|φ|2
(2.1)

Observe that, in case Ωε \ Ω̄0 is smooth, τε is the first eigenvalue of the following problem,
−∆u = τu, Ωε \ Ω̄0

u = 0, ∂Ω0
∂u
∂n = 0, ∂Ωε

We have the following useful characterization

Proposition 2.4. Assume the family of domains {Ωε}0≤ε≤ε0 satisfy (1.3) and that |Ωε \ Ω0| → 0
as ε→ 0. Then, the following four statements are equivalent:
i) The spectra of −∆ + Vε behaves continuously as ε → 0 for any admissible family of potentials
{Vε, 0 ≤ ε ≤ ε0}
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ii) τε →∞ as ε→ 0.
iii) For any family of functions ψε with ‖ψε‖H1(Ωε) ≤ C then ‖ψε‖L2(Ωε\Ω̄0) → 0 as ε→ 0.
iv) For any family of functions ψε with ‖ψε‖H1(Ωε) ≤ C then there exists a sequence ψεk and a
function ψ0 ∈ H1(Ω0) such that ψεk → ψ0, in L2(RN ) and for any χ ∈ H1(RN ) we have that∫

Ωεk

∇ψεk∇χ→
∫

Ω0

∇ψ0∇χ

Proof.

ii)⇒iii). If it is not true then there will exists a sequence of functions φεk with ‖φεk‖H1(Ωεk ) ≤ C1

and ‖φεk‖L2(Ωεk\Ω0) ≥ C2 > 0, for some constants C1 and C2 independent of εk. If we consider the
functions ψεk = E(φεk |Ω0

) then ψεk ∈ H1(RN ) with ‖ψεk‖H1(RN ) ≤ C independent of εk. Moreover,
by Hölder’s inequality and Sobolev embeddings, we have

‖ψεk‖L2(Ωεk\Ω0) ≤ ‖ψεk‖L2N/(N−2)(Ωεk\Ω0)|Ωεk \ Ω0|
1
N ≤ C‖ψεk‖H1(RN )|Ωεk \ Ω0|

1
N , (N ≥ 3)

‖ψεk‖L2(Ωεk\Ω0) ≤ ‖ψεk‖L2p(Ωεk\Ω0)|Ωεk \ Ω0|
1
2
− 1
p ≤ C‖ψεk‖H1(RN )|Ωεk \ Ω0|

1
2
− 1

2p , (N = 1, 2)
where p can be choosen arbitrarily large in the last inequality. These two last inequalities imply
that there exists a θ > 0, such that

‖ψεk‖L2(Ωεk\Ω0) ≤ C|Ωεk \ Ω0|θ → 0, as εk → 0

We consider now χεk = φεk−ψεk . By construction χεk = 0 in Ω0 and ‖χεk‖H1(Ωεk ) ≤ C. Moreover,
‖χεk‖L2(Ωεk\Ω0) ≥ ‖φεk‖L2(Ωεk\Ω0) − ‖ψεk‖L2(Ωεk\Ω0) ≥ C2/2 as long as εk is small enough. This
contradicts ii).

iii)⇒iv). If ψεk is a sequence with ‖ψεk‖H1(Ωεk ) ≤ C, then we can extract a subsequence of ψεk ,
that we denote again by ψεk and we obtain a function ψ0 ∈ H1(Ω0) such that ψεk → ψ0, w-H1(Ω0),
s-L2(Ω0). Moreover, from iii) we have that ‖ψε‖L2(Ωε\Ω0) → 0 as ε → 0. From this, we easily get
that ψεk → ψ0 in L2(RN ).

Now if χ ∈ H1(RN ) we have

|
∫

Ωεk

∇ψεk∇χ−
∫

Ω0

∇ψ0∇χ| ≤ |
∫

Ω0

(∇ψεk −∇ψ0)∇χ|+
∫

Ωεk\Ω0

|∇ψεk ||∇χ| → 0

since ∇ψεk → ∇ψ0 w-H1(Ω0) and ‖ψε‖L2(Ωε\Ω0) → 0.

iv)⇒i). Fix n with the property that λ0
n < λ0

n+1 and consider the family of eigenfunctions
{φ0

1, . . . , φ
0
n}. If we denote by E a extension operator from H1(Ω0) to H1(RN ), and by Tε the

restriction operator to Ωε, we construct the functions ξεi = TεEφ0
i , i = 1, . . . , n. Since iv) implies

v) we easily see that ‖ξεi‖H1(Ωε\Ω0) → 0 as ε→ 0 for i = 1, . . . , n. By the min-max characterization
of eigenvalues, we easily obtain that λεi ≤ λ0

i + o(1) as ε→ 0.
We can choose a sequence εk → 0 and numbers κi ≤ λ0

i , i = 1, . . . , n, such that λεki → κi, for
i = 1, . . . , n. Since φεki , for i = 1, . . . , n is a bounded sequence in H1(Ωεk), then by iv) we can extract
another subsequence, that we still denote by φεki , and get functions ξ0

i ∈ H1(Ω0), i = 1, . . . , n, such
that φεki → ξ0

i in L2(RN ) and∫
Ωεk

∇φεki ∇χ→
∫

Ω0

∇ξ0
i∇χ, i = 1, . . . , n
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for any χ ∈ H1(RN ).
In particular

∫
Ω0
ξ0
i ξ

0
j = δij and passing to the weak limit in the equation, we get∫

Ω0

∇ξ0
i∇χ+

∫
Ω0

V0ξ
0
i χ = κi

∫
Ω0

ξ0
i χ, i = 1, . . . , n.

This implies that necessarily κi and ξ0
i are eigenvalues and eigenfunctions of the limiting problem.

Since we already know that κi ≤ λ0
i we necessarily have that κi = λ0

i for i = 1, . . . , n and {ξ0
1 , . . . , ξ

0
n}

is a system of orthonormal eigenfunctions associated to λ0
1, . . . , λ

0
n.

