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What it is about

It is about special combinations of
1 Domains
2 Partial Differential Equations
3 Functional spaces

General framework of corner studies

1 Domains with general and combined corner types
2 Elliptic boundary value problems
3 Weighted and standard Sobolev spaces or Hölder classes
4 Existence, regularity, expansions of solutions

A sort of maximal framework would include

1 Cones in Rn, conical manifolds, edges, manifolds with corners, polyhedra,
recursively defined corner domains,...

2 Multi-order Agmon-Douglis-Nirenberg systems with variable coefficients, possibly
non-smooth with asymptotics, possibly piecewise smooth on compatible partitions

3 From L2-based Sobolev spaces to Besov spaces, including (or not) weights
involving distances to singular sets. Possibly analytic-type control of derivatives.

4 Fredholm, semi-Fredholm, regularity shift, asymptotics of various types
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What it is not about

It is not about general Lipschitz domains, though relations do exist with corner domains.

Two hierarchies of domains, from smooth to rough:

1 Smooth, Lipschitz [i.e. locally Lipschitz epigraphs], weakly Lipschitz [bi-Lipschitz
maps], Jones domains [extension properties], John domains [flexible cone
condition of Besov].

2 Smooth, regular cones, edges, polyhedral cones, curvilinear polyhedral domains.

Note also that

Outward cusp domains may pertain to corner domains.

Inward cusp domains don’t.

A corner domain can be non-Lipschitz
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A brief history of elliptic BVP with corners: Russian school

V. A. KONDRAT’EV

Boundary-value problems for elliptic equations in domains with conical or angular points.
Trans. Moscow Math. Soc. 16 (1967) 227–313.

1 Domains with conical points
2 Scalar elliptic BVP
3 Hilbert Sobolev spaces with or without weights
4 Fredholm, regularity, asymptotics

V. G. MAZ’YA, B. A. PLAMENEVSKII

Elliptic boundary value problems on manifolds with singularities.
Probl. Mat. Anal. 6 (1977) 85–142.

V. A. KOZLOV, V. G. MAZ’YA, J. ROSSMANN

Elliptic boundary value problems in domains with point singularities.
Mathematical Surveys and Monographs, 52. American Mathematical Society, 1997.

V. MAZ’YA AND J. ROSSMANN

Elliptic equations in polyhedral domains.
Mathematical Surveys and Monographs, 162. American Mathematical Society, 2010.

1 Hierarchy of singular sets
2 Elliptic systems
3 Lp Sobolev spaces, Schauder classes, with weights
4 Fredholm, regularity, asymptotics
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A brief history of elliptic BVP with corners: Ψ-do calculus

S. REMPEL, B. W. SCHULZE

Asymptotics for Elliptic Mixed Boundary Problems.
Akademie-Verlag, 1989.

B. W. SCHULZE

Pseudo-differential operators on manifolds with singularities.
Studies in Mathematics and its Applications, Vol. 24. North-Holland, 1991.

B.-W. SCHULZE

Boundary value problems and singular pseudo-differential operators.
Pure and Applied Mathematics (New York). John Wiley & Sons Ltd., 1998.

R. B. MELROSE

Pseudodifferential operators, corners and singular limits,
Proc. International Congress of Mathematicians, Math. Soc. Japan, (1991), 217–234.

R. B. MELROSE

Calculus of conormal distributions on manifolds with corners,
Internat. Math. Res. Notices (1992), no. 3, p. 51–61.

R. B. MELROSE

Differential analysis on manifolds with corners ,
http://www-math.mit.edu/ rbm/book.html
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A brief history of elliptic BVP with corners: In Italy

A. AVANTAGGIATI, M. TROISI,

Spazi di Sobolev con peso e problemi ellittici in un angolo I.
Ann. Mat. Pura Appl. (4) 95 (1973) 361–408.
A. AVANTAGGIATI, M. TROISI,
Spazi di Sobolev con peso e problemi ellittici in un angolo II.
Ann. Mat. Pura Appl. (4) 97 (1973) 153–167.
A. AVANTAGGIATI, M. TROISI,
Spazi di Sobolev con peso e problemi ellittici in un angolo III.
Ann. Mat. Pura Appl. (4) 99 (1974) 1–51.

1 Infinite cones
2 General scalar elliptic BVP of order 2m
3 Weighted spaces with 2 weights

A. ALVINO, G. TROMBETTI

The Dirichlet problem in a cone of Rn in Lp .
Ann. Mat. Pura Appl. (4) 120 (1979) 269–291.

1 Infinite cones
2 General scalar elliptic BVP of order 2m with spectral parameter
3 Lp Sobolev spaces with weight
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A brief history of elliptic BVP with corners: In France & Belgium

P. GRISVARD

Problèmes aux limites dans les polygones. Mode d’emploi.
Bull. Dir. Etud. Rech., Sér. C 1 (1986) 21–59.

P. GRISVARD

Singularités en élasticité.
Arch. Rational Mech. Anal. 107 (2) (1989) 157–180.

P. GRISVARD

Boundary Value Problems in Non-Smooth Domains.
Pitman, London 1985.

1 Polygonal domains
2 Elliptic BVP (Laplace, Lamé, ∆2)

S. NICAISE

Le laplacien sur les réseaux deux-dimensionnels polygonaux topologiques.
J. Math. Pures Appl. (9) 67(2) (1988) 93–113.

S. NICAISE

Polygonal interface problems.
Methoden und Verfahren der Mathematischen Physik, 39. Verlag Peter D. Lang, 1993.

1 Polygonal domains
2 Elliptic transmission problems (piecewise constant on polygonal subdomains)
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A brief history of elliptic BVP with corners: ‘CoDa’

M. DAUGE

Elliptic Boundary Value Problems in Corner Domains.
Lecture Notes in Mathematics, Vol. 1341. Springer-Verlag, 1988.

1 Hierarchy of singular sets
2 Elliptic systems
3 Hilbert Sobolev spaces without weights (interaction with polynomials)
4 Semi-Fredholm, Fredholm, regularity, corner-edge asymptotics

M. COSTABEL, M. DAUGE

General edge asymptotics of solutions of second order elliptic boundary value problems.
Proc. Royal Soc. Edinburgh 123A (1993) 109–155 and 157–184.

M. COSTABEL, M. DAUGE

Construction of corner singularities for Agmon-Douglis-Nirenberg elliptic systems.
Math. Nachr. 162 (1993) 209–237.

M. COSTABEL, M. DAUGE

Stable asymptotics for elliptic systems on plane domains with corners.
Comm. Partial Differential Equations no 9 & 10 (1994) 1677–1726.

