SPECTRAL CONVERGENCE AND NONLINEAR DYNAMICS

JOSE M. ARRIETA

These notes are divided in five sections, each of them constitute approximately the contents of
a lecture in the Minicourse.

1. INTRODUCTION AND A FAST OVERVIEW ON ATTRACTORS.

The purpose of these notes is to address the behavior of the asymptotic dynamics of a reaction-
diffusion equation when the domain is perturbed. The equations are given by

{ ur — Au+u= f(u) in Q,

% _( in 0Q,. (L.1)

where Q, 0 < € < €, are bounded Lipschitz domains in RY, N > 2. We analyze how the asymptotic
dynamics of the evolutionary problem (1.1) changes when we vary the domain. In particular, we
are interested in studying how the behavior of the spectral properties of the linear operator —A
under variations of the domain, determines the behavior of the nonlinear dynamics of (1.1).

The nonlinearity f is assumed to be smooth enough, say C? and to simplify, we will assume that
the following condition holds:

[FS)+ 1)+ () <Ly VseR (1.2)

for some positive constant L.

We will regard €2, as a perturbation of the fixed domain ¢ and to simplify the exposition, we
will assume throughout these notes that the domains are uniformly bounded, that the perturbation
is an “exterior” perturbation of the domain, and that they converge in measure. We summarize
this conditions in the following hypothesis:

For each 0 < e < ¢y, € is a Lipschitz domain, there exists R > 0
such that Qo C Q. € B(0,R), and |\ Q| — 0, ase — 0

One of the main difficulties when treating domain perturbation problems is that our functions
live in different spaces (say ue € H*(Qe) and ug € H'(Qp)) and therefore statements of the type
ue — ug should be interpreted clearly. In these notes we wil consider the space

H}! = H'(Q0) & H' (Q \ Qo) (1.4)
that is H! = {¢ € L*(Q), such that ¢, € H' (), Do\, € H'(9:\Qo)} with the norm [|ul|%,, =
HUHIQLP(Qo) + HUH?‘II(QG\Q())' Notice that extending by zero outside Qo we have H(Qg) — H}, with

embedding constant 1 and in a natural way we have H!(€.) — H!  with embedding constant also
1. Hence if uc € H' (), up € H'(Qp) we can write ||uc — ugl| 1. Moreover with certain abuse of

(1.3)

notation we will say that uc — ug in H} if [uc — uol|g1 — 0 as e — 0.

Also, with an extension by zero outside Q. or Qq, L?(€2.) — L*(RY) and L?(Qg) — L?(R"N).
Hence, for functions V. € L2(Q), Vo € L?*(Qp), statements of the type V. — Vg in L2(RY) or
w — L?(R™) make perfect sense. Moreover, if we have an operator T acting on L%(Q) we may also
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regard this operator as acting on L?(Qq) by just viewing any element uy € L%(Qp) as an element
of L?(Q) by extending ug outside €y by zero and then making the restriction to Q.. Similarly we
can do with operators defined in L?(£)y) with the restriction operator.

Notice also, that since the domain €y is Lipschitz, we have a bounded extension operator,
E: H' () — H'(RY), which is also a extension operator from L?(Qq) — L?(RY).

We want to analyze equation (1.1) for a fixed value of €, establishing the existence of solutions and
obtaining basic properties. We regard the differential operator —A + I as an unbounded operator

Ac: D(A,) C L2(Q€) — L2(QE)
u — —Autu

where D(A.) = {u € H*(Q.) : @ = 0 on 09}. This operator is selfadjoint, that is, (Au,v)2 =
(u, Av)r2 and since Q. is bounded and smooth, the spectrum is discrete. That is, 0(Ac) = {A\{}2,

with 1 = A < A§ < ... where X{,, — 400 as m — +o00. Notice that the first eigenvalue is A{ = 1
due to the Neumann boundary condition and the fact that Ac = —A + I. The eigenfunctions are
denoted by {¢$}5°, which we will assume they form a complete orthonormal set in L?(€)), that is,

(65,6 20 = / $5(2)65 (2)d = b5

and they form a basis in L?(€2,.) (and also in H'(€2.)). We will always denote by (-,-) the inner
product in L?(€2,). Notice that if z. € L?(€) we can write z. = > oo (2e, ¢5)#S. In particular,

el 2o,y = D (2 6%
i=1
In case z. € H'(£2) we also have
”Z€||§{1(Qe) = Z(Ze7¢§)2/\€
i=1
and if z. € D(A¢) we have

lzelFrz e, Z (ze, %)

where the constant C¢ comes from the embeddlng D(Ae) — H?(Q,) and D(A,) is endowed with
the graph norm || A¢ - ||z2(q,)-

Moreover, the operator A. generates a family of operators Sc(t) = e A,

e At L2(Q) — L2(Q)
Ze — € 6tze

which is defined as the unique solution of the linear evolution problem

—Au+u=0 1in .
9u =0 in 9 (1.5)
u(0) = z. € L*(Q)
This operators admit a very nice expression in terms of the eigenvalues and eigenfunctions of the
operators A.. As a matter of fact, we may write
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[o¢]
eiAJZe = Z(zeu ¢E)67A§t¢z€"
i=1
This operator, which we will also denote as S¢(t) has several nice properties:

o ¢4 is a bounded operator from L?(Q,) into itself, with bound ||e_AEtZe||L2(QE) < e MY 2 2200, =

e |zl L2, ), where we have used that A{ = 1. We also have ||€_A€tZEHH1(QE) < e zellm o)

e For fixed ¢t > 0 the operator e~4<t : L2(Q.) — L?(£,) is a compact operator. As a matter
of fact, it is not difficult to see that S.(t) transforms L?(€2) in H'(€) and it is a bounded
operator between these two spaces. Actually,

[e.e] o0
ezl = D (e 652X = 47N S (o )P Aste N
i=1 =1

but

)\gte#‘f’t <supze ¥ = el <1
x>0

which implies that
—A, i,
le™ < 2|} .y < et HlzellF2q,)

where we have used that A{ > 1. This implies,
le™ 4 ez20n),man) < e P2 (16)

A very similar argument will show that e~4<! : L2(Q,) — H?(f,) and it is a bounded
operator. This time the estimate obtained is of the type

le™ |20, 2 (2)) < Cee™ 287! (L.7)
where the constant C, comes from the embedding of D(A¢) — H?(€).

o 5:(0) =
o Sc(t+s) = Se(t) o Se(s), for each t,s > 0 (this is the semigroup property).