In order to prove the convergence in H1
εk

we notice that φ0
i , i = 1, . . . , n, satisfy∫

Ωεk

|∇φεki |
2 = λεki

∫
Ωεk

|φεki |
2 −

∫
Ωεk

Vεk |φ
εk
i |

2 → λ0
i

∫
Ω0

|ξ0
i |2 −

∫
Ω0

V0|ξ0
i |2 =

∫
Ω0

|∇ξ0
i |2

where we have used that φεki → ξ0
i in L2(RN ), the weak convergence of Vεk to V0 and the uniform

bound of ‖Vεk‖L∞(Ωεk ). Hence,∫
RN
|∇φεki −∇ξ

0
i |2 =

∫
Ωεk

|∇φεki |
2 +

∫
Ω0

|∇ξ0
i |2 − 2

∫
Ωεk

∇φεki ∇ξ
0
i

But, ∫
Ωεk

|∇φεki |
2 →

∫
Ω0

|∇ξ0
i |2, as εk → 0

and if we define ξ̃0
i ∈ H1(RN ) an extension of ξ0

i we get that∫
Ωεk

∇φεki ∇ξ
0
i =

∫
Ωεk

∇φεki ∇ξ̃
0
i +

∫
Ωεk

∇φεki (∇ξ0
i −∇ξ̃0

i )→
∫

Ω0

|∇ξ0
i |2, as εk → 0

because

|
∫

Ωεk

∇φεki (∇ξ0
i −∇ξ̃0

i )| ≤ ‖∇φεki ‖L2(Ωεk )‖∇ξ0
i −∇ξ̃0

i ‖L2(Ωεk ) → 0, as εk → 0.

This implies that ∫
RN
|∇φεki −∇ξ

0
i |2 → 0, as εk → 0.

i)⇒ii). If this is not the case then we will have again a sequence εk approaching zero and a positive
number a with τεk < a, for all k. From the definition of τεk we can get functions φεk with φεk = 0
in Ωεk , ‖φεk‖L2(Ωεk ) = 1 and ‖∇φεk‖2L2(Ωεk ) ≤ a.

Observe that ∫
Ωεk

|∇φεk |
2 +

∫
Ωεk

Vεk |φεk |
2 ≤ a+ ‖Vεk‖L∞(Ωεk ) ≤ ã,

for some constant ã independent of εk. Choose n ∈ N with the property that ã < λ0
n < λ0

n+1,
denote by φεk1 , . . . , φ

εk
n the first n eigenfunctions and consider the linear subspace [φεk1 , . . . , φ

εk
n , φεk ] ⊂

H1(Ωεk). By the spectral convergence we can get a subsequence, that we denote by εk again and
eigenfunctions of the limiting problem φ0

1, . . . , φ
0
n such that ‖φεki − φ0

i ‖H1
εk
→ 0 as εk → 0. This

implies that ‖φεki ‖L2(Ωεk\Kεk ) → 0 as εk → 0. From here we get that∫
Ωεk

φεki φεk → 0, as εk → 0, for i = 1, . . . , n,
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which means that [φεk1 , . . . , φ
εk
n , φεk ] is almost an orthonormal system in L2(Ωεk). By the min-max

characterization of the eigenvalues, we have that

λεkn+1 ≤ max
φ∈[φ

εk
1 ,...,φ

εk
n ,φεk ]

∫
Ωεk

|∇φ|2 +
∫

Ωεk

Vεk |φ|
2

∫
Ωεk

|φ|2
.

But if φ ∈ [φεk1 , . . . , φ
εk
n , φεk ] we can write φ =

∑n
i=1 αiφ

εk
i +βφεk . Using that φεki is an eigenfunction

corresponding to the eigenvalue λεki and that the family {φεk1 , . . . , φεkn , φεk} is almost orthonormal,
by direct calculation of the above quotient we get that

λεkn+1 ≤
∑n

i=1 α
2
iλ

εk
i + ãβ2 + o(1)∑n

i=1 α
2
i + ã+ o(1)

≤ λ0
n + o(1).

This contradicts the continuity of the eigenvalues given by i).
And the proposition is proved. �

We analise now the convergence properties of the resolvent operators associated to the operators.

Definition 2.5. We say that a family {Ωε : 0 ≤ ε ≤ ε0} is admissible if it satisfies (1.3) and one
of the conditions i) to iv) of Proposition 2.4.

We have the following result.

Proposition 2.6. Assume that the family of potentials {Vε, 0 ≤ ε ≤ ε0} and the family of domains
{Ωε : 0 ≤ ε ≤ ε0} are admissible. Assume also that 0 6∈ σ(−∆ + V0). Then, for ε small enough
0 6∈ σ(−∆ + Vε) and there exists a constant C independent of ε such that

‖(−∆ + Vε)−1gε‖H1(Ωε) ≤ C‖gε‖L2(Ωε), gε ∈ L2(Ωε) (2.2)

Moreover, if gε → g0 weakly in L2(RN ), then

‖(−∆ + Vε)−1gε − (−∆ + V0)−1g0‖H1
ε
→ 0, as ε→ 0. (2.3)

Proof. Let us show first (2.2). By the continuity of the spectra given by Proposition 2.4 we have
that for ε small enough 0 6∈ σ(−∆ + Vε). In particular, for gε ∈ L2(Ωε) given, we have a unique
solution wε ∈ H1(Ωε) of {

−∆wε + Vεwε = gε, Ωε
∂wε
∂n = 0, ∂Ωε

(2.4)

We show first that if ‖gε‖L2(Ωε) ≤ C, with C independent of ε, then ‖wε‖L2(Ωε) is bounded.
Suppose not. Then there is a subsequence, which we again denote by {wε}, such that ‖wε‖L2(Ωε) →
∞. Consider w̃ε = wε

‖wε‖L2(Ωε)
, so that ‖w̃ε‖L2(Ωε) = 1. Then{

−∆w̃ε + Vεw̃ε = gε
‖wε‖L2(Ωε)

, Ωε

∂w̃ε
∂n = 0, ∂Ωε.

(2.5)

Multiplying this equation by w̃ε and integrating by parts we obtain that∫
Ωε

|∇w̃ε|2 +
∫

Ωε

Vε|w̃ε|2 =
∫

Ωε

g̃ε
‖wε‖L2(Ωε)

w̃ε

from where it follows that ∫
Ωε

|∇w̃ε|2 ≤ C,
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with C independent of ε. Applying Proposition 2.4 iv) we can extract a sequence, denoted still by
w̃ε, so that w̃ε → w̃0 in L2(RN ) and for any χ ∈ H1(RN ) we have∫

Ωε

∇w̃ε∇χ→
∫

Ω0

∇w̃0∇χ.