1 Edges
2 Elliptic systems
3 Hilbert Sobolev spaces
4 Structure of singularites
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A brief history of elliptic BVP with corners: Maxwell

M. COSTABEL, M. DAUGE

Maxwell and Lamé eigenvalues on polyhedra.
Math. Meth. Appl. Sci. 22 (1999) 243–258.

M. COSTABEL, M. DAUGE

Singularities of electromagnetic fields in polyhedral domains.
Arch. Rational Mech. Anal. 151(3) (2000) 221–276.

M. COSTABEL, M. DAUGE, S. NICAISE

Singularities of Maxwell interface problems.
M2AN Math. Model. Numer. Anal. 33(3) (1999) 627–649.

1 3D Polyhedra

2 Harmonic Maxwell
3 Hilbert Sobolev spaces

4 Regularity, structure of singularites
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A brief history of elliptic BVP with corners: Analytic regularity

I. BABUŠKA, B. GUO

Regularity of the solution of elliptic problems with piecewise analytic data. I. Boundary value
problems for linear elliptic equation of second order,
SIAM J. Math. Anal., 19 (1988) 172–203

I. BABUŠKA, B. GUO

Regularity of the solution of elliptic problems with piecewise analytic data. II. The trace spaces
and application to the boundary value problems with nonhomogeneous boundary conditions,
SIAM J. Math. Anal., 20 (1989) 763–781

1 2D Polygonal domains

M. COSTABEL, M. DAUGE, AND S. NICAISE

Analytic regularity for linear elliptic systems in polygons and polyhedra,
Math. Models Methods Appl. Sci., 22 (2012), 1250015, 63p.

M. COSTABEL, M. DAUGE, AND S. NICAISE

Weighted analytic regularity in polyhedra,
Comput. Math. Appl., 67 (2014) 807–817.

1 3D Polyhedral domains

M. COSTABEL, M. DAUGE, AND S. NICAISE

GLC project (Grand Livre des Coins),
?? (20??)
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Elliptic Boundary Value Problems

For scalar operators of order 2µ in a domain Ω ⊂ Rn:{
Lu = f in Ω

B`u = 0 (` = 1, . . . , µ) on ∂Ω.

Smoothness and ellipticity (cf. Shapiro-Lopatinski condition)
1 L has smooth coefficients on Ω. In each x ∈ Ω, the symbol of its principal part at

Lpr(x ; ξ) is non-zero for any value of the dual variable ξ ∈ Rn \ {0}
2 ∂Ω is smooth, B` have smooth coefficients and order µ` < 2µ. In each x ′ ∈ ∂Ω

and each ξ′ ∈ Rn−1 \ {0}, the parametric BVP{
Lpr(x ′; ξ′, i∂xn )u = 0 in R+

Bpr
` (x ′; ξ′, i∂xn )u = g` (` = 1, . . . , µ) on xn = 0.

has a unique exponentially decreasing solution for any (g1, . . . , gµ) ∈ Rm.

For d × d systems (Lij ) of different orders complemented by suitable boundary
conditions, a general notion of ellipticity is introduced and analyzed in

S. AGMON, A. DOUGLIS, AND L. NIRENBERG
Estimates near the boundary for solutions of elliptic partial differential equations
satisfying general boundary conditions. II,
Comm. Pure Appl. Math., 17 (1964) 35–92.
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Elliptic systems of order 2

In most part of these lectures, we consider elliptic d × d systems of order 2:

L =
(
Lij
)

i,j=1,...,d with Lij =
∑
|α|≤2

Lαij (x) ∂αx and ∂αx = ∂
α1
x1
. . . ∂αn

xn

with d boundary operators B` =
(
B`j
)

j=1,...,d of order µ` ∈ {0, 1}, for ` = 1, . . . , d .

Examples:

1 Laplace with Dirichlet BC (d = 1)

{
−∆u = f in Ω

u = 0 on ∂Ω.

2 Laplace with Neumann BC (d = 1)

{
−∆u = f in Ω

∂nu = 0 on ∂Ω.

3 Lamé with simple support BC’s (d = n) : Setting uτ = u − (u · n)n
−(µ∆ + (λ+ µ)∇ div)u = f in Ω

uτ = 0 on ∂Ω

µ(∂nu) · n + (λ+ µ) div u = 0 on ∂Ω

4 Maxwell with electric perfect conductor condition (d = n = 3)
(curl curl − s∇ div)u = f in Ω

uτ = 0 on ∂Ω

div u = 0 on ∂Ω
12/62
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Transitional slide: From corso 1 to corso 2

{L,B} is an elliptic BVP on a smooth domain Ω ⊂ Rn (or in a smooth manifold).

Recall some elements of the definition of ellipticity, making use of the concepts of

1 model problems and 2 symbols

1 Model problems Lpr
x0

are attached to each x0 ∈ Ω and Bpr
x0

to each x0 ∈ ∂Ω.
They are obtained by

Applying a local map φx0 : x 7→ y with x0 7→ 0 to flatten the geometry
Rn for an interior point x0 of a manifold,
Rn

+ := Rn−1 × R+ for x0 ∈ ∂Ω. Denote y =: (y ′, yn) coord. in Rn
+.

Freezing coefficients at 0

Taking the principal part.

Hence the operators Lpr
x0

(∂y ) and Bpr
x0

(∂y ) with homogeneous constant coefficients.

2 Symbols of the model problems are considered:

Symbol in standard sense for interior points: Lpr
x0

(iξ), ξ ∈ Rn.

Symbol in operator sense for boundary points: {Lpr
x0

(iξ′, ∂yn ),Bpr
x0

(iξ′, ∂yn )}

Ellipticity of {L,B} means that these two symbols are invertible (in a certain sense) for
all non-zero value of the dual variable.

13/62



History of corner studies Elliptic BVP & coercive forms in smooth domains Examples

Elliptic systems of order 2: Classical results

With Hm(Ω) the Sobolev space of exponent m, let for m ≥ 2

Hm(Ω; B) = {u ∈ Hm(Ω)d , Bu = 0 on ∂Ω} and Hm−2(Ω) = Hm−2(Ω)d .

Example of Dirichlet conditions: If B = Id×d , then Hm(Ω; B) = (Hm ∩ H1
0 )(Ω)d .

Let {L,B} be an elliptic system of order 2 with smooth coefficients on the bounded
regular domain Ω.