With respect to the nonlinear evolution problem (1.1), we first notice that if the nonlinearity f
satisfies (1.2), then considering the composition operator generated by f acting in L?(£).) we have,
that f € C%Y(L2(Q), L*(2)) with Lipschitz constant Ly, see (1.2) (which is uniformly bounded
in €). This is not difficult to see:

1) = ) 2200, / | lue(z)) — f(vea))Pde < L3 / () — ve(2) Pz = L uc — vel 2

Moreover f € Cl’e(Hl(Qe),LQ(QG)) where the value # = 1 in dimension < 4 and § = 2/(N — 2)
in dimension N > 5. As a matter of fact the differentiability is better in dimensions N = 1,2,3
but for the purposes of these notes, we will not need more than just the C¥ regularity. To show
this, notice that the Frechet derivative of f at u. as function from H'(Q) — L?(€.) is given by

Df(ue): HY () — L*(Q)
e — f'(ue)pe

which is well defined because of (1.2). Moreover,

| D f(ue)pe — Df(ve)Qae”LQ(Qe) = [[(f'(ue) — f/(ve))‘PGHL?
< 1 (ue) = f'(wolln o l9ell panyiv—2) g,y < Cell f(ue) — f/(ve)HLN(QE)H‘PGHHl(Q)
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where C, comes from the embedding H' () — L*M/N=2)(Q,). Hence,

IDf(ue) = Df(vo)llzear o), r2(00) < Cellf (ue) = F(ve)llpx o)
But, from the fact that f’ is Lipschitz and also bounded, (see (1.2)), we easily get

[ (ue(@)) = f'(ve())| < 2Ly max{1, [ue(z) — ve(2)[}
and this implies that for any 0 < o < 1, we have

[f/(ue(@)) = f'(ve(@))] < 2Lg|ue(x) — ve(w)|”
Hence, choosing o = 2/(N — 2) for N > 4, we get

N—
1£/(u) = £ (@)l v,y < Cellue = vl 00 g

which shows the above result.

The solutions of (1.1) with initial condition u(0) = z. are obtained through the Variation of
Constant Formula:

t
u(t, ze) = e Atz + / e A=) f(u(s, z0))ds, (1.8)
0

which is proved to have solutions through an appropriate fixed point argument.

Since the nonlinerity f is globally Lipschitz, we have that solutions of (1.1) or more exactly
of (1.8) are globally defined (that is, they exist for ¢ > 0). This allows us to define a family of
nonlinear operators

T.(t): HY(Qo) — H'Y(Q)
Ze — u(ta Ze)

where u(t, z.) is given by (1.8). This family has the following properties
T.(0) =1
Te(t+s) =Te(t) o Te(s)
T.(t) € CLHY(Q:), H (Q))
t — Te(t)ze is in C(]0, 00), H(£2))
and we will refer to it as the “nonlinear semigroup” (or nonlinear semiflow) generated by (1.1).
This nonlinear semigroup contains all the information of the solutions of (1.1). It actually enjoys
several nice properties in terms of the asymptotic behavior of the solutions of(1.1).

Dissipativity. This is a key property and it has to do with the “ultimate boundedness” of the
orbits of T.. We will show that there exists R > 0 such that for any z. € H'(£).) there exists a
positive time 7 = 7(||z¢|| g1(q,)) With the property that

|Te()zel| 1y < R, VE>T7

Moreover, this R can be chosen independent to €. To see this, let us consider an initial condition
ze € H(Q) and estimate in (1.8):

t
[u(t, ze) |1 ) Se‘t\\ze!m(new/o le™ <) oo,y 1 (uls, 20) || L2ds
t
< 7|zl +LfQ€|1/2/ e U=9/2( — )71/2s

0
t
<e eellm +C | e/2s7V2ds
0
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where C is an upper bound of L;|Q|'/2. Now, if 7 = log(1 + ||z ;1) we have that for ¢ > T,

[u®)[[ g <1+ C/o 25 24s = R

Orbtis of bounded sets are bounded. We can see that if we have p > 0, then the positive orbit
of the bounded set {z. € H'(Q,) : lzell 100y <}, that is

U U Té(t)ze

>0 [|ze[|<p

is bounded in H'(£2). Actually, from the dissipativity proof, we get that

”Te(t)ZeHHl(QE) < P + C/O @78/2571/2618

Compactness. For each t > 0 fixed, the nonlinear operator T.(t) : H*(Q.) — H'(Q) is a compact
map. To see this, we just observe from (1.8) that 7 is the sum of two maps: a linear one, given by
e~4<' and a nonlinear one given by the integral part. The linear is definitely compact as we have
shown above. The integral can be written as follows (where n > 0 is a small number):

t n t
/ e ASF(T(t — 5)zc)ds = / e A F(T(t — 8)zc)ds + e‘AG”/ e AT (Tt — s)zc)ds
n

0 0

But the first integral is as small as we want by making n — 0. The second integral lies in
a compact set of H'(Q.) for each n > 0. This decomposition implies the compactness, see [5,
Theorem 4.2.2, page 73].

With these three properties we have
Theorem 1.1. The dynamical system T.(t), generated by (1.1) has an attractor Ac C H* ()

Definition 1.2. The attractor of the dynamical system T.(t) is the set Ac C H*(Qe) which is:

e Invariant. That is, T.(t)Ac = A..
e Compact.
e Attracts bounded sets: VB C H'(€),) bounded set, we have

distg (o) (Te(t)B, Ae) — 0, ast — 400

In the definition above disty is the (non-symmetric) Haussdorf distance in the metric space X
that is,

distx (A, B) = sup inf dx(a,b).
acAbEB

Because of the properties above, the attractor has the following properties:

(1) All bounded global orbits are contained in the attractor A.. In particular all stationary
solutions (equilibria), all periodic orbits, all connecting orbits between orbits are contained
in the attractor A,.

(2) For all ¢, € A, there exists a global orbit contained in the attractor passing through this
point.
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For the equation we are dealing with, we have some extra important tool:

Liapunov functions. Consider the functional £ : H'().) — R defined as

B(w) = 5 [ (Vu(@P + lu@)P)de ~ | Fu(a)ds

where F' is a primitive of f, that is F'(s) = f(s) for all s € R. It is not difficult to see that
E € CY(H'Y(Q.), R) and moreover

d d
ﬁEHWWJZDE@ﬁVJgﬁwwz—/f@SO

So the function t — F(T,(t)z,) is non increasing along solutions (actually it is strictly decreasing
along solutions except at stationary solutions, where u; = 0). In particular this implies:

e No periodic orbits
e No homoclinic connections or even loops.

A system with a Lyapunov function is called a Gradient System and its attractor has the simplest
possible structure: it is formed by equilibria and connections among them.

In particular, if we have only a finite number of stationary solutions, {eS,...,e5} C H'(,) then
the attractor is characterized as follows: z. € A, then we have only two possibilities

e 2. is an equilibrium point, or
e 2 has a global orbit 7(t) with 7.(0) = ze and 7e(t) — € as t — 400 and Y(t) — ¢f as
t — —oo for some i # j.