Notice in particular that ‖w̃0‖L2(Ω0) = 1.
Let ξ ∈ H1(Ω0) and consider ξ̃ ∈ H1(RN ) an extension of ξ to RN . If we multiply the equation

(2.5) by ξ̃ ∈ H1(Ωε) and integrating by parts we have that∫
Ωε

∇w̃ε∇ξ̃ +
∫

Ωε

Vεw̃εξ̃ =
∫

Ωε

gε
‖wε‖L2(Ωε)

ξ̃.

Taking the limit, we get that ∫
Ω0

∇w̃0∇ξ +
∫

Ω0

V0w̃0ξ = 0,

where we have used that ‖Vε‖L∞(Ωε) ≤ C, Vε → V0, w-L2(RN ) and w̃ε → w̃0 in L2(RN ). Thus{
−∆w̃0 + V0w̃0 = 0, Ω0
∂w̃0
∂n = 0, ∂Ω0,

(2.6)

and since 0 6∈ σ(−∆ + V0), we get w̃0 = 0. This contradicts the fact that ‖w̃0‖L2(Ω0) = 1. Hence,
we obtain that ‖wε‖L2(Ωε) is uniformly bounded in ε.

To show that ‖∇wε‖L2(Ωε) is uniformly bounded in ε we note that Vε are uniformly bounded in
L∞(Ωε) and that ∫

Ωε

|∇wε|2 = −
∫

Ωε

Vε|wε|2 +
∫

Ωε

gεwε.

To show (2.3), notice that by the weak convergence of gε, we have that gε is uniformly bounded
in L2(RN ). Applying (2.2) we obtain that ‖(−∆ +Vε)−1gε‖H1(Ωε) is uniformly bounded in ε. Using
iv) in Proposition 2.4 and taking the limit in the equation we obtain that if uε = (−∆ + Vε)−1gε
and u0 = (−∆ + V0)−1g0, then uε → u0 in L2(RN ) and ∇uε → ∇u0 w-L2(RN ). . Now with a
similar argument as in the proof that iv) implies i) in Proposition 2.4 we obtain that uε → u0 in
H1
ε . This concludes the proof of the lemma. �
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3. Convergence of the linear and nonlinear semigroups. Upper-semicontinuity of
attractors.

With the continuity of the spectra of the operators Aε = −∆ + I we will be able to obtain
estimates on the behavior of the linear semigroups e−Aεt. Notice that the semigroup e−Aεt acts
on functions defined in Ωε. We will need to estimate expresions of the type e−Aεtu0 where, for
instance u0 ∈ L2(Ω0). As we said in the introduction, by this we mean that we extend the function
u0 by zero outside Ω0 and restrict to Ωε. In this way we can also regard u0 ∈ L2(Ωε) and evaluate
e−Aεtu0. Similarly we can give a meaning to e−A0tuε.

We have the following result

Proposition 3.1. Assume that the family of domains {Ωε : 0 ≤ ε ≤ ε0} is admissible and Proposi-
tion 2.4 holds true. Then, there exists a number γ < 1 and a function θ(ε) with θ(ε)→ 0 as ε→ 0
such that

‖e−Aεtuε − e−A0tuε‖H1
ε
≤ θ(ε)t−γe−t/4‖uε‖L2(Ωε), uε ∈ L2(Ωε), t > 0

Proof. Notice first that from (1.6) we have

‖e−Aεtuε‖H1(Ωε) ≤ t
− 1

2 e−t/2‖uε‖L2(Ωε), uε ∈ L2(Ωε), t > 0, ε ∈ [0, ε0)

Now, we separate the estimate for t small and t large. Choose γ ∈ (1
2 , 1) fixed. Let δ > 0 be a

small parameter and let us consider two different cases according to t ∈ (0, δ] or t > δ.
i) If t ∈ (0, δ] we easily check that

‖e−Aεtuε − e−A0tuε‖H1
ε
≤ ‖e−Aεtuε‖H1

ε
+ ‖e−A0tuε‖H1

ε

≤ 2t−
1
2 e−t/2‖uε‖L2(Ωε) ≤ 2δγ−

1
2 t−γe−t/2‖uε‖L2(Ωε)

(3.1)

ii) If t > δ we proceed as follows. We know that the function xe−x → 0 as x → ∞. Hence, for
δ > 0 given we may choose a number x0(δ) large enough so that xe−x ≤ δ2 for x ≥ x0(δ). If we
consider now the function ze−2zt, then if l(δ) = x0(δ)/δ that without loss of generality we may
assume ≥ 1, then for z ≥ l(δ) we have

ze−2zt = t−1tze−zte−zt ≤ t−1δ2e−t

Since we have λεk
ε→0−→ λ0

k and λ0
k
k→∞−→ +∞, there exists N = N(δ) large enough, such that

λεk ≥ l(δ), ε ∈ [0, ε0) with k ≥ N(δ). Without loss of generality we can assume that we have
λ0
N(δ) < λ0

N(δ)+1. Hence, from the spectral decomposition of the linear semigroups, we obtain

‖e−Aεtuε − e−A0tuε‖H1
ε
≤ ‖

N(δ)∑
k=1

e−λ
ε
kt(uε, φεk)φ

ε
k −

N(δ)∑
k=1

e−λ
0
kt(uε, φ0

k)φ
0
k‖H1

ε
+

+‖
∞∑

N(δ)+1

e−λ
ε
kt(uε, φεk)φ

ε
k‖H1(Ωε) + ‖

∞∑
N(δ)+1

e−λ
0
kt(uε, φ0

k)φ
0
k‖H1(Ω0) = I1 + I2 + I3

(3.2)

Analyzing I2, I3 and I1 respectively, we get

I2
2 ≤

∞∑
N(δ)+1

λεke
−2λεkt|(uε, φεn)|2 ≤ δ2t−1e−t‖uε‖2L2(Ωε)