Theorem (Fredholm property)

Let m ≥ 2. Then L is Fredholm

L : Hm(Ω; B) −→ Hm−2(Ω)

i.e. the kernel of L is finite dimensional, its range has a finite codim (and is closed).

Theorem (regularity shift)

Let u ∈ H2(Ω; B). Let m > 2. If Lu belongs to Hm−2(Ω), then u ∈ Hm(Ω) with
estimates

‖u‖
Hm(Ω)

≤ C
(
‖Lu‖

Hm−2(Ω)
+ ‖u‖

H2(Ω)

)
with a constant C depending only on Ω, L, B, and m.
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Systems of order 2 in variational form

This requires two ingredients:

1 A complex sesquilinear form a of order 1 defined on a “maximal” space X(Ω)

a(u, v) =
d∑

i=1

d∑
j=1

∑
|α|≤1

∑
|β|≤1

∫
Ω

aαβij (x) ∂αx ui ∂
β
x v̄j dx , u, v ∈ X(Ω)

Examples of maximal spaces
For acoustics, elasticity and in most cases, X(Ω) = H1(Ω)d

For electromagnetism (Maxwell system), X(Ω) = H(curl; Ω) ∩ H(div; Ω)

2 A “variational” space V ⊂ X(Ω) that determines essential (or Dirichlet) boundary
conditions

V = {u ∈ X(Ω), ΠDu = 0 on ∂Ω}

where ΠD is a chosen smooth projection operator (examples will follow).
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Coercivity

Definition

Let a be a sesquilinear form defined on X(Ω) and associated with V ⊂ X(Ω).

a is said continuous if

(1) ∃C > 0, ∀u, v ∈ V , |a(u, v)| ≤ C‖u‖
X(Ω)
‖v‖

X(Ω)

Then a defines a unique bounded operator A

A : V → V ′ u 7−→
(
v 7→ a(u, v)

)
Let V be compactly embedded in L2(Ω). The form a is said V-coercive if

(2) ∃C > 0, c > 0 ∀u ∈ V , Re a(u, u) ≥ c‖u‖
2

X(Ω)
− C‖u‖

2

L2(Ω)

a is said strongly V -coercive if C can be taken to 0 in (2).

Theorem S.1

If a is continuous and strongly V -coercive, then A is an isomorphism V → V ′

If a is continuous and V -coercive, then A is Fredholm of index 0 from V into V ′

16/62



History of corner studies Elliptic BVP & coercive forms in smooth domains Examples

Solution in weak sense is solution in strong sense

Introduce the d × d system L = (Lij ) with

Lij =
∑
|α|≤1

∑
|β|≤1

(−1)|β|∂βx aαβij (x) ∂αx , x ∈ Ω

and the conormal d × d system on the boundary N = (Nij ) with

Nij =
∑
|α|≤1

∑
|β|=1

nβ(x)aαβij (x) ∂αx , x ∈ ∂Ω

where, for |β| = 1, nβ(x) is the component β of the unit outward normal n to ∂Ω at x .

Assume that X(Ω) = H1(Ω).
Let a be continuous and V -coercive with smooth coeffs on a bounded regular domain Ω

Theorem

Assume that u ∈ V is solution of Au = f with f ∈ L2(Ω) in weak sense, i.e.

∀v ∈ V , a(u, v) =

∫
Ω

f v̄ dx

Then u belongs to H2(Ω) and solves the BVP in strong sense
Lu = f in Ω

ΠDu = 0 on ∂Ω (essential boundary condtions)
(I− ΠD)Nu = 0 on ∂Ω (natural boundary condtions)
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The BVP induced by a coercive form is elliptic

Theorem S.2 → Localization → Resolvent estimates

Under the previous assumptions:
1 The boundary value system {L,B} with B = {ΠD , (I− ΠD)N} is elliptic.
2 Set f = Au. If f ∈ L2(Ω), then u ∈ H2(Ω) and exists C independent of u such that

(1) ‖u‖
H2(Ω)

≤ C
(
‖f‖

L2(Ω)
+ ‖u‖

H1(Ω)

)
3 Let U and U′ two open sets in Rn such that U ⊂ U′. Set V = Ω ∩ U,

V′ = Ω ∩ U′. If ∂Ω ∩ U′ is smooth, and f ∈ L2(V′) then u ∈ H2(V) and we have
the following local a priori estimates with a constant independent of u

(2) ‖u‖
H2( V)

≤ C
(
‖f‖

L2( V′)
+ ‖u‖

H1( V′)

)
4 If f belongs to Hm−2(Ω) with m > 2, then u belongs to Hm(Ω) and the estimates

(1) and (2) hold with Hm and Hm−2 norms instead of H2 and L2 norms.

Points 2 – 4 are classical results.
For 1 , see Chap. 3, Sec. 2 in

M. COSTABEL, M. DAUGE, AND S. NICAISE
Corner Singularities and Analytic Regularity for Linear Elliptic Systems. Part I:
Smooth domains (2010) https://hal.archives-ouvertes.fr/hal-00453934 18/62
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1 The Dirichlet Laplacian

Scalar ∇ · ∇ form (here d = 1)

a(u, v) =

∫
Ω
∇u · ∇v dx =

∑
|α|=1

∫
Ω
∂αx u ∂αx v dx =

n∑
`=1

∫
Ω
∂x`u ∂x`v dx

The space X(Ω) is the Sobolev space H1(Ω) = {u ∈ L2(Ω), ∇u ∈ L2(Ω)n}.

Dirichlet conditions: The projection operator ΠD is the identity on ∂Ω, so

V = H1
0 (Ω) =

◦
H1(Ω) = {u ∈ H1(Ω), u = 0 on ∂Ω}

Then the form a is strongly coercive.

If Au = f with f ∈ L2(Ω), then u solves the BVP{
−∆u = f in Ω

u = 0 on ∂Ω

Note: The BVP makes also sense for f ∈ H−1(Ω), the dual space of H1
0 (Ω).
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2 The Neumann Laplacian

Scalar ∇ · ∇ form : a(u, v) =

∫
Ω
∇u · ∇v dx , with X(Ω) = H1(Ω).