So we are in a situation where for each value of the parameter € we have an attractor A, C H'(€2,)
and we want to understand its behavior when we perturb the domain. As a matter of fact, in these
notes we give conditions on the behavior of Q. as ¢ — 0 and on the unperturbed problem, (1.1)
with € = 0, that guarantee the continuity (upper and lower semicontinuity) of the attractors A, in
H! as e — 0. More precisely, we show the following two results:

i) The upper semicontinuity of the attractors A. in H], which is obtained just requiring
the spectral convergence in H! of the Neumann Laplacian as ¢ — 0; that is, requiring that the
eigenvalues and eigenfunctions of the Laplace operator with homogeneous Neumann boundary
conditions behave continuously in H! as € — 0.

ii) The lower semicontinuity of the attractors A, in H!. Once upper semicontinuity
is attained, lower semicontinuity in H! is obtained by requiring that every equilibrium of the
unperturbed problem is hyperbolic. To obtain the lower semicontinuity we will use the gradient
structure of the flow.

By upper semicontinuity of the attractors in H! we mean that

sup inf |lue —ugllgr — 0, ase—0
UEEAE UOE‘AO ‘

By lower semicontinuity of the attractors in H! we mean that

sup inf [juc —uolgyr — 0, ase—0
UOGAO Ue EAe €
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2. SPECTRAL BEHAVIOR.

It will become very clear that understanding the spectral behavior of the Laplace operator is
extremely important when analysing the continuity properties of nonlinear dynamics. Therefore,
in this section we are interested in obtaining necessary and suficient conditions that guarantee that
the eigenvalues and eigenfunctions behave continuously when the domain undergoes a perturbation
satisfying (1.3).

As a matter of fact we will be a little more general and consider operators of the form —A + V,
where the potentials may depend also on €. We specify their behavior as ¢ — 0 in the following
definition.

Definition 2.1. A family {V. : 0 < € < €} of potentials is said admissible if V. € L*(Q,),
SUPg<e<e, Vel () < C < 00 and Ve — Vo weakly in L2(RM).

To fix the notations we consider the eigenvalue problems
—Au + Vou = A, Q.
{ gu — 0, O
where {V: 0 < e < ¢y} is admissible. We denote by {\;,}7° ,, for € € [0, €], the set of eigenvalues,

n=1»
ordered and counting multiplicity, of the operator —A + V, with Neumann boundary conditions in

Q¢ and by {¢5}5°, a corresponding complete family of orthonormalized eigenfunctions.

Definition 2.2. We will say that the spectra behaves continuously at € = 0, if for fited n € N
we have that \ — A as € — 0 and the spectral projections converge in H], that is, if a ¢
{0322, and A0 < a < A0,4, then if we define the projections PS : L*(RN) — H'(Q.), P{(¢) =
Doim1 (05, 9) 120 @5 then

sup{[| P5(¥) — Pe@)lla, o € LPRY), |9l 2wy =1} — 0, ase— 0.

Remark 2.3. The convergence of the spectral projections is equivalent to the following: for each
sequence €, — 0 there exists a subsequence, that we denote again by €, and a complete system
of orthonormal eigenfunctions of the limiting problem {¢2}°° | such that ||¢S — (b%HHslk — 0 as

k — oo.

In order to characterize when the spectra behaves continuously we define

IR
Te = inf .
¢EH1.(QE) |¢|2
¢=0, 1N Qo Q

Observe that, in case Q. \ Qo is smooth, 7. is the first eigenvalue of the following problem,

(2.1)

—Au = Tu, Qc\ Qo

u =0, 0

Gu 0, 09
We have the following useful characterization

Proposition 2.4. Assume the family of domains {Qe¢}o<e<e, satisfy (1.3) and that | \ Qo] — 0
as € — 0. Then, the following four statements are equivalent:

i) The spectra of —A + V. behaves continuously as € — 0 for any admissible family of potentials
Ve, 0<e<en}
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it) Te — 00 as € — 0.

iti) For any family of functions e with ||Yel|gi(a,) < C then [[ve|l2@ay) — 0 as € — 0.

iv) For any family of functions . with H¢E||H1 0o < C then there exists a sequence ., and a
function 1o € HY () such that e, — o, in LQ(RN) and for any x € H'(RN) we have that

/ Vi Iy = | Vi

Proof.

m If it is not true then there will exists a sequence of functions ¢, with ||¢e, HH1(Q%) <C;
and [[¢c, [|£2(q., \0y) = C2 > 0, for some constants C1 and C independent of €. If we consider the
functions ¢, = E(¢6k\90) then 1, € HY(RY) with ¢, | 1 (myvy < C independent of e;. Moreover,
by Holder’s inequality and Sobolev embeddings, we have

L1 1
[Peill 2@ \00) < 1Pl aviv-2) (., \00)[Qex \ Qo] ¥ < Clitbe, |1 vy e, \ Qof ¥, (N > 3)

1.1 11
[ ll2 (0, \0) < W62 (0, \020) [ \ Q0]2 77 < Clltbe [l 1 mmy 92, \ 0227, (N =1,2)
where p can be choosen arbitrarily large in the last inequality. These two last inequalities imply
that there exists a 8 > 0, such that

‘|1/}€k||L2 (Q2¢,,\Q0) S C‘Qek \90’9 — 0, asex — 0

We consider now x¢, = d¢, —,- By construction x, = 0in Qg and ||x¢, [[z1(q., ) < C. Moreover,

IXer 220, \00) = [10e 2200, 000) = 1Y llr2(0.\00) = C2/2 as long as € is Sm&ﬂ enough. This
contradicts ii).

iii)=iv). | If 9, is a sequence with "wek‘|H1(QEk) < C, then we can extract a subsequence of 1, ,

that we denote again by 1, and we obtain a function ¢y € H () such that ¢, — 1o, w-H*(Qp),
s-L%(Qp). Moreover, from iii) we have that el L2(0\00) — O as € — 0. From this, we easily get
that 9., — v in L2(RY).

Now if x € HY(RY) we have

[ Ve vy - /Q ViVl < | /Q (Vabe, — Vi) Vx| + / Vi, [[Vx] — 0

Qek Qek \QO

since Vb, — V1o w-H'(Q) and 1%l 22 (2\00) — O-

Fix n with the property that A2 < \° ni1 and consider the family of eigenfunctions
{9,...,¢%}. If we denote by E a extension operator from H'(Qp) to H'(RY), and by 7; the
restriction operator to )¢, we construct the functions £ = TEEgb?, i =1,...,n. Since iv) implies
v) we easily see that ||| g1 \qp) — 0 ase— 0fori=1,...,n. By the min-max characterization
of eigenvalues, we easily obtain that A\{ < A\Y + o(1) as € — 0.