I2
3 ≤

∞∑
N(δ)+1

λ0
ke
−2λ0

kt|(u0, φ
0
n)|2 ≤ δ2t−1e−t‖uε‖2L2(Ωε)
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I1 = ‖
N(δ)∑
k=1

e−λ
ε
kt(uε, φεk)φ

ε
k −

N(δ)∑
k=1

e−λ
0
kt(uε, φ0

k)φ
0
k‖H1

ε

≤ ‖
N(δ)∑
k=1

(e−λ
ε
kt − e−λ0

kt)(uε, φεk)φ
ε
k‖H1

ε
+ ‖

N(δ)∑
k=1

e−λ
0
kt((uε, φεk)φ

ε
k − (uε, φ0

k)φ
0
k)‖H1

ε

≤
N(δ)∑
k=1

(λεk)
1/2|e−λεkt − e−λ0

kt| ‖uε‖L2(Ωε) +
k(δ)∑
i=1

e−µit‖
ni∑

k=ni−1+1

((uε, φεk)φ
ε
k − (uε, φ0

k)φ
0
k)‖H1

ε

where we have used ‖φεi‖2H1(Ωε)
= λεi , |(uε, φεi)| ≤ ‖uε‖L2(Ωε) and triangular inequality in the first

sum. For the second sum we have denoted by µi the points of the spectrum of A0, each with
multiplicity ni+1 − ni, that is, µ1 < µ2 < . . . < µk(δ), with

µ1 = λ0
1 = . . . = λ0

n1

µ2 = λ0
n1+1 = . . . = λ0

n2

. . . . . .
µi = λni−1+1 = . . . = λni
. . . . . .

Moreover, since δ > 0 is fixed and therefore the number of terms in the sums above is finite and
fixed and λεk ≥ 1, then

N(δ)∑
k=1

(λεk)
1/2|e−λεkt − e−λ0

kt| ≤ Ce−t, ∀t > 0

N(δ)∑
k=1

(λεk)
1/2|e−λεkt − e−λ0

kt| → 0, as ε→ 0, uniformly t > 0

Both statements above imply that we can choose ε1(δ) > 0 such that for ε < ε1(δ) we have
N(δ)∑
k=1

(λεk)
1/2|e−λεkt − e−λ0

kt| ≤ δe−t/2, ∀t > 0

Moreover, with a very similar argument, using this time the convergence of the spectral projec-
tions, we get that there exists another ε2(δ) > 0 such that for 0 < ε < ε2(δ) we have

k(δ)∑
i=1

e−µit‖
ni∑

k=ni−1+1

((uε, φεk)φ
ε
k − (uε, φ0

k)φ
0
k)‖H1

ε
≤ δe−t/2‖uε‖L2(Ωε)

Putting everything together, we get that for t > δ and for 0 < ε < ε0(δ) = min{ε1(δ), ε2(δ)},

‖e−Aεtuε − e−A0tuε‖H1
ε
≤ (2δe−t/2 + δt−1/2e−t/2)‖uε‖L2(Ωε) ≤ Cδt

−γe−t/4‖uε‖L2(Ωε) (3.3)

where 1/2 < γ < 1. Putting together (3.1), which is valid for 0 < t < δ and all ε and (3.3), which
is valid for t > δ and 0 < ε ≤ ε0(δ) and taking into account that δ is an arbitrary small number,
we get the result. �

Once we have proved a result on the continuity of the linear semigroups (Proposition 3.1), we
will analyze the convergence of the nonlinear semigroups with the aid of the Variation of Constants
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Formula and will see that the attractors and the stationary states (solutions of the nonlinear elliptic
problem) are upper semicontinuous with respect to these perturbations.

We will show the following result

Proposition 3.2. Assume that the family of domains {Ωε : 0 ≤ ε ≤ ε0} is admissible. Then, there
exist 0 ≤ γ < 1, a function c(ε) with c(ε)→ 0 as ε→ 0 and a constant M such that

‖Tε(t, uε)− T0(t, uε)‖H1
ε
≤Mc(ε)t−γ , t ∈ (0, τ ], ‖uε‖L2(Ωε) ≤ R, ε ∈ (0, ε0) (3.4)

where M = M(τ,R).
Moreover the attractors are upper semicontinuous at ε = 0 in H1

ε , in the sense that

sup
uε∈Aε

dH1
ε
(uε,A0) = sup

uε∈Aε

[
inf

u0∈A0

{‖uε − u0‖H1
ε
}
]
→ 0, as ε→ 0 (3.5)

Also, if we denote by Eε, ε ∈ [0, ε0] the set of stationary states of (1.1), then

sup
uε∈Eε

dH1
ε
(uε, E0) = sup

uε∈Eε

[
inf
u0∈E0

{‖uε − u0‖H1
ε
}
]
→ 0, as ε→ 0 (3.6)

Proof. Notice that the nonlinear semigroups Tε(t) are given by the variation of constants formula.

Tε(t, uε) = e−Aεtuε +
∫ t

0
e−Aε(t−s)f(Tε(s, uε))ds, ε ∈ [0, ε0) (3.7)

Hence, calculating Tε(t, uε)− T0(t, uε) and with some elementary computations we obtain

‖Tε(t, uε)− T0(t, uε)‖H1
ε
≤ ‖e−Aεtuε − e−A0tuε‖H1

ε
+∫ t

0
‖e−Aεtf(Tε(s, uε))− e−A0tf(Tε(s, uε))‖H1

ε
ds

+
∫ t

0
‖e−A0t(f(Tε(s, uε))− f(T0(s, uε)))‖H1

ε
ds ε ∈ [0, ε0)

Applying now Proposition 3.1 and (1.6), we get

‖Tε(t, uε)− T0(t, uε)‖H1
ε
≤ θ(ε)t−γe−t/4‖uε‖L2(Ωε)

+θ(ε)
∫ t

0
(t− s)−γe−(t−s)/4‖f(Tε(s, uε))‖L2(Ωε)

+
∫ t

0
(t− s)−1/2e−(t−s)/2‖f(Tε(t, uε))− f(T0(t, uε))‖L2(Ω0)

and using that f is bounded and Lipschitz, we have

≤ θ(ε)t−γe−t/4‖uε‖L2(Ωε) + θ(ε)L|Ωε|1/2
∫ t

0
s−γe−s/4ds

+L
∫ t

0
(t− s)−1/2e−(t−s)/2‖Tε(t, uε)− T0(t, uε)‖H1

ε

and since ‖uε‖L2 ≤ R and considering 0 ≤ t ≤ τ , we finally have, with M = M(τ,R), that