Neumann conditions: The projection operator ΠD is 0 on ∂Ω, so

V = H1(Ω)

Then the form a is coercive (and not strongly coercive).
A is self-adjoint. ker A is generated by constant functions and rg A = {1}⊥

If Au = f with f ∈ L2(Ω), then u solves the BVP{
−∆u = f in Ω

∂nu = 0 on ∂Ω

The identity Au = f makes sense for f ∈ H1(Ω)′, and not for f ∈ H−1(Ω).
The BVP does not make sense for general f ∈ H1(Ω)′.
If g ∈ H−1/2(∂Ω) is orthogonal to 1, the problem

u ∈ H1(Ω), ∀v ∈ H1(Ω) a(u, v) =
〈
g, v

〉
H−1/2(∂Ω) |H1/2(∂Ω)

has a solution which solves the BVP{
−∆u = 0 in Ω

∂nu = g on ∂Ω.
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2’ The Laplacian with mixed Dirichlet-Neumann conditions

Scalar ∇ · ∇ form : a(u, v) =

∫
Ω
∇u · ∇v dx , with X(Ω) = H1(Ω).

Mixed boundary conditions: Let ∂k Ω be the connected components of ∂Ω, k ∈ K.
Let KDir ∪KNeu be a partition of K.
The projection operator ΠD is set to 0 on ∂k Ω for k ∈ KNeu and to I for k ∈ KDir, so

V = {u ∈ H1(Ω), u
∣∣
∂k Ω

= 0, k ∈ KDir}

Then the form a is coercive (and strongly coercive if KDir 6= ∅).

If Au = f with f ∈ L2(Ω), then u solves the BVP
−∆u = f in Ω

u = 0 on ∂k Ω for all k ∈ KDir

∂nu = 0 on ∂k Ω for all k ∈ KNeu

Let
∂DirΩ =

⋃
k∈KDir

∂k Ω and ∂NeuΩ =
⋃

k∈KNeu

∂k Ω

It is possible to consider the more general situation where the closures of ∂DirΩ and
∂NeuΩ are not disjoint... But this pertains to corner problems!
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3 The Lamé system with conditions of simple support

Lamé bilinear form of elasticity defined for u, v ∈ H1(Ω)n

a(u, v) =

∫
Ω

(
2µ

n∑
i=1

n∑
j=1

eij (u) eij (v) + λ div u div v
)

dx

λ ≥ 0 and µ > 0 are the Lamé coefficients
eij (u) = 1

2 (∂i uj + ∂j ui ) are the components of the strain tensor.

Boundary condition of simple support: The projection ΠD is defined as
ΠDu = u− (u · n)n, so ΠDu = 0 means that the tangential component of u is 0 on ∂Ω.

V = HN (Ω) := {u ∈ H1(Ω)n, u − (u · n)n = 0 on ∂Ω}

Then the form a is (strongly) coercive.

Set uτ = u − (u · n)n. If Au = f with f ∈ L2(Ω)n, then u solves the system
−(µ∆ + (λ+ µ)∇ div)u = f in Ω

uτ = 0 on ∂Ω

µ(∂nu) · n + (λ+ µ) div u = 0 on ∂Ω

NB. −(µ∆ + (λ+ µ)∇ div) = µ curl curl−(λ+ 2µ)∇ div
22/62
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4 Maxwell system (after regularization) with PCE condition

Maxwell regularized electric form defined for u, v ∈ X(Ω) = H(curl; Ω) ∩ H(div; Ω)

a(u, v) =

∫
Ω

(
µ−1 curl u curl v + s div εu div εv

)
dx

with electric permittivity ε > 0 and magnetic permeability µ > 0. Real parameter s > 0.
Electric perfect conductor condition: The projector ΠD is defined as in 3 . Then

V = XN (Ω) := {u ∈ H(curl; Ω) ∩ H(div; Ω), u − (u · n)n = 0 on ∂Ω}

NB: If n = 3, u − (u · n)n = 0 if and only if u × n = 0.

Then the form a is (strongly) coercive.

If Au = f with f ∈ L2(Ω)n, then u solves the system (here µ = ε = 1)
(curl curl − s∇ div)u = f in Ω

uτ = 0 on ∂Ω

div u = 0 on ∂Ω

NB: In any open set where ∂Ω is flat and uτ = 0, we have div u = ∂n(u ·n) = (∂nu) ·n
With µ = 1 and λ = s − 2, the operators L of Lamé and Maxwell coincide.

The sole difference between Lamé and Maxwell lies in variational spaces
23/62
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Regularized Maxwell system in smooth domains

Assume
Ω is a bounded open set with a smooth boundary in Rn

The coefficients µ and ε are smooth positive functions on Ω.

Theorem S.3 cf. [Amrouche et al, 1998]

Under the previous assumptions:

The variational space XN (Ω) is a subset of H1(Ω)d , which means that XN (Ω)
coincides with the variational space HN (Ω) of elasticity.

The same holds with the “magnetic” spaces XT (Ω) and HT (Ω) for which the
essential boundary condition is u · n = 0 on ∂Ω.

There exists a constant C such that for all u ∈ XN (Ω) (or u ∈ HT (Ω))

(3) ‖u‖
H1(Ω)

≤ C
(
‖ curl u‖

L2(Ω)
+ ‖ div u‖

L2(Ω)
+ ‖u‖

L2(Ω)

)
As a consequence of this theorem, the regularized Maxwell form satisfies the
assumptions of the general case, i.e. when X(Ω) = H1(Ω).
So the conclusions of Theorem S.2 apply.

C. AMROUCHE, C. BERNARDI, M. DAUGE, V. GIRAULT
Vector potentials in three-dimensional non-smooth domains.
Math. Methods Appl. Sci. 21 (1998), no. 9, 823–864.
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2D corner domains

A 2D (two-dimensional) smooth domain is defined as follows:

For any x ∈ Ω, one out the two following alternatives is true
1 Near x , the set Ω is loc.1 isometric to a NBH2 of 0 in R2 (then x ∈ Ω)
2 Near x , the set Ω is loc. smoothly isomorphic to a NBH of 0 in the half-plane R2

+
(then x ∈ ∂Ω)

We obtain the class of Lipschitz curvilinear polygons if we add a 3rd model
3 Near x , the set Ω is loc. smoothly isomorphic to a NBH of 0 in a plane sector Γ of

opening ω ∈ (0, π) ∪ (π, 2π) (then x is a corner)

There exist two natural levels of extension to this class:

A Include the sector of opening 2π in order to modelize cracks. The consequence is
necessity of introducing the unfolded boundary ∂∗Ω of Ω to “double” the sides of
the crack outside its tip(s).

B Relax the notion of smoothness for local diffeomorphism: Replace smoothness in
Cartesian coordinates by smoothness in polar coordinates centered at x . Allows
to modelize outward cusps and mild singular points.