We can choose a sequence ¢ — 0 and numbers k; < )\?, i =1,...,n, such that \?* — k;, for
i=1,...,n. Since ¢{*, fori = 1,...,n is a bounded sequence in H*(€2, ), then by iv) we can extract
another subsequence, that we still denote by ¢$*, and get functions &) € H'(€y), i = 1,...,n, such
that ¢f* — & in L2(RY) and

VéEVx — | VEVY, i=1,...,n
Qep, Qo
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for any xy € H*(RY).
In particular fQO f?f? = ¢;; and passing to the weak limit in the equation, we get

vg?var/ Vog?X—m/ &y, i=1,...,n.
[ Qo Qo

This implies that necessarily r; and £ are eigenvalues and eigenfunctions of the limiting problem.
Since we already know that r; < A we necessarily have that k; = A\? fori = 1,...,nand {¢7,...,£}
is a system of orthonormal eigenfunctions associated to A{,..., A0,

In order to prove the convergence in H, elk we notice that ¢?, i=1,...,n, satisfy

/ rW?P—Azk/ wr?—/ v5k|¢§’“\2ﬂ?/ rs?F—/ Vo!é?\Q—/ VP
Qe Qe Qe Qo Qo Qo

k k k

where we have used that ¢:* — E? in L?(RY), the weak convergence of Ve, to Vo and the uniform
bound of [|Ve, || (q,,)- Hence,

/ \Vd>§’“—V§?!2=/ |V¢§k|2+/ |V£?|2—2/ Vo veD
RN Qe QO Qek

k
k.,

and if we define 5? € H(RY) an extension of £ we get that

/ Vo ved = / Vo vED + / Vo (V) — VD) / VEP2, as e — 0
Q, Q, Q, Q0

But,
Vo = [ VR, as e o0
Qo

because
| /Q Ve (VE) = V)| < Vit 2., IVE = VE L2,y — 0, as e — 0.
€k

This implies that
/ Vot — VE> — 0, as e — 0.
RN

i)=-ii). [If this is not the case then we will have again a sequence € approaching zero and a positive
number a with 7., < a, for all k. From the definition of 7., we can get functions ¢, with ¢, =0
in Q,, ||¢6kHL2(QEk) =1 and vabﬁk”%ﬁ(ﬂek) < a.
Observe that
[ 196l [ Viloal <a+ Valima,) <a
o Qe

for some constant @ independent of e;. Choose n € N with the property that @ < A2 < A0 11
denote by ¢1*, ..., ¢ the first n eigenfunctions and consider the linear subspace [¢7", ..., ¢%, ¢¢, ] C
H'(Q,,). By the spectral convergence we can get a subsequence, that we denote by €, again and
eigenfunctions of the limiting problem ¢9,...,¢2 such that ||¢* — ¢?HH€1k — 0 as ¢, — 0. This

implies that [|¢5* lr2(0.,\k.,) — 0 as ex — 0. From here we get that

/ ¢:‘k¢€kﬁ>07 as e, — 0, fori=1,...,n,
Q
€k
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which means that [¢f*, ..., %, ¢.,] is almost an orthonormal system in L?(f), ). By the min-max
characterization of the eigenvalues, we have that

A€WW+A€mwF

Ak max k k
+1 - € €
" ¢6[¢1k1"'7¢nk7¢6k] / ‘¢|2
€k
But if ¢ € [¢7F, ..., @5, de, ] we can write ¢ = > 7" | ;@i + B, . Using that ¢3* is an eigenfunction
Correspondlng to the eigenvalue A{* and that the family {¢%, ..., %, d¢, } is almost orthonormal,

by direct calculation of the above quotient we get that
o 2 PN + a4 o(1)

Ak _ <AV +o(1).
nt1 S St iai+a+o(l) " (1)
This contradicts the continuity of the eigenvalues given by i).
And the proposition is proved. [ |

We analise now the convergence properties of the resolvent operators associated to the operators.

Definition 2.5. We say that a family {Q : 0 < e < €} is admissible if it satisfies (1.3) and one
of the conditions i) to iv) of Proposition 2.4.
We have the following result.

Proposition 2.6. Assume that the family of potentials {Ve, 0 < € < o} and the family of domains
{Qc : 0 < € < €} are admissible. Assume also that 0 & o(—A + V). Then, for € small enough
0 & o(—A +V,) and there exists a constant C independent of € such that

1=+ V) gl < Cllaclizay: g € LHR) (2:2)
Moreover, if gc — go weakly in L>(RN), then
(A + Vo) ge = (=A+ Vo) 'gollgr — 0, ase—0. (2.3)

Proof. Let us show first (2.2). By the continuity of the spectra given by Proposition 2.4 we have
that for € small enough 0 ¢ o(—A + V). In particular, for g. € L?(f) given, we have a unique
solution we € H'(Q,) of
owe _ (2.4)
T )
We show first that if ||gellz2(0,) < C, with C independent of ¢, then [wel||z2(q,) is bounded.

Suppose not. Then there is a subsequence, which we again denote by {we}, such that |[we||z2(q,) —

{ —Awe + Vewe = Ye, Q

oo. Consider W = ”wﬂﬁ, so that ||| r2(q,) = 1. Then
- - g
{;ém+nm—u%%w g (2.5)
G =0, 09

Multiplying this equation by w. and integrating by parts we obtain that

- g -
Vo + /WWP / __Je g
Qe Qe ||we||L2(Q )

/Wmﬁsa
Qe

from where it follows that
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with C' independent of €. Applying Proposition 2.4 iv) we can extract a sequence, denoted still by
We, s0 that W, — o in L2(RY) and for any x € H'(RY) we have
Vw.Vy — VugVy.
Qe Qo
Notice in particular that ||@ol|z2(qy) = 1-
Let £ € H'(Q) and consider £ € H'(RN) an extension of £ to RY. If we multiply the equation
(2.5) by € € H'(Q,) and integrating by parts we have that

[vavis [Vag= [ e
Qe Qe Qé||w€||L2(Qe)
Taking the limit, we get that

VinoVE + [ Vadtog =0,
Qo Qo
where we have used that [|[Ve|| 1= (q.) < C, Ve — Vo, w-L*(RY) and 1w, — wo in L?*(RY). Thus
{ —~A1D() + Vowo =0,
900 =0, 09y,
and since 0 € o(—A + Vo), we get wo = 0. This contradicts the fact that ||[@ol|z2(qy) = 1. Hence,

we obtain that ||wel/z2(q,) is uniformly bounded in e.
To show that ||[Vwel|r2(q,) is uniformly bounded in € we note that V. are uniformly bounded in

L () and that
/ Ve = — / Vilwe? + / gee.
Qe Qe Q€

To show (2.3), notice that by the weak convergence of g, we have that g, is uniformly bounded
in L2(RY). Applying (2.2) we obtain that ||(—A + VE)*lgEHHl(Qe) is uniformly bounded in e. Using
iv) in Proposition 2.4 and taking the limit in the equation we obtain that if u = (—A + V)" g.
and ug = (—=A + Vo) 'go, then u, — ug in L2(RY) and Vu, — Vug w-L2(RY). . Now with a
similar argument as in the proof that iv) implies i) in Proposition 2.4 we obtain that u. — g in
H!. This concludes the proof of the lemma. n