‖Tε(t, uε)− T0(t, uε)‖H1
ε
≤Mθ(ε)t−γ + L

∫ t

0
(t− s)−1/2e−(t−s)/2‖Tε(t, uε)− T0(t, uε)‖H1

ε

Applying now Gronwall’s lemma, see [6], we obtain statement (3.4). �

Now, the upper semicontinuity of the attractors in H1
ε , statement (3.5) follows directly from

(3.4) and the fact that the attractor A0 attracts bounded sets. In particular, B =
⋃

0<ε≤ε0 Aε|Ω0 is
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a bounded set in H1(Ω0). Hence, if we fix η > 0 small, we have a time τ > 0 such that the orbit of
B under the semi flow T0, enters an η-neighborhood of A0 at time τ and it will not abandon this
neighborhood ever. That is, for each wε ∈ Aε, dH1

ε
(T0(τ)wε,A0) ≤ η. Moreoever, if uε ∈ Aε and

if τ > 0 is the above, then from the invariance of the attractors, there exists wε ∈ Aε such that
Tε(τ)wε = uε. Hence,

dH1
ε
(uε,A0) = dH1

ε
(Tε(τ)wε,A0) ≤ ‖Tε(τ)wε − T0(τ)wε‖H1

ε
+ dH1

ε
(T0(τ)wε,A0) ≤Mc(ε)τ−γ + η

and this implies that choosing ε1 small enough so that Mc(ε)τ−γ ≤ η then

sup
uε∈Aε

dH1
ε
(uε,A0) ≤ 2η, ∀0 < ε ≤ ε1.

Since η > 0 is arbitrarily small, we have shown the result on uppersemicontinuity of attractors.
To show the upper semicontinuity in H1

ε of the stationary states we will prove that for any
sequence of ε → 0 and for any uε ∈ Eε we can extract a subsequence, that we still denote by ε,
and obtain a u0 ∈ E0 such that ‖uε − u0‖H1

ε
→ 0 as ε → 0. From the upper semicontinuity of the

attractors given by (3.5), we obtain the existence of a u0 ∈ A0 such that ‖uε−u0‖H1
ε
→ 0 as ε→ 0.

To show that u0 ∈ E0 we first observe that for any t > 0, ‖uε−T0(t, u0)‖H1
ε
→ ‖u0−T0(t, u0)‖H1(Ω0).

Moreover, for a fixed τ > 0 and for any t ∈ (0, τ) we have that,

‖uε − T0(t, u0)‖H1
ε

= ‖Tε(t, uε)− T0(t, u0)‖H1
ε
→ 0, as ε→ 0

where we have used that uε is a stationary state and (3.4). In particular we have that for each
t > 0, u0 = T0(t, u0), which implies that u0 is a stationary state. This concludes the proof of the
Proposition. �
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4. Continuity of equilibria, unstable manifolds and attractors

In order to obtain lower semicontinuity of attractors in H1
ε we must ensure that the set of

equilibria Eε behaves lower-semicontinuously. In this section we prove that, for the sort of domain
perturbations considered here and assuming that the equilibria of the limiting problem are all
hyperbolic, Eε is a finite set with constant cardinality; that is, Eε = {uε1, · · · , uεn}, 0 ≤ ε ≤ ε0. This
set behaves continuously with respect to ε in H1

ε , that is,

max
1≤k≤n

{‖uεk − u0
k‖H1

ε
} ε→0−→ 0.

We also indicate in this section, that the local unstable manifolds of equilibrium solutions are
continuous as ε→ 0. For that we use the convergence of equilibria to obtain the continuity of the
spectrum of the linearization around such equilibria and consequently the continuity of the local
unstable manifolds.

With all these ingredients and using that the system is gradient, we will show the continuity of
the attractors.

4.1. Continuity of hyperbolic equilibrium. Consider the following family of elliptic problems

(P )ε

{
∆u− u+ f(u) = 0 in Ωε
∂u
∂n = 0 in ∂Ωε.

for each 0 ≤ ε ≤ ε0 (ε0 > 0). We can show the following

Proposition 4.1. Assume that the family of domains {Ωε : 0 ≤ ε ≤ ε0} is admissible. Assume also
that problem (P )0 has a solution u0 ∈ H1(Ω0) and that zero is not in the spectrum of the operator
∆ − I + f ′(u0) : H2

n(Ω0) ⊂ L2(Ω0) → L2(Ω0). Consider the extension operator E : H1(Ω0) →
H1(RN ) and let u0,ε = E(u0)∣∣

Ωε

∈ H1(Ωε). Then, there exists ε0 > 0 and δ > 0 so that problem

(P )ε has exactly one solution, uε, in {wε, ‖wε − u0,ε‖H1(Ωε) ≤ δ} for 0 < ε ≤ ε0. Furthermore,

‖uε − u0‖H1
ε
→ 0, as ε→ 0.

Proof: Define the operators

Θε : H1(Ωε)→ H1(Ωε)
Θε(zε) =

(
−∆ + I − f ′(u0,ε)I

)−1 (
f(zε)− f ′(u0,ε)zε

)
.

(4.1)

The operators Θε are well defined by applying Proposition 2.6, since f ′(u0,ε) → f ′(u0) in L2(RN )
and 0 6∈ σ(∆− I + f ′(u0)I). Notice also that vε is a fixed point of Θε if and only if vε is a solution
of (P )ε.

We will show that there exists δ > 0 and ε0 > 0, such that the operator Θε, for 0 < ε < ε0, is a
strict contraction from Bδ(u0,ε) = {vε ∈ H1(Ωε) : ‖vε − u0,ε‖H1(Ωε) ≤ δ} into itself.

To prove this, let us start by showing that Θε : Bδ(u0,ε) → H1(Ωε) is a strict contraction, that
is, there exists a ρ < 1 such that ‖Θεvε−Θεwε‖H1(Ωε) ≤ ρ‖vε−wε‖H1(Ωε) for any vε, wε ∈ Bδ(u0,ε).
We have,

‖Θε(vε)−Θε(wε)‖H1(Ωε)

≤ ‖
(
−∆ + I − f ′(u0,ε)I

)−1 ‖L(L2(Ωε),H1(Ωε))‖f(vε)− f(wε)− f ′(u0,ε)(vε − wε)‖L2(Ωε)

≤ C‖f(vε)− f(wε)− f ′(u0,ε)(vε − wε)‖L2(Ωε).