1“loc.” for “locally”
2“NBH” for “neighborhood”
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Polygons

In this part, we consider a model class, the class of polygons, for which all
diffeomorphisms are isometries: Either 1 , 2 , or 3 , is true:

1 Near x , the set Ω is loc. isometric to a NBH of 0 in R2 (then x ∈ Ω)
2 Near x , the set Ω is loc. isometric to a NBH of 0 in R2

+ (then x ∈ a side of Ω)
3 Near x , the set Ω is loc. isometric to a NBH of 0 in a plane sector Γ of opening
ω ∈ (0, π) ∪ (π, 2π] (then x is a corner)

In other words Ω is a bounded open set and its boundary is a finite union of segments.
The ends of these segments are the corners of Ω.

Notation

Denote by C the set of corners c.

For each c ∈ C, exists a plane sector Γc that coincides with Ω in a ball B(c,Rc).

Denote by ωc the opening of Γc (i.e. the opening of Ω at the corner c) and set

κc =
π

ωc

Introduce local polar coordinates (rc , θc) such that

Γc =
{

x ∈ R2, rc > 0, θc ∈ (0, ωc)
}
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Corner localization

Let Ω be a polygon in the plane R2.
Let f ∈ L2(Ω).
We are going to study in detail solutions of −∆u = f in Ω, u ∈ H1

0 (Ω)

Lemma: Regularity outside corners → Theorem L.2

For any smooth cut-off χ with support U′ disjoint from the corners

u ∈ H2(U ∩ Ω) with U = χ−1(1)

Proof. We have
−∆(χu) = χf + 2∇χ · ∇u + (∆χ)u

Therefore, by extension by 0

∆(χu) ∈ L2(U′ ∩ Ω) and χu ∈ H1
0 (U′ ∩ Ω)

The lemma is a consequence of Theorem S.2.

Introduce a new smooth cut-off that localizes near the corner c

χc(x) =

{
0 if x 6∈ B(c,Rc)

1 if x ∈ B(c,Rc/2)

Then
∆(χcu) ∈ L2(Γc) and χcu ∈ H1

0 (Γc)
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Changes of variables

Dirichlet Laplacian on a sector – Change of variables

A We have reduced our problem on a polygon to problems of the type (we re-baptize
as u the localized function χcu, translate c to 0, and we drop the index c){

∆u = f in Γ, f ∈ L2(Γ), supp f ⊂ B(0,R)

u ∈ H1
0 (Γ), supp u ⊂ B(0,R)

B Use polar coordinates (r , θ) and transform our problem on the half-strip R+ ×I.
We have

x1 = r cos θ, x2 = r sin θ and

{
r∂r = r cos θ ∂x1 + r sin θ ∂x2

∂θ = −r sin θ ∂x1 + r cos θ ∂x2

Set ũ(r , θ) = u(x) and g̃(r , θ) = r2 f (x). The equation ∆u = f is equivalent to(
(r∂r )2 + ∂2

θ

)
ũ = g̃ in R+ ×I with I = (0, ω)

C Set t = log r (i.e. r = et ) – Euler change of variables – and go the strip R×I

r∂r = ∂t and dx = r dr dθ = e2t dt dθ

Set ŭ(t , θ) = ũ(r , θ) and ğ(t , θ) = g̃(r , θ). The equation ∆u = f is equivalent to(
∂2

t + ∂2
θ

)
ŭ = ğ in R×I.

29/62



2D corner domains Dirichlet Laplacian on a sector with rhs in L2 Dirichlet Laplacian in weighted spaces

Changes of variables

Dirichlet Laplacian on a sector – Exponential weights

Lemma

(1) If f ∈ L2(Γ) with supp f ∈ B(0,R), then ğ = e2t f̆ satisfies

∀η ≤ 1, e−ηt ğ ∈ L2(R×I) and ‖e−ηt ğ‖
L2(R×I)

≤ C‖f‖
L2(Γ)

(2) If u ∈ H1
0 (Γ) with supp u ∈ B(0,R), then ŭ satisfies

∀η ≤ 0, e−ηt ŭ ∈ H1
0 (R×I) and ‖e−ηt ŭ‖

H1(R×I)
≤ C‖u‖

H1(Γ)

The constant C is independent of η, of u and of f .

Proof of (1)∫
R

∫
I
|e−ηt ğ(t , θ)|2 dt dθ =

∫
R

∫
I
|e(−η+1)t f̆ (t , θ)|2 e2t dt dθ

=

∫
Γ
|r−η+1 f (x)|2 dx

≤ R1−η
∫

Γ
|f (x)|2 dx

because of the support condition and 1− η ≥ 0.
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Changes of variables

Dirichlet Laplacian on a sector – Exponential weights

Proof of (2)∫
R

∫
I
|e−ηt ∂t ŭ(t , θ)|2 dt dθ =

∫
R

∫
I
|e−ηt e−t∂t ŭ(t , θ)|2 e2t dt dθ

≤
∫

Γ
|r−η ∂x1 u(x)|2 + |r−η ∂x2 u(x)|2 dx

≤ R−η
∫

Γ
|∇u(x)|2 dx

because of the support condition and −η ≥ 0. The same for ∂θ ŭ.

For ŭ, we find ∫
R

∫
I
|e−ηt ŭ(t , θ)|2 dt dθ =

∫
Γ
|r−η−1 u(x)|2 dx

≤ R−η
∫

Γ
|r−1u(x)|2 dx

and may conclude if we know that r−1u belongs to L2(Γ).

Dirichlet conditions ũ(r , 0) = ũ(r , ω) = 0 yield the Poincaré inequality

‖ũ(r , ·)‖
L2(I)

≤ C‖∂θ ũ(r , ·)‖
L2(I)

that implies ‖r−1u‖
L2(Γ)

≤ C‖∇u‖
L2(Γ)

. Hence r−1u ∈ L2(Γ).
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Mellin transform

Dirichlet Laplacian on a sector – Laplace and Mellin transform

Definition

If r−η−1v belongs to L2(Γ), we define the Mellin transform Mv as

Mv [λ](θ) =

∫ ∞
0

r−λ ṽ(r , θ)
dr
r
, λ ∈ C, Reλ = η

If e−ηt v̆ belongs to L2(R×I), we define the Fourier-Laplace transform L(v̆) as

L(v̆)[λ](θ) =

∫
R

e−λt v̆(t , θ) dt , λ ∈ C, Reλ = η

Note the equivalence

r−η−1v ∈ L2(Γ) ⇐⇒ e−ηt v̆ ∈ L2(R×I)

and the identities, with F the standard Fourier transform,

λ = η + iξ : Mv [λ] = L(v̆)[λ] = F(e−ηt v̆)[ξ]

We mainly use it in its Mellin form.
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Mellin transform

Dirichlet Laplacian on a sector – Laplace and Mellin transform

Properties

Let X be a Hilbert space of functions on the interval I, for example X = Hm(I).

