Boundedness and compactness of the integral operators in weighted Sobolev space

OINAROV R.

L.N.Gumilyov Eurasian National University o_ryskul@mail.ru

Abstract.

Let I = (a, b), $-\infty \le a < b \le \infty$. Let $1 < p, q, r < \infty$, $\frac{1}{p} + \frac{1}{p'} = 1$. Suppose that $v, u \ \rho$ and w are non-negative and measurable functions on I such that $v^p, u^r \ \rho^p, w^q, \ \rho^{-p'}$ and $w^{-q'}$ are locally summable functions on I.

Let $L_{p,\rho} \equiv L_p(\rho, I)$ denote the space of measurable functions on I such that the norm $||f||_{p,\rho} \equiv ||\rho f||_p$ is finite, where $||\cdot||_p$ - is the standard norm of the space $L_p(I)$.

We denote by $W_{p,r}^1(u,v) \equiv W_{p,r}^1(u,v,I)$ the set of locally absolutely continuous functions f on I with following finite norm

$$||f||_{W_{p,r}^1} = ||uf'||_r + ||vf||_p,$$

where $\|\cdot\|_p$ is the standard norm of the space $L_p \equiv L_p(I)$. In case p = r and $u \equiv \rho$ we assume that $W_{p,p}^1(\rho, v) \equiv W_p^1(\rho, v)$, $\|f\|_{W_{p,p}^1} = \|f\|_{W_p^1}$.

Let $A^{\circ}C(I)$ be the set of locally absolutely continuous functions with compact supports on I. Denote by $\mathring{W}_{p}^{1} \equiv \mathring{W}_{p}^{1}(\rho, v) \equiv \mathring{W}_{p}^{1}(\rho, v, I)$ the closure of the set $A^{\circ}C(I) \bigcap W_{p}^{1}(\rho, v)$ with respect to the norm $\|f\|_{W_{p}^{1}} = \|\rho f'\|_{p} + \|vf\|_{p}$.

We consider the problem of boundedness and compactness from the weighted Sobolev $\mathring{W}_{p,r}^{1}(\rho, v)$ space into the weighted Sobolev $W_{p,r}^{1}(u, v)$ space of the integral operators

$$\mathcal{K}^+ f(x) = \int_a^x K(x, s) f(s) ds, \quad x \in I,$$
(1)

$$\mathcal{K}^{-}g(s) = \int_{s}^{b} K(x,s)g(x)dx, \quad s \in I$$
(2)

with measurable kernel $K(\cdot, \cdot) \ge 0$ on $\Omega = \{(x, s) : a < s \le x < b\}$.