(2.6)
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3. CONVERGENCE OF THE LINEAR AND NONLINEAR SEMIGROUPS. UPPER-SEMICONTINUITY OF

ATTRACTORS.
With the continuity of the spectra of the operators A = —A + I we will be able to obtain
estimates on the behavior of the linear semigroups e “<*. Notice that the semigroup e~ 4t acts

on functions defined in Q.. We will need to estimate expresions of the type e~“4<tug where, for

instance ug € L?(£)). As we said in the introduction, by this we mean that we extend the function
ug by zero outside €y and restrict to .. In this way we can also regard ug € L? (Q¢) and evaluate
e~ Aetyg. Similarly we can give a meaning to e~ A0ty

We have the following result

Proposition 3.1. Assume that the family of domains {Q : 0 < € < ey} is admissible and Proposi-
tion 2.4 holds true. Then, there exists a number v < 1 and a function 6(¢) with 0(e) — 0 as e — 0
such that

He*Aetu6 — e*AOtuEHHg < H(G)t*“*e*tﬂHu€HL2(Q€), Ue € LQ(QE), t>0
Proof. Notice first that from (1. 6) we have
||€ UEHHI Q) st 26 t/2||u6||L2 Q) Ue € L2(Qe)a t>0, ec [0760)

Now, we separate the estimate for ¢ small and ¢ large. Choose v € (%, 1) fixed. Let § > 0 be a
small parameter and let us consider two different cases according to ¢t € (0,9] or ¢ > 4.
i) If ¢t € (0, 6] we easily check that

”eiAetue eiAOtue”Hel < ||67A6tUEHH51 + HeiAOtUEHHg

(3.1)
1 1
<2t ze Pluc|p2a,) <2007 uc 20,

ii) If t > § we proceed as follows. We know that the function ze™ — 0 as * — oo. Hence, for

§ > 0 given we may choose a number zo(8) large enough so that ze™® < §2 for & > 2¢(6). If we
consider now the function ze=2?*, then if I(§) = x¢(d)/d that without loss of generality we may
assume > 1, then for z > [(§) we have

Since we have Aj, =9 A and A) hoop +00, there exists N = N(0) large enough, such that

A, > 1(9), € € [0,e0) with k& > N (). Without loss of generality we can assume that we have
)\9\,( 5) < )\9\,( 5)+1° Hence, from the spectral decomposition of the linear semigroups, we obtain

N ()
B _ )0
le™Abue — e Aoty | g < | Z H (ue, ¢) 5 — Y € (ue, 0)OR | mp +
: - pat (3.2)
3 20
HOY T e ue ¢ Slmony Il D e (e, 62 dh p) = 11 + o + I3

N(6)+1 N(6)+1
Analyzing I, I3 and Iy respectively, we get

o0
B< Y Ao W (e 65)1” < 8 e lue o
N(8)+1
o

—2)\0 —1,—
B Y e (o, o)) < 0% e udl g,
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I = Z e M (uc, o) o, — Z e (ue, ¢f) )0 s

N(5) N(9)

<D (e = e (e, )Rl + 1D e M (e, 85)65 — (e, 6O |12
k=1 k=1

< SO = e g + Y e DD (e 67) 0% — (e ) 6R) |1
= i=1 k=n;_1+1

where we have used H‘ﬁﬂ@[l(gé) = A5, [(ue; 95)| < [luellp2(q.) and triangular inequality in the first
sum. For the second sum we have denoted by p; the points of the spectrum of Ay, each with
multiplicity n;41 — n;, that is, p1 < p2 <... < @), with

,ulz)\(l]:...:)\o
H2 )\(T]Ll+l =\
i )‘ni71+1 = = >‘m

Moreover, since § > 0 is fixed and therefore the number of terms in the sums above is finite and
fixed and A, > 1, then

N()
(A2 et — e_)‘gt\ <Ce™ Vt>0

k=1

N(3)

Z (A5)Y/2)e Mkt — e_)‘gt| — 0, as € — 0, uniformly ¢ > 0

k=1

Both statements above imply that we can choose €;(d) > 0 such that for € < €;(5) we have

N(9)
SO0 Rle N — e < 5eT2 V>0
k=1

Moreover, with a very similar argument, using this time the convergence of the spectral projec-
tions, we get that there exists another e(d) > 0 such that for 0 < € < e2(d) we have

k() n;
Soe YT ((ue ¢5)5 — (ue, 900 1 < S|l 120,
i= k=n;_1+1

Putting everything together, we get that for ¢ > ¢ and for 0 < € < €9(d) = min{e;(9), e2(9)},

le™ A ue — et gy < (2072 4+ 6t 27 fuel| 2 < Ot ue 12, (3-3)

where 1/2 < v < 1. Putting together (3.1), which is valid for 0 < ¢t < ¢ and all € and (3.3), which
is valid for ¢ > 6 and 0 < € < ¢(d) and taking into account that ¢ is an arbitrary small number,
we get the result. ]

Once we have proved a result on the continuity of the linear semigroups (Proposition 3.1), we
will analyze the convergence of the nonlinear semigroups with the aid of the Variation of Constants
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Formula and will see that the attractors and the stationary states (solutions of the nonlinear elliptic
problem) are upper semicontinuous with respect to these perturbations.
We will show the following result

Proposition 3.2. Assume that the family of domains {Q : 0 < e < €y} is admissible. Then, there
exist 0 <y <1, a function c(e) with c(e) — 0 as € = 0 and a constant M such that

ITe(t, ue) = To(t,ud)l| s < Me(e)t™, ¢ € (0,7], [ucll 2o, < R, € € (0,€0) (3.4)

where M = M (7, R).
Moreover the attractors are upper semicontinuous at € = 0 in H}, in the sense that

sup dg1(ue, Ag) = sup { inf {||u. —UOHHl}:| —0, ase—0 (3.5)
Uc€Ae uc€A. Luo€Ao ‘

Also, if we denote by &, € € [0, €g] the set of stationary states of (1.1), then

sup dpi(ue, &) = sup { 1nf {HuE UO|’H€1}:| —0, ase—0 (3.6)
ue€€e ue €€

Proof. Notice that the nonlinear semigroups T¢(t) are given by the variation of constants formula.

t
Tt u) = ety + / e~ At=5) {(T0(5,u0))ds, € € [0, o) (3.7)
0

Hence, calculating T¢(t, ue) — To(t, ue) and with some elementary computations we obtain