The function e−ηt v̆ belongs to L2(R,X), if and only if the function

ξ 7−→Mv [η + iξ] belongs to L2(R,X)

Let η0 < η1. If e−ηt v̆ ∈ L2(R,X) for η = η0 and η = η1, then e−ηt v̆ ∈ L2(R,X) for
all η ∈ [η0, η1] and the function

{λ ∈ C, Reλ ∈ (η0, η1)} 3 λ 7−→Mv [λ] is holomorphic with values in X

Recall that u ∈ H1
0 (Γ), supp u ⊂ B(0,R), ∆u = f ∈ L2(Γ).

With g := r2f and I = (0, ω) we have

Mu is holomorphic in the complex half-plane Reλ < 0 with values in H1
0 (I)

Mg is holomorphic in the complex half-plane Reλ < 1 with values in L2(I) and
ξ 7→Mg[η + iξ] belongs to L2(R×I) for all η ≤ 1.

Owing to formulas L(∂t ŭ)[λ] = λL(ŭ)[λ] and L(∂θ ŭ)[λ] = ∂θL(ŭ)[λ] we have

(λ2 + ∂2
θ)Mu[λ] = Mg[λ], ∀λ, Reλ ≤ 0.
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Mellin symbol

Dirichlet Laplacian on a sector – Mellin symbol

Definition

The Mellin symbol of ∆ with Dirichlet conditions is defined for any λ ∈ C as

A[λ] : H1
0 (I) −→ H−1(I)

U 7−→ (λ2 + ∂2
θ) U

The symbol A[λ] can also be considered as acting from (H2 ∩ H1
0 )(I) into L2(I).

Denote by P the positive Laplace operator −∂2
θ from (H2 ∩ H1

0 )(I) into L2(I).

The operator P is self-adjoint on L2(I), positive, with compact resolvent. Its
spectrum σ(P) is a discrete subset of (0,+∞). Explicit calculation shows that

σ(P) =
{
µ` :=

( `π
ω

)2
, ` ∈ N∗

}
Since A[λ] = −P + λ2

we deduce that the spectrum σ(A) of the Mellin symbol A is

σ(A) =
{
λ` :=

`π

ω
, ` ∈ Z∗

}
The symbol λ 7→ A[λ] is holomorphic and its inverse λ 7→ A[λ]−1 is meromorphic.
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Mellin symbol

Dirichlet Laplacian on a sector – Meromorphic extension

Recall that
∀λ s.t. Reλ ≤ 0, A[λ] Mu[λ] = Mg[λ]

We define a meromorphic extension U[λ] of Mu[λ] by setting

∀λ s.t. Reλ ∈ (0, 1], U[λ] = A[λ]−1 (Mg[λ]
)

We are going to prove

Proposition P

(1) Exists u1 such that e−t ŭ1 ∈ H2(R×I) and Mu1[λ] = U[λ] for λ s.t. Reλ = 1

(2) The difference between u and u1 is given by the residue formula

u1 − u =
∑

λ0∈σ(A)
Reλ0∈(0,1)

Res
λ=λ0

rλU[λ]

Using that σ(A) = π
ω
Z∗, we obtain as a corollaryu1 = u if ω < π

u1 − u = Res
λ= π

ω

rλU[λ] if ω > π
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Mellin symbol

Dirichlet Laplacian on a sector – Resolvent estimates

The proof of Proposition P is based on estimates of A[λ]−1 in operator norm.
Define the parameter norm ‖U‖

Hm(I;λ)
for m ∈ N as

‖U‖
2

Hm(I;λ)
=

m∑
k=0

(|λ|+ 1)2k ‖U‖
2

Hm−k (I)

Lemma General

Let η0 ≤ η1 and δ > 0. Define the set

Λ =
{
λ ∈ C, Reλ ∈ [η0, η1]

}
\

⋃
λ0∈σ(A)

B(λ0, δ).

Let m ≥ 2. Exists a constant C such that

(1) ∀λ ∈ Λ, ∀G ∈ Hm−2(I), ‖A[λ]−1G‖
Hm(I;λ)

≤ C‖G‖
Hm−2(I;λ)

Proof: Based on two steps.

Step 1 If K is a compact set in C disjoint from the spectrum of A the resolvent estimate (1)
holds with a constant C depending on K by continuity of A[λ]−1 with respect to λ.

Step 2 It remains to prove (1) for |λ| is large enough in the strip
{
λ ∈ C, Reλ ∈ [η0, η1]

}
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Mellin symbol

Dirichlet Laplacian on a sector – Resolvent estimates, continued

We have to prove for λ ∈ Λ and |λ| large enough

(1) ∀G ∈ Hm−2(I), ‖A[λ]−1G‖
Hm(I;λ)

≤ C‖G‖
Hm−2(I;λ)

To perform Step 2 of the proof of (1), we choose λ, G, and set V = A[λ]−1G.
Then introduce on R×I (Agmon’s method of addition of variable)

v̆(t , θ) = eλt V (θ) and ğ(t , θ) = eλt G(θ)

We can check:
v̆ ∈ H1((−2, 2)×I), v̆ = 0 on R× ∂I

∆v̆ = ğ
Local estimates (Theorem S.2) give

‖v̆‖
Hm((−1,1)×I)

≤ C
(
‖ğ‖

Hm−2((−2,2)×I)
+ ‖v̆‖

H1((−2,2)×I)

)
Coming back to V and G —here C depends on η0 and η1,

‖V‖
Hm(I;λ)

≤ C
(
‖G‖

Hm−2(I;λ)
+ ‖V‖

H1(I;λ)

)
We conclude because for |λ| large enough, C‖V‖

H1(I;λ)
≤ 1

2‖V‖Hm(I;λ)
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Conclusions

Dirichlet Laplacian on a sector – Regular part

Proposition P, point (1), rephrased

Let u1 be defined as the inverse Mellin transform

u1(x) =
1

2iπ

∫
Reλ=1

rλ U[λ](θ) dλ

Then e−t ŭ1 ∈ H2(R×I), which means for u1:

r−2+|α| ∂αx u1 ∈ L2(Γ), |α| ≤ 2.