(4.2)

Where we have used Lemma 2.6 to obtain that ‖
(
−∆ + I − f ′(u0,ε)I

)−1 ‖L(L2(Ωε),H1(Ωε) ≤ C for
some constant C independent of ε.

Next we study ‖f(vε)− f(wε)− f ′(u0,ε)(vε − wε)‖L2(Ωε). We prove
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Lemma 4.2. There exists a constant C such that for all vε, wε with ‖vε − u0,ε‖H1(Ωε) < δ, ‖vε −
u0,ε‖H1(Ωε) < δ, we have

‖f(vε)− f(wε)− f ′(u0,ε)(vε − wε)‖L2(Ωε) ≤ C(
1
τε

+ δ2/N )‖vε − wε‖H1(Ωε)

where τε is given by (2.1).

If we assume the lemma proved, then we have

‖Θε(vε)−Θε(wε)‖H1(Ωε) ≤ C(
1
τε

+ δ2/N )‖vε − wε‖H1(Ωε)

Now, given ρ < 1 choose ε small enough such that C 1
τε
≤ ρ

2 and δ small enough so that Cδ2/N < ρ
2 .

This shows Θε is a strict contraction from Bδ(u0,ε) into H1(Ωε).
In order to prove that Θε maps Bδ(u0,ε) into itself we show first that ‖Θεu

0,ε − u0,ε‖H1(Ωε) → 0
as ε→ 0, for all k = 1, . . . ,m. Notice that

‖Θεu
0,ε − u0,ε‖H1(Ωε) ≤ ‖Θεu

0,ε − u0‖H1
ε

+ ‖u0,ε − u0‖H1
ε

= ‖Θεu
0,ε − u0‖H1

ε
+ ‖u0,ε‖H1(Ωε\Ω0)

But ‖u0,ε‖H1(Ωε\Ω0) → 0 as ε→ 0. Hence we just need to show that ‖Θεu
0,ε− u0‖H1

ε
→ 0 as ε→ 0.

If we denote by vε = Θεu
0,ε, then vε ∈ H1(Ωε) is the solution of{
−∆vε + vε − f ′(u0,ε)vε = f(u0,ε)− f ′(u0,ε)u0,ε, Ωε
∂vε
∂n = 0, ∂Ωε

and u0 is the solution of{
−∆u0 + u0 − f ′(u0)u0 = f(u0)− f ′(u0)u0, Ω0
∂u0

∂n = 0, ∂Ω0

But by the resolvent convergence estimates (2.3) we get that ‖vε − u0‖H1
ε
→ 0 as ε→ 0.

To show that Θε maps Bδ(u0,ε) into itself we just observe that if vε ∈ Bδ(u0,ε)

‖Θεvε − u0,ε‖H1(Ωε) ≤ ‖Θεvε −Θεu
0,ε‖H1(Ωε) + ‖Θεu

0,ε − u0,ε‖H1(Ωε) ≤ ρδ + ‖Θεu
0,ε − u0,ε‖H1(Ωε)

Choosing ε small enough again we can garantee that ‖Θεu
0,ε− u0,ε‖H1(Ωε) < (1− ρ)δ and therefore

‖Θεvε − u0,ε‖H1(Ωε) < δ. This concludes the proof of the Proposition. �

Proof of Lemma 4.2: Note that

|f(vε(x))− f(wε(x))− f ′(u0,ε(x))(vε(x)− wε(x))| ≤ C̄γε,δ(x)|vε(x)− wε|
where

γε,δ(x) = min{1, |vε(x)− u0,ε(x)|+ |wε(x)− u0,ε(x)|}}.
It follows, from the definition of γε,δ, that ‖γε,δ‖L∞(Ωε) ≤ 1, 0 ≤ ε ≤ ε0. Moreover ‖γε,δ‖L2(Ωε) ≤
‖vε − u0,ε‖L2(Ωε) + ‖wε − u0,ε‖L2(Ωε) ≤ 2δ, for all vε, wε ∈ Bδ(u0,ε). Using Hölder’s inequality, we
get

‖γε,δ‖Lp(Ωε) ≤ (2δ)2/p ≤ 2(δ)2/p, 2 ≤ p <∞, for all vε, wε ∈ Bδ(u0,ε)

Now if ϕε = vε − wε we denote by ϕ̃ε = E(ϕε∣∣
Ω0

)∣∣
Ωε

. Then

‖ϕ̃ε − ϕε‖L2(Ωε) = ‖ϕ̃ε − ϕε‖L2(Ωε\Ω0) ≤ 1
τε
‖∇ϕ̃ε −∇ϕε‖L2(Ωε\Ω0)

≤ C 1
τε

(‖ϕε‖H1(Ωε) + ‖ϕ̃ε‖H1(RN )) ≤ C 1
τε

(‖ϕε‖H1(Ωε) + ‖ϕε‖H1(Ω0))
≤ C 2

τε
‖ϕε‖H1(Ωε),



18 J. M. ARRIETA

where we have used that E : H1(Ω0)→ H1(RN ) is bounded and τε is the first eigenvalue of −∆ in
Ωε\Ω0 with Dirichlet boundary condition in ∂Ω0 and Neumann boundary condition in ∂Ωε. Now

‖γε,δϕε‖L2(Ωε) ≤ ‖γε,δ(ϕε − ϕ̃ε)‖L2(Ωε) + ‖γε,δϕ̃ε‖L2(Ωε)

≤ ‖γε,δ‖L∞(Ωε)‖ϕε − ϕ̃ε‖L2(Ωε) + ‖γε,δ‖LN (Ωε)‖ϕ̃ε‖L2N/(N−2)(RN )

≤ (C 2
τε

+ Cδ2/N )‖ϕε‖H1(Ωε)

This proves the lemma. �

As an immediate consequence of this proposition, we have

Corollary 4.3. Assume the conditions of Proposition 4.1 hold. Assume moreover that problem
(P )0 has exactly m solutions u0

1, . . . , u
0
m and that all of them are hyperbolic in the sense that 0 is

not in the spectrum of ∆− I + f ′(u0
k)I : H2

n(Ω0) ⊂ L2(Ω0)→ L2(Ω0) for k = 1, . . . ,m. Then there
exists a small ε0 > 0 such that for all 0 < ε < ε0 problem (P )ε has exactly m solutions uε1, . . . , u

ε
m.