T2 (t, ue) To(t ue)HH1<HeAt —e_AOtueH}p—i-
/weA% (5,1¢)) — A F(To(s,ue)) | s ds

# [ 1M 00) - STl uDlds < 0.0
Applying now Proposition 3.1 and (1.6), we get
1T, ue) — 7;0(@ ue) |y < 0(e)t e luc| 2,
+9(6)/0 (t =) e A F(Te(s, ue) | L2(0n)

t

+/O (t — )" 2e 2| F(TLt, ue)) = f(To(t, we)) | L2 ()
and using that f is bounded and Lipschitz, we have

t
< ()t e |ue 12 ) + 0(€) L]/ / .
0

t
—|—L/ (t — S)_1/2€_(t_8)/2”Te(t; ue) - TO(t7 uf)HHél
0

and since ||uc||r2 < R and considering 0 < ¢ < 7, we finally have, with M = M (7, R), that

t
[Te(t, ue) = To(t, ue)ll gy < MO(e)t™ + L/ (t = 8)7 2 TIPYTLt ue) = To(t ue) |y
) 0

Applying now Gronwall’s lemma, see [6], we obtain statement (3.4). [ |

Now, the upper semicontinuity of the attractors in H!, statement (3.5) follows directly from
(3.4) and the fact that the attractor Ag attracts bounded sets. In particular, B = [y <., Aelq, is



SPECTRAL CONVERGENCE AND NONLINEAR DYNAMICS 15

a bounded set in H'(€)). Hence, if we fix > 0 small, we have a time 7 > 0 such that the orbit of
B under the semi flow Tj, enters an n-neighborhood of Ay at time 7 and it will not abandon this
neighborhood ever. That is, for each we € Ae, dg1(To(T)we, Ao) < 1. Moreoever, if ue € Ac and
if 7 > 0 is the above, then from the invariance of the attractors, there exists w. € A, such that
T.(T)we = ue. Hence,
dpy (ue, Ao) = dpy (Te(T)we, Ao) < [|Te(T)we — To(T)well gy + dpp (To(T)we, Ao) < Me(e)T™ 7 +1
and this implies that choosing €; small enough so that Mc(e)7™7 < 7 then
sup dgi(ue, Ag) <21, V0 <e<e.
U €A
Since 1 > 0 is arbitrarily small, we have shown the result on uppersemicontinuity of attractors.
To show the upper semicontinuity in H! of the stationary states we will prove that for any
sequence of € — 0 and for any u. € & we can extract a subsequence, that we still denote by e,
and obtain a ug € & such that ||ue — uol[1 — 0 as € — 0. From the upper semicontinuity of the
attractors given by (3.5), we obtain the existence of a ug € Ap such that ||uc —ugl|g1 — 0 as € — 0.
To show that ug € & we first observe that for any ¢ > 0, [Jue—To(¢, uo)|[ g1 — [luo—To(t, uo) || a1 (0y)-
Moreover, for a fixed 7 > 0 and for any ¢t € (0,7) we have that,

e — To(t,u0) s = T2t ue) = To(t, o)y — 0, as € — 0
where we have used that u. is a stationary state and (3.4). In particular we have that for each

t >0, up = Ty(t,up), which implies that ug is a stationary state. This concludes the proof of the
Proposition. |
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4. CONTINUITY OF EQUILIBRIA, UNSTABLE MANIFOLDS AND ATTRACTORS

In order to obtain lower semicontinuity of attractors in H! we must ensure that the set of
equilibria & behaves lower-semicontinuously. In this section we prove that, for the sort of domain
perturbations considered here and assuming that the equilibria of the limiting problem are all
hyperbolic, & is a finite set with constant cardinality; that is, & = {u{,--- ,uS}, 0 < e < €. This
set behaves continuously with respect to e in H}, that is,

max {flu — ) = 0.

We also indicate in this section, that the local unstable manifolds of equilibrium solutions are
continuous as € — 0. For that we use the convergence of equilibria to obtain the continuity of the
spectrum of the linearization around such equilibria and consequently the continuity of the local
unstable manifolds.

With all these ingredients and using that the system is gradient, we will show the continuity of
the attractors.

4.1. Continuity of hyperbolic equilibrium. Consider the following family of elliptic problems

Au—u+ f(u) =0 in Q.
gu =0 in Q..

for each 0 < e < ¢y (€9 > 0). We can show the following

(P)e

Proposition 4.1. Assume that the family of domains {Qe : 0 < € < €y} is admissible. Assume also
that problem (P)o has a solution u® € H*(Q) and that zero is not in the spectrum of the operator
A —T+ f'(u) : H2(Qo) C L*(Q0) — L*(Q). Consider the extension operator E : H'(Qq) —
HYRN) and let u*¢ = E(u®), € HY(Q.). Then, there exists ¢ > 0 and 6 > 0 so that problem

Qe
P)¢ has exactly one solution, u®, in {we, ||we — ude Hi) <0} for 0 < e <e€y. Furthermore,
(82)

||lu® — UOHHEl — 0, ase—0.

Proof: Define the operators
O : H'(Q) — H' ()
-1
Oc(z) = (—A + 71— f’(uO’E)I) (f(ze) — f’(uove)ze) )
The operators O, are well defined by applying Proposition 2.6, since f’(u%€) — f/(u°) in L2(RY)
and 0 € o(A — I + f'(u")I). Notice also that v, is a fixed point of ©, if and only if v is a solution
of (P)e.
We will show that there exists 6 > 0 and ¢y > 0, such that the operator O, for 0 < € < ¢, is a
strict contraction from Bs(u®€) = {ve € H' () : [[ve — u|| g1(q,) < 6} into itself.
To prove this, let us start by showing that O, : Bs(u’€) — H(€,) is a strict contraction, that
is, there exists a p < 1 such that ||©cve — Ocwe|| g1 (q,) < pllve — wel| g1(q.) for any ve, we € Bs(ue).
We have,

©c(ve) — @e(WE)HHl(QS) .
<N (=A+T = F1 @) ez, m@ollf(ve) = flwe) = £/ (@) (ve — we)ll 2,y (4-2)
< O f(ve) — flwe) — f,(uo’e)(ve - w€)HL2(Qe)'
Where we have used Lemma 2.6 to obtain that || (—A+ 1 — f’(uO‘)I)_1 2200, m () < C for

some constant C' independent of e.
Next we study || f(ve) — f(we) — f/(u”€)(ve — we)|lp2(q.)- We prove

(4.1)
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Lemma 4.2. There exists a constant C such that for all ve,w with ||ve — u®€|| g a0 <0, [lve —

u07€||H1(Q€) < 6§, we have

[ f(ve) — f(we) — f/(uo’e)(ve - we)HLQ(Qe) < C(Tl + 52/N)””6 - UJEHHl(Qe)

€

where T is given by (2.1).

If we assume the lemma proved, then we have
10c(ve) = Oc(we) w1 (a.) < C( + %N [ve = well o)
6

Now, given p < 1 choose € small enough such that C’T% < £ and ¢ small enough so that Co*N < g.
This shows O, is a strict contraction from Bs(u’€) into H'(£).

