SINGULAR NUMBERS OF CORRECT RESTRICTIONS OF NON-SELFADJOINT ELLIPTIC OPERATORS

V. I. Burenkov

Joint work with M. Oterlbaev

Let \mathcal{L} be an elliptic differential expression of the following form: for $u \in C^{\infty}(\mathbb{R}^n)$

$$(\mathcal{L}u)(x) = \sum_{|\alpha|, |\beta| \le l} (-1)^{|\alpha| + |\beta|} D^{\alpha} \left(A_{\alpha\beta}(x) D^{\beta} u \right), \quad x \in \mathbb{R}^n,$$

where $A_{\alpha\beta} \in C^{l}(\mathbb{R}^{n})$ are real-valued functions for all multi-indices α, β satisfying $|\alpha|, |\beta| \leq l$. Moreover, let, for a domain $\Omega \subseteq \mathbb{R}^{n}, L_{\Omega} : D(L_{\Omega}) \to L_{2}(\Omega)$ be a linear operator closed in $L_{2}(\Omega)$ generated by \mathcal{L} on Ω . A restriction $A : D(A) \to L_{2}(\Omega)$ of L_{Ω} is *correct* if the equation Au = f has a unique solution $u \in D(A)$ for any $f \in L_{2}(\Omega)$ and the corresponding inverse operator $A^{-1} : L_{2}(\Omega) \to D(A)$ is bounded.

Let A and B be compact linear operators in a Hilbert space H. If there exist $0 < \alpha < \beta$ and $c_1, c_2 > 0$ such that for singular numbers $s_k(A)$ and $s_k(B)$ the conditions $c_1k^{-\alpha} \leq s_k(A)$, $s_k(B) \leq c_2k^{-\beta}$, hold, we say that in the representation C = A + B the operator A is a *leading* operator and the operator B is a *non-leading* operator.

Theorem 1. Let $l, n \in \mathbb{N}$, $n \geq 2$, $2l(1 - \frac{1}{n}) < s \leq 2l$, and Ω be a bounded domain in \mathbb{R}^n with the boundary $\partial\Omega$ of class C^{2l} . Moreover, let A and B be correct restrictions of the operator L_{Ω} such that $D(A) \subseteq W_2^{2l}(\Omega)$, $D(B) \subseteq W_2^s(\Omega)$ and the operators $A^{-1} : L_2(\Omega) \to W_2^{2l}(\Omega)$, $B^{-1} : L_2(\Omega) \to W_2^s(\Omega)$ are bounded. Then in the representation $B^{-1} = A^{-1} + K$ the operator A^{-1} is a leading operator and the operator $K = B^{-1} - A^{-1}$ is a non-leading operator.

Theorem 2. Let $l, n \in \mathbb{N}$, $n \geq 2$, $2l(1 - \frac{1}{n}) < s \leq 2l$ and Ω be a bounded domain in \mathbb{R}^n with the boundary $\partial\Omega$ of class C^{2l} . Then there exists b > 0 such that the singular numbers $s_k(B)$ of all correct restrictions B of the operator L_{Ω} satisfying the condition $D(B) \subseteq W_2^s(\Omega)$ with the bounded inverse $B^{-1}: L_2(\Omega) \to W_2^{2l}(\Omega)$

$$\lim_{k \to \infty} s_k(B) k^{-\frac{2l}{n}} = b.$$

Also other related results, formulated in [1], will be presented in the talk.

[1] V.I. Burenkov, M. Otelbaev, On the singular numbers of correct restriction of elliptic differential operators. Eurasian Math. J. 2 (2011), no. 1, 145 – 148.