Moreover, we have
‖uεk − u0

k‖H1
ε
→ 0, as ε→ 0.

Proof: By Proposition 3.2 we have that for any solution uε of (P )ε for ε small enough lies in a
neighborhood of the set of equilibria (P )0. But by Proposition 4.1, in a neighborhood of u0

k there
is only one solution of (P )ε which converges to u0

k in H1
ε . This proves the result. �

4.2. Continuity of Unstable Manifolds. In this section we show that the local unstable mani-
folds of uε, for k = 1, . . . ,m fixed, are continuous in H1

ε as ε → 0. The existence of this manifold
follows from standard invariant manifold theory, see [6], although its proof is adapted to encompass
the possibility that the space changes according to a parameter and to keep track of the dependence
of the invariant manifold upon the parameter. After this, we show that the unstable manifolds are
close for small ε. For this we will use the convergence results on the linear part obtained in Section
2.

We have the following

Proposition 4.4. Assume that the family of domains {Ωε : 0 ≤ ε ≤ ε0} is admissible. Assume
also that u0 is a solution of problem (P )0 and that zero is not in the spectrum of the operator
∆− I + f ′(u0) : H2

n(Ω0) ⊂ L2(Ω0)→ L2(Ω0). By Proposition 4.1, (P )ε has a unique solution, uε,
near u0. Then, there exist δ, ε0 > 0 such that uε has a local unstable manifold W u

loc(u
ε) ⊂ H1(Ωε)

for 0 ≤ ε ≤ ε0 and if we denote by

W u
δ (uε) = {w ∈W u

loc(u
ε), ‖w − uε‖H1(Ωε) < δ}, 0 ≤ ε ≤ ε0

then W u
δ (uε) converges in H1

ε to W u
δ (u0) as ε→ 0, that is

sup
wε∈Wu

δ (uε)
inf

w0∈Wu
δ (u0)

‖wε − w0‖H1
ε

+ sup
w0∈Wu

δ (u0)

inf
wε∈Wu

δ (uε)
‖wε − w0‖H1

ε
→ 0, as ε→ 0

Proof: See Arrieta+Carvalho

As an immediate consequence of this proposition, we have

Corollary 4.5. Assume the conditions of Proposition 4.4 hold, that problem (P )0 has exactly m
solutions u0

1, . . . , u
0
m and that all of them are hyperbolic. Then there exist ε0, δ > 0 small enough such

that problem (P )ε has exactly m solutions and their local unstable manifolds W u
δ (uεk), k = 1, . . . ,m

behave continuously in H1
ε as ε→ 0.
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4.3. Continuity of Attractors. We are now in position to prove the central result of our work.

Theorem 4.6. Assume that the family of domains {Ωε, 0 ≤ ε ≤ ε0} is admissible and that every
equilibrium of the unperturbed problem (P )0 is hyperbolic. Then the attractors Aε behave continu-
ously in H1

ε as ε→ 0, that is

sup
uε∈Aε

inf
u0∈A0

‖uε − u0‖H1
ε

+ sup
u0∈A0

inf
uε∈Aε

‖uε − u0‖H1
ε
→ 0, as ε→ 0

Proof: Since we have already shown in Proposition 3.2 the upper semicontinuity of attractors,
we just need to show the lower semicontinuity. This will follow from the continuity of the local
unstable manifolds. To see this, we argue in the following way. If u0 ∈ A0 then u0 belongs to the
unstable manifold of u0

k for some 1 ≤ k ≤ m. Let δ > 0 be the one obtained in Proposition 4.4. If
τ is such that w0 = T0(−τ, u0) ∈ W u

δ (u0
k), from the continuity of the unstable manifolds there is a

sequence wε ∈W u
δ (uεk) which converges to w0 in H1

ε as ε→ 0. Now, since the family of semigroups
is continuous in H1

ε we have that Aε 3 Tε(τ, wε) → T0(τ, w0) = u0 in H1
ε as ε → 0. Showing the

lower semicontinuity of attractors. This proves the theorem

Remark 4.7. The dynamics of (1.1) has been compared in the space H1
ε . This means that, for

instance, in the case of exterior perturbations of the domain the restriction to Ω0 of equilibria,
unstable manifolds and attractors of (1.1) in Ωε converges in H1(Ω0) to the equilibria, unstable
manifolds and attractor of the same problem in Ω0.

We may explore now the possibility of obtaining convergence in stronger norms. For this what
we need is to have uniform bounds of the attractors in stronger norms. In order to accomplish this
we first note that we may easily obtain uniform L∞(Ωε) bounds of ut in the attractors, that is, there
exists a constant C independent of ε such that

sup{‖ut(t, φε)‖L∞(Ωε), φε ∈ Aε, t ∈ R, 0 ≤ ε ≤ ε0} ≤ C.
To obtain this we follow the steps given in Proposition 5.1 of [?].
Hence, we can view equation (1.1) for fixed t as an elliptic equation −∆uε+uε = F (uε)+uε−uε,t

and notice that the right hand side is uniformly bounded in L∞(Ωε) when uε(t) is an orbit in the
attractor Aε. Therefore, the problem of obtaining uniform bounds in stronger norms is reduced to
obtaining uniform bounds for the solution of the elliptic problem{

−∆u+ u = g, Ωε
∂u
∂n = 0, ∂Ωε

(4.3)

when g ∈ L∞(Ωε), ‖g‖L∞(Ωε) ≤ C, with C independent of ε.
Hence if, for instance, the family of domains Ωε is uniformly Hölder then there exists a α > 0

and a constant C such that if u is the solution of (4.3) then ‖u‖Cα(Ωε) ≤ C (see [?]). This allows
to obtain convergence in Cβ for any 0 < β < α.
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5. Two examples

Let us consider in this section two examples of families of admissible domains and therefore
where Proposition 2.4 applies and all the results on continuity of the spectrum and of the nonlinear
dynamics from these notes hold true. We refer to [2] for details on these two examples. The first
one is a C0 perturbation of the domain which admits a highly oscillatory behavior at the boundary
and the second one is a “non standard” dumbell type domain.