U[λ] = A[λ]−1 Mg[λ]

The Mellin transform of g satisfies “ξ 7→Mg[1 + iξ] belongs to L2(R, L2(I))”

The resolvent estimate with m = 2 on the line Reλ = 1 (disjoint from σ(A)!) yields

ξ 7→ |1 + iξ|k U[1 + iξ] belongs to L2(R,H2−k (I)), k = 0, 1, 2

Since 1
2iπ

∫
Reλ=1

rλ U[λ] dλ =
1

2π
et
∫
R

eitξ U[1 + iξ] dξ

we find by inverse Fourier transform that e−t ŭ1 ∈ H2(R×I)).

Back to Cartesian coordinates with r = et gives the weighted regularity for u1
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Conclusions

Dirichlet Laplacian on a sector – Residue formula

Proposition P, point (2)

u1 − u =
∑

λ0∈σ(A)
Reλ0∈(0,1)

Res
λ=λ0

rλU[λ]

U[λ] = A[λ]−1 Mg[λ]

The poles of U[λ] are in the set of poles of A[λ]−1 since Mg[λ] is holomorphic

For any simple rectifiable curve γ that is contained in the open strip
Reλ ∈ (−∞, 1) and surrounds the pole λ0 = π

ω
when ω > π, we have

1
2iπ

∫
γ

rλ U[λ](θ) dλ =
∑

λ0∈σ(A)
Reλ0∈(0,1)

Res
λ=λ0

rλU[λ]

Take γ as the rectangle Reλ = 0, Imλ = −ξ, Reλ = 1− δ, Reλ = ξ, with δ > 0
small enough and ξ > 0. We may push ξ to infinity and δ to 0 using the resolvent
estimates to bound U[λ], hence proving Proposition P.
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Conclusions

Dirichlet Laplacian on a sector – Description of the residue

If ω > π, we have one residue in the relevant region Reλ ∈ [0, 1].

Recall that A[λ] = −P + λ2 with P = −∂2
θ on H1

0 (I).
Let φ` be an orthonormal spectral basis for P associated with eigenvalues µ`.

Setting κ = π
ω

we have

µ` = λ2
` with λ` = `κ, and φ`(θ) =

√
2
ω

sin `κθ, ` ≥ 1

Then

PU =
∑
`∈N∗

λ2
` 〈φ`,U〉φ` hence (−P + λ2)−1G =

∑
`∈N∗

1
λ2 − λ2

`

〈φ`,G〉φ`

With G[λ] the Mellin transform of g = r2f , we find

Res
λ=λ1

rλU[λ] = Res
λ=λ1

rλ(−P + λ2)−1G[λ]

= rλ1
1

2λ1
〈φ1,G[λ1]〉φ1

= γ1 rκ sinκθ with γ1 =
1
π

∫
Γ

r−κ sinκθ f (x) dx

Finally u = u1 − γ1 rκ sinκθ and we have proved the following theorem...
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Conclusions

Dirichlet Laplacian on a sector – Theorem with rhs in L2

Theorem L.1 → Theorem L.3

Let Γ be a plane sector of opening ω ∈ (0, π) ∪ (π, 2π) and u ∈ H1
0 (Γ) with compact

support such that
∆u = f in Γ, f ∈ L2(Γ).

If ω < π, then u belongs to H2(Γ) and moreover satisfies r−2u, r−1∇u in L2(Γ)

If ω > π, then with the ground frequency κ = π
ω

:

(L.1) u = u1 − γ1 rκ sinκθ with γ1 =
1
π

∫
Γ

r−κ sinκθ f (x) dx

and u1 satisfying r−2+|α| ∂αx u1 ∈ L2(Γ), |α| ≤ 2

Case of a crack Optimal statement using injectivity modulo polynomials

If ω = 2π, Theorem L.1 does not apply because the Mellin symbol has a pole in λ = 1.
Nevertheless it is possible to prove that (L.1) holds with the weaker regularity for u1

∂αx u1 ∈ L2(Γ), |α| = 2, and r−2+δ+|α| ∂αx u1 ∈ L2(Γ), |α| ≤ 1, δ > 0.
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Dirichlet Laplacian on a polygon – Theorem with rhs in L2

Theorem L.2 → Theorem L.4

Let Ω be a plane polygon with corners set C 3 c associated with openings
ωc ∈ (0, π) ∪ (π, 2π). Let χc smooth cut-off functions separating the corners.

Let u ∈ H1
0 (Ω) be solution of

∆u = f in Ω, f ∈ L2(Ω).

Then, with κc = π
ωc

:

(L.2) u = u1,reg +
∑

c∈C, ωc>π

χc(x) γc rκc
c sinκc θc

with
constants γc depending continuously on f ∈ L2(Ω)

a regular part u1,reg ∈ H2(Ω) satisfying

r−2+|α|
c ∂αx u1 ∈ L2(Ω), |α| ≤ 2, c ∈ C

Proof: Localize around each corner as specified in Section 4

Then apply Theorem L.1 at each corner, multiply the expansion (L.1) by χc and sum on
c ∈ C. 42/62
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Weighted Sobolev spaces of Kondrat’ev type

The same tools allow to prove results in a general class of weighted Sobolev spaces
(those introduced by Kondrat’ev, with a different notation).

Definition

Let m ∈ N and β ∈ R.

Let Γ be a plane sector, with r the distance to its vertex.

K m
β (Γ) = {u ∈ L2

loc(Γ), rβ+|α|∂αx u ∈ L2(Γ), ∀α, |α| ≤ m}

Let Ω be a polygon with corner set C, and rc = rc(x) the distance of x to c. Let ρ
be the minimum of the rc , c ∈ C., i.e. the distance function to the set of corners.

K m
β (Ω) = {u ∈ L2

loc(Ω), ρβ+|α|∂αx u ∈ L2(Ω), ∀α, |α| ≤ m}

Properties:
If u ∈ K m

β (Ω), then χcu ∈ K m
β (Γc).

K m
β (Γ) ⊂ K m−1

β (Γ) ⊂ · · · ⊂ K 0
β(Γ)

K m
β (Ω) ⊂ K m′

β′ (Ω) for m′ ≤ m and β′ ≥ β

∂αx is continuous K m
β (Γ)→ K m−|α|

β+|α| (Γ) and ∆ is continuous K m
β (Γ)→ K m−2

β+2 (Γ)

K m
−m(Ω) ⊂ Hm(Ω) ⊂ K m

0 (Ω)

H1
0 (Ω) ⊂ K 1

−1(Ω)
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Weighted Sobolev spaces and Mellin transform

Lemma

Let m ∈ N and β ∈ R. Let Γ be a plane sector of opening ω, and I = (0, ω). Set

η = −β − 1

The following three assertions are equivalent
1 u ∈ K m

β (Γ)

2 e−ηt ŭ ∈ Hm(R×I), with u(x) = ŭ(t , θ).