In order to prove that ©, maps Bs(u€) into itself we show first that ||©.u%¢ — u®€ @) — 0
as e — 0, for all k =1,..., m. Notice that
1©cu® — w1 (o, < ||9 u® =l gy + ([ = 0l gy = [0 — u® gz + 1w 50.000)

But Hu07€||H1(Q€\QO) — 0 as € — 0. Hence we just need to show that ||©.u’¢ — u0||H51 —0ase—0.
If we denote by v, = O.u%¢, then v, € Hl(Qe) is the solution of
{ —Ave +ve = f'(u¥Yve = f(u¥) = [/ (w0, Qe

Gue — 0, O

and u” is the solution of
—Au? +ug — f'(W)u® = f(u®) — f(u)u’, Qo

{ a2 =0, e

But by the resolvent convergence estimates (2.3) we get that ||v. — u°||z1 — 0 as € — 0.
To show that ©, maps Bs(u®€) into itself we just observe that if v. € EBg(uO’e)

18cve — u® @) < [[Ocve — @euo’e”Hl(Qe) +[[©cu’ — UO’EHHl(Qe) < pd + O’ — u’

(Q)
Choosing € small enough again we can garantee that |©cu® — u%¢|| 51 (g ) < (1 —p)d and therefore
|Ocve — u” |

Proof of Lemma 4.2: Note that
| (ve()) = flwe(@)) = f' () (ve(2) = we(@))| < Crye (@) |ve(z) — wel

where

Yes(x) = min{l, [ve(x) — u” ()| + Jwe(w) — u®(2)[}}.

It follows, from the deﬁnmon of Y5, that [|vesllLe(a,) < 1, 0 < € < €. Moreover [[ve sl 2. <
[ve — %€ 2(0) + lwe — u®| 120,y < 26, for all v, w6 € Bs(u®€). Using Holder’s mequahty, we
get
Yesllray < (26)2/P < 2(6)%/P, 2 < p < oo, for all ve, we € Bs(u®*
) (2)
)| . Then

Qe

Now if ¢, = ve — we we denote by @, = E(SDG’

20
16 — @ell 20000 < =1V @e — VSO€||L2(Q \Q0)

€
%(H%Hm(a ) T 1@ellm@yy) < Cr-(leellman + el ma))
C X llecll o

@e — @ellL2() =
<
<
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where we have used that E : H'(Qg) — H'(R") is bounded and 7, is the first eigenvalue of —A in
Q\Qp with Dirichlet boundary condition in 92y and Neumann boundary condition in 9€2.. Now

Veseellzi0,) < Ies(oe = @)l + INesell 2@,
< [Meslize@ollve = Gellzziog + esllr @ I @ell aviiv-2 @)
< (C2 + C* M)l o,

This proves the lemma. n

As an immediate consequence of this proposition, we have

Corollary 4.3. Assume the conditions of Proposition 4.1 hold. Assume moreover that problem
(P)o has ezactly m solutions uY, ..., ud, and that all of them are hyperbolic in the sense that 0 is
not in the spectrum of A — I+ f'(u)I : H2(Qo) C L*(Q0) — L*(Qo) for k=1,...,m. Then there
exists a small € > 0 such that for all 0 < € < €9 problem (P) has exactly m solutions ug, ..., us,.
Moreover, we have

luf, — uRll gz — 0, as e — 0.

Proof: By Proposition 3.2 we have that for any solution u¢ of (P), for € small enough lies in a
neighborhood of the set of equilibria (P)y. But by Proposition 4.1, in a neighborhood of u? there
is only one solution of (P). which converges to uf in H!. This proves the result. [

4.2. Continuity of Unstable Manifolds. In this section we show that the local unstable mani-
folds of u¢, for k = 1,...,m fixed, are continuous in H} as ¢ — 0. The existence of this manifold
follows from standard invariant manifold theory, see [6], although its proof is adapted to encompass
the possibility that the space changes according to a parameter and to keep track of the dependence
of the invariant manifold upon the parameter. After this, we show that the unstable manifolds are
close for small e. For this we will use the convergence results on the linear part obtained in Section
2.
We have the following

Proposition 4.4. Assume that the family of domains {Q : 0 < e < €y} is admissible. Assume
also that u® is a solution of problem (P)o and that zero is not in the spectrum of the operator
A—T+ f'(u®) : H2() C L*(Q0) — L?(Q0). By Proposition 4.1, (P)c has a unique solution, u¢,
near ug. Then, there exist §, €9 > 0 such that u¢ has a local unstable manifold W}, (u€) C H' ()
for 0 < e < ¢y and if we denote by

Wik(ue) = {w € Wi (u), o — wlli oy < 6, 0 < e < eo
then W (u€) converges in H! to W¥(u®) as € — 0, that is

sup inf flwe —wollgr +  sup inf flwe —wollgr — 0, ase—0
wee W (ue) woEWS' (u?) woEWE (u0) we €W (uc)

Proof: See Arrieta+Carvalho
As an immediate consequence of this proposition, we have

Corollary 4.5. Assume the conditions of Proposition 4.4 hold, that problem (P)o has exactly m

solutions u(l), ..., u and that all of them are hyperbolic. Then there exist ey, § > 0 small enough such
that problem (P)c has exactly m solutions and their local unstable manifolds Wg'(uy,), k=1,...,m

behave continuously in H! as e — 0.
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4.3. Continuity of Attractors. We are now in position to prove the central result of our work.

Theorem 4.6. Assume that the family of domains {Q, 0 < e < €y} is admissible and that every
equilibrium of the unperturbed problem (P)q is hyperbolic. Then the attractors A behave continu-
ously in H! as e — 0, that is

sup inf |lue —uollzr + sup inf ||ue —uo| g1 — 0, ase — 0

uc €A H0€AD © ugEAp UeEA ‘
Proof: Since we have already shown in Proposition 3.2 the upper semicontinuity of attractors,
we just need to show the lower semicontinuity. This will follow from the continuity of the local
unstable manifolds. To see this, we argue in the following way. If ug € Ay then ug belongs to the
unstable manifold of ug for some 1 < k < m. Let 6 > 0 be the one obtained in Proposition 4.4. If
7 is such that wy = To(—7,up) € W¥(ul), from the continuity of the unstable manifolds there is a
sequence w, € Wy*(ug,) which converges to wg in H, Las € — 0. Now, since the family of semigroups
is continuous in H! we have that A, > T.(7,w.) — To(T,wp) = ug in H} as ¢ — 0. Showing the
lower semicontinuity of attractors. This proves the theorem

Remark 4.7. The dynamics of (1.1) has been compared in the space HL. This means that, for
instance, in the case of exterior perturbations of the domain the restriction to Qg of equilibria,
unstable manifolds and attractors of (1.1) in Q. converges in H'(Q) to the equilibria, unstable
manifolds and attractor of the same problem in €.