5.1. A C0 perturbation of the domain. Let Ω0 ⊂ RN be a C0,1 domain and assume that for
any point ξ ∈ ∂Ω0, up to a rigid motion we have that

Ω0 ∩ {x ∈ RN : |xi − ξi| < δ} = {x = (x′, xN ) : xN = ξN + f0(x′), |xi − ξi| < δ, i = 1, . . . , N − 1}
for certain Lipschitz function f0 and where, as it is done customarily, we denote by x′ = (x1, . . . , xN−1)
so that x = (x′, xN ).

In order to simplify the notation assume that ξ = 0. Hence

Ω0 ∩ {x ∈ RN : |xi| < δ} = {x = (x′, xN ) : xN < f0(x′), |xi| < δ, i = 1, . . . , N − 1}
Assume that

Ωε ∩ {x ∈ RN : |xi| < δ} = {x = (x′, xN ) : xN < fε(x′), |xi| < δ, i = 1, . . . , N − 1}
where fε → f0 uniformly in {x′ : |x′i| < δ}.

Notice also that by definition

∂Kε ∩ {x ∈ RN : |xi| < δ} = {x = (x′, xN ) : xN = gε(x′), |xi| < δ, i = 1, . . . , N − 1}
for certain function gε with gε < f0, gε < fε and gε → f0 uniformly in {x′ : |x′i| < δ}.

If we denote by

Rε,δ = (Ωε \Kε) ∩ {x; |xi| < δ} = {x = (x′, xN ) : |xi| < δ, gε(x′) < xN < fε(x′)}.
we have

‖∇uε‖2L2(Rε,δ)
=
∫ δ

−δ
. . .

∫ δ

−δ

∫ fε(x′)

gε(x′)
| ∂u
∂xn
|2dxNdx′

But for x′ fixed, applying Poincaré inequality in one dimension, we have∫ fε(x′)

gε(x′)
|∂(uε ◦ χ−1)

∂xn
|2dxN ≥

π2

4|fε(x′)− gε(x′)|2

∫ fε(x′)

gε(x′)
|uε|2dxN

which implies that

‖∇uε‖2L2(Rε,δ)
≥ π2

4‖fε − gε‖2L∞
‖uε‖2L2(Rε,δ)

and since fε, gε → f0 uniformly in {x′ : |x′i| < δ} then there exists κε →∞ as ε→ 0, such that

‖∇uε‖2L2(Rε,δ)
≥ κε‖uε‖2L2(Rε,δ)

Since this argument can be done for a finite covering of ∂Ω0 we obtain that

‖∇uε‖2L2(Ωε\Kε) ≥ Cκε‖uε‖
2
L2(Ωε\Kε)

for certain constant C independent of ε. This shows that ii) holds.
Notice that the only requiremente on fε is the uniform convergence to f0. In particular we may

consider perturbations with a highly oscillating behavior. For instance

fε(x′) = f0(x′) + εF (
x1

εα1
, . . . ,

xN−1

εαN−1
)
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where F : RN−1 → R is a smooth bounded function.

5.2. A non standard dumbbell type perturbation. A typical dumbbell domain consists of a
pair of disjoints domains ΩL and ΩR which are joined by a thin channel Rε. Usually the shape of
the channel is given by (for instance in two dimensions)

Rε = {(x, y) : x ∈ (0, L), 0 < y < εgε(x)}
where gε → g0 uniformly in [0, L] and g0 is some smooth strictly positive function.

The unperturbed domain is given by Ω0 = ΩL ∪ ΩR. The dumbbell domain is given by Ωε =
ΩL ∪ Rε ∪ ΩR. It represents a prototype of nonconvex perturbation and it has been extensively
studied from many points of view. In terms of the spectral behavior of the Laplace operator, the
results in [1] say that there is a net contribution of the spectra of the Laplace operator coming from
the thin channel. That is, the eigenvalues and eigenfunctions of the dumbbell domain converge as
ε→ 0 to the eigenvalues and eigenfunctions of the unperturbed domain Ω0 = ΩL ∪ ΩR and to the
eigenvalues and eigenfunctions of a problem coming from the channel:{

− 1
g0

(g0ux)x = µu, x ∈ (0, L)
u(0) = 0, u(1) = 0

(5.1)

Moreover, it is known that the eigenvalues of
−∆u = τu, x ∈ Rε
u = 0, ∂Rε ∩ ∂(ΩL ∪ ΩR)
∂u
∂n = 0, ∂Rε \ ∂(ΩL ∪ ΩR)

(5.2)

converge to the eigenvalues of (5.1).
In particular, ii) of Proposition 2.4 does not hold and we cannot apply the results in this paper.
Here, we are going to construct a dumbbell domain Ωε ⊂ RN , N ≥ 2, with a thin channel Rε such

that property ii) of Proposition 2.4 holds, that is, the first eigenvalue of (5.2) diverges to infinity as
the parameter ε→ 0. For this dumbbell domain we obtain the convergence of the spectra given by
Proposition 2.4, that is, the eigenvalues and eigenfunctions in Ωε converge to the eigenvalues and
eigenfunctions of Ω0, so that no contribution from the channel occurs. Hence, all the results of this
paper will apply to this example.

The channel Rε will be constructed as follows:

Rε = {(x, x′); x ∈ (0, L), x′ ∈ RN−1, |x′| < gε(x)}
where

gε(x) =

 (1
2 −

x
2L)

1
ε , 0 < x < L/2

( x
2L)

1
ε , L/2 < x < L

We refer to [2] and [3] for details on how to show that for this channel τε → +∞.

Remark 5.1. For this kind of dumbbell domain the formation of nonconstant stable equilibrium
solutions is a direct consequence of Proposition 3.2. If for instance we consider the nonlinearity
f(u) = u − u3, we have that for any domain the equilibria u = 1 and u = −1 are asymptotically
stable. Hence if we consider u0 an equilibria in Ω0 = Ωl ∪ ΩR given by u0 = 1 in ΩL and u0 = −1
in ΩR, we know that this equilibrium is asymptotically stable. By Proposition 3.2 there exists an
equilibrium uε ∈ H1(Ωε) which is near u0 in H1

ε and that the linearization around uε converges
to the linearization of the limit problem around u0. In particular uε is an asymptotically stable
equilibrium (with the same index as u0) and uε is obviously nonconstant.
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