We may explore now the possibility of obtaining convergence in stronger norms. For this what
we need is to have uniform bounds of the attractors in stronger norms. In order to accomplish this
we first note that we may easily obtain uniform L>(Q¢) bounds of uy in the attractors, that is, there
exists a constant C independent of € such that

sup{ [|lu(t, de)ll e (0.), e € A, t ER, 0 < e < e} < C.
To obtain this we follow the steps given in Proposition 5.1 of [?].
Hence, we can view equation (1.1) for fized t as an elliptic equation —Aue+ue = F(ue) +ue —Uet
and notice that the right hand side is uniformly bounded in L (S.) when uc(t) is an orbit in the

attractor Ac. Therefore, the problem of obtaining uniform bounds in stronger norms is reduced to
obtaining uniform bounds for the solution of the elliptic problem

—Autu=g,
Gu =0, 09,
when g € L%(Qe), (|9l pe () < C, with C independent of .

Hence if, for instance, the family of domains Q¢ is uniformly Holder then there exists a o > 0
and a constant C' such that if u is the solution of (4.3) then ||ul|ca(q,) < C (see [?]). This allows

to obtain convergence in CP for any 0 < § < a.

(4.3)



20 J. M. ARRIETA

5. TWO EXAMPLES

Let us consider in this section two examples of families of admissible domains and therefore
where Proposition 2.4 applies and all the results on continuity of the spectrum and of the nonlinear
dynamics from these notes hold true. We refer to [2] for details on these two examples. The first
one is a C? perturbation of the domain which admits a highly oscillatory behavior at the boundary

and the second one is a “non standard” dumbell type domain.

5.1. A C° perturbation of the domain. Let Q) C RY be a C%! domain and assume that for

any point & € 90y, up to a rigid motion we have that

QOQ{xERN: |xz_£z|<(5}:{x:(l’/,$1\[)$N25N+f0(x/),|xz—fz|<6,Z:1,,N—l}

for certain Lipschitz function fy and where, as it is done customarily, we denote by 2’ = (21, .
so that z = (2/, zn).
In order to simplify the notation assume that £ = 0. Hence

QoN{z eRY : |z <6} ={z = (2,zn) : 2Ny < fo(z'),|zi| <d,i=1,...,N -1}
Assume that
Qn{z eRY : |zy] <0} ={z = (2, 2n) : 2n < fo(2)),|zi] < 6,i=1,...,N -1}

where f — fo uniformly in {2’ : |2}| < §}.
Notice also that by definition

OK.N{x e RY : |z;| < 6} ={z = (/,an) : oy = ge(a'), 25| < d,i=1,...,N —1}

for certain function g. with g < fo, ge < fe and ge — fo uniformly in {2’ : |2} < 0}.
If we denote by

Res = (Qc\ Ko) N {z; || <0} ={z = (2", 2n) : |21 <0, 9.(2") <oy < fe(a)}.

0 o F@) o
2 2 /
Ve = —“dxnd
IVuellzz(x, ;) /_5 /_5/6(:5') |8:cn’ e

But for 2’ fixed, applying Poincaré inequality in one dimension, we have

fe(x,) 8(u [e) Xfl) 7-[-2 fe(x/)
| —= 2dxy > / ue|?dx
/ge(x’) Oz, | A fe(") = ge(2)1? Jg 2y ud

we have

which implies that

2

Vue|? > |Juc||}
H €”L2(R<v5) 4”fe - ge”%oo H 6||L2(R€’6)

o aN-1)

and since fe, ge — fo uniformly in {2’ : |z}| < §} then there exists k. — 0o as € — 0, such that

2 2
Hvue”m(Rﬁé) 2 "QeHueHLQ(RW;)
Since this argument can be done for a finite covering of 9€)y we obtain that
2 2
HVUEHL2(Q€\K€) Z CHEHUGHB(QE\KE)

for certain constant C' independent of e. This shows that ii) holds.

Notice that the only requiremente on f, is the uniform convergence to fy. In particular we may

consider perturbations with a highly oscillating behavior. For instance

fela) = fola)) + eF(Sh, . )

P 0N -1
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where F : R¥N~1 — R is a smooth bounded function.

5.2. A non standard dumbbell type perturbation. A typical dumbbell domain consists of a
pair of disjoints domains €27, and Q2 which are joined by a thin channel R.. Usually the shape of
the channel is given by (for instance in two dimensions)

R ={(z,y): x € (0,L),0 <y < ege(z)}

where g — go uniformly in [0, L] and g is some smooth strictly positive function.

The unperturbed domain is given by Qy = Q2 U Qr. The dumbbell domain is given by Q. =
Qr U R UQpg. It represents a prototype of nonconvex perturbation and it has been extensively
studied from many points of view. In terms of the spectral behavior of the Laplace operator, the
results in [1] say that there is a net contribution of the spectra of the Laplace operator coming from
the thin channel. That is, the eigenvalues and eigenfunctions of the dumbbell domain converge as
€ — 0 to the eigenvalues and eigenfunctions of the unperturbed domain Qg = Q0 U Qpr and to the
eigenvalues and eigenfunctions of a problem coming from the channel:

_g%(g Uz)z = pu, @ € (0, L)
{ u(0) :00, u(l) =0 Y

Moreover, it is known that the eigenvalues of

—Au=71u, x€ R,
u=0, OR.NQLUQR) (5.2)
9u =0, OR:\O(QLUQR)

converge to the eigenvalues of (5.1).

In particular, ii) of Proposition 2.4 does not hold and we cannot apply the results in this paper.

Here, we are going to construct a dumbbell domain Q. ¢ RN, N > 2, with a thin channel R, such
that property ii) of Proposition 2.4 holds, that is, the first eigenvalue of (5.2) diverges to infinity as
the parameter ¢ — 0. For this dumbbell domain we obtain the convergence of the spectra given by
Proposition 2.4, that is, the eigenvalues and eigenfunctions in €}, converge to the eigenvalues and
eigenfunctions of )y, so that no contribution from the channel occurs. Hence, all the results of this
paper will apply to this example.

The channel R, will be constructed as follows:

R.={(z,2"); x € (0,L), 2" € RN |2'| < ge(x)}

where

o=

(3— &) 0<z<L)2

(&%, L)2<z<L

We refer to [2] and [3] for details on how to show that for this channel 7. — +o0.

ge(z) =

Remark 5.1. For this kind of dumbbell domain the formation of nonconstant stable equilibrium
solutions is a direct consequence of Proposition 3.2. If for instance we consider the nonlinearity
f(u) = u —u?, we have that for any domain the equilibria w = 1 and uw = —1 are asymptotically
stable. Hence if we consider ug an equilibria in Qg = Q; U Qg given by ug = 1 in Qf and ug = —1
m Qpr, we know that this equilibrium is asymptotically stable. By Proposition 3.2 there exists an
equilibrium v, € H 1(Q6) which is near ug in HE1 and that the linearization around u. converges
to the linearization of the limit problem around wg. In particular ue is an asymptotically stable
equilibrium (with the same index as ug) and u. is obviously nonconstant.
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