3 The Mellin transform U[λ] := Mu[λ] is well defined for Reλ = η and the function

(1) ξ 7−→ ‖U[η + iξ]‖
Hm(I;|ξ|)

belongs to L2(R)

Moreover, if the function U satisfies (1), then the inverse Mellin transform

u(x) =
1

2iπ

∫
Reλ=η

rλ U[λ](θ) dλ

defines an element of K m
β (Γ).

We have already seen this in the particular case m = 2, β = −2.
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Dirichlet Laplacian in weighted Sobolev spaces on a sector

The same tools as used for Theorem L.1, including the general form of our resolvent
estimates, allows to prove:

Theorem L.3 → Theorem L.5 in dim. n

Let Γ be a plane sector of opening ω. Let m ≥ 2 and β < −1. Set η = −β − 1. We
assume that

The line Reλ = η is disjoint from the Mellin spectrum σ(A)

(here this means that η 6∈ π
ω
Z∗)

Let u ∈ H1
0 (Γ) with compact support such that

∆u = f in Γ, f ∈ K m−2
β+2 (Γ).

Then, with κ = π
ω

(L.3) u = uη +
∑

`∈N∗, `κ<η
γ` r`κ sin `κθ and uη ∈ K m

β (Γ)

with γ` =
1
π

∫
Γ

r−`κ sin `κθ f (x) dx
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Dirichlet Laplacian in weighted Sobolev spaces on a polygon

Theorem L.4 → Theorem L.2

Let Ω be a plane polygon with corners set C 3 c. Let χc smooth cut-off functions
separating the corners.

Let m ≥ 2 and β < −1. Set η = −β − 1. We assume that

∀c ∈ C, the line Reλ = η is disjoint from the Mellin spectrum σ(Ac)

(here this means that η 6∈ π
ωc

Z∗ for all c ∈ C)

Let u ∈ H1
0 (Ω) such that ∆u = f in Ω, f ∈ K m−2

β+2 (Ω).

Then, with κc = π
ωc

(L.4) u = ureg +
∑
c∈C

χc(x)

{ ∑
`∈N∗, `κc <η

γc,` r`κc
c sin

(
`κc θc

)}

with ureg ∈ K m
β (Ω)

Relations with standard Sobolev spaces

If f ∈ K m−2
−m+2(Ω), then ureg ∈ Hm(Ω). But the case f ∈ Hm−2(Ω) is not straightforward.
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Part III

Model elliptic BVP in regular cones
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Model objects

nD cones

1 An open subset Γ of Rn is called a cone if ∀x ∈ Γ, ∀ρ > 0, ρx ∈ Γ.

2 Denote for x 6= 0: r = |x | and x̂ =
x
r

3 For a cone Γ, define its section by Γ̂ = Γ ∩ Sn−1

4 Γ is said a regular cone if Γ̂ is a smooth submanifold with boundary of Sn−1.

NB in dimension n = 2, any sector of positive opening ω < 2π is a regular cone.

Lemma. Let m ∈ N and β ∈ R. Let Γ be a cone of section Γ̂. Set η = −β −
n
2

With same definition of spaces K m
β as above, the following 3 assertions are equivalent

1 u ∈ K m
β (Γ)

2 e−ηt ŭ ∈ Hm(R× Γ̂), with ŭ(log |x |, x̂) = u(x).

3 The Mellin transform U[λ] := Mu[λ] is well defined for Reλ = η and the function

(1) ξ 7−→ ‖U[η + iξ]‖
Hm(Γ̂;|ξ|)

belongs to L2(R)
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Dirichlet Laplacian in regular cones

The variable x̂ ∈ Γ̂ ⊂ Sn−1 plays the same role as the angle θ ∈ (0, ω) = I:

∆ becomes e−2t(∂2
t + (n − 2)∂t − Ln−1

)
with Ln−1 the (positive) Laplace-Beltrami operator on Sn−1. Let (µ`, φ`) be its Dirichlet
eigenpairs on Γ̂. The Mellin symbol of the Dirichlet Laplacian on Γ is

A[λ] : U 7−→
(
λ2 + (n − 2)λ− Ln−1

)
U (H2 ∩ H1

0 )(Γ̂) −→ L2(Γ̂)

The spectrum σ(A) coincides with {λ`, ` ∈ Z∗} with

λ±` = 1− n
2 ±

√
µ` + ( n

2 − 1)2, ` ∈ N∗

Theorem L.5 → Theorem L.3 for n = 2

Let Γ be a regular cone in Rn. Let m ≥ 2 and β < −1. Set η = −β − n
2 . Assume

The line Reλ = η is disjoint from the Mellin spectrum σ(A)

Let u ∈ H1
0 (Γ) with compact support such that ∆u ∈ K m−2

β+2 (Γ)

Then

(L.5) u = uη +
∑

`∈Z∗, 1− n
2<λ`<η

γ` rλ` φ`(x̂) with uη ∈ K m
β (Γ)
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Model elliptic BVP in regular cones

Let P a PDE operator of order µ in Rn. We say that P is homogeneous of order µ with
radially constant coefficients if in polar Euler variables t = log |x | and x̂ = x/|x |, P
takes the form

(∗) P(x ; ∂x ) = e−µt P(x̂ ; ∂t , ∂x̂ ) with P(x̂ ; ∂t , ∂x̂ ) =
∑
|α|≤µ

Pα(x̂) (∂t , ∂x̂ )α.

Examples
If P is homogeneous with constant coefficients, it satisfies the condition above
with the sum reduced to |α| = µ.
If P is homogeneous with coefficients depending on x̂ and not |x |, the same holds.
The normal derivative around a regular cone satisfies this at order µ = 1.
A Schrödinger op. with singular potential −∆ + |x |−2 satisfies (∗) at order µ = 2.

Let A = {L,B} be an elliptic system of order 2. Assume that L is homogeneous of
order 2 with radially constant coefficients, and the same for the boundary operators B`
with the order µ` equal to 0 or 1. Then the Mellin symbol A(λ) is generated by the BVP

{L(x̂ ;λ, ∂x̂ ), B(x̂ ;λ, ∂x̂ )}

If B(x̂ ;λ, ∂x̂ ) is constant in λ,

A[λ] : U 7−→ L(x̂ ;λ, ∂x̂ )U
{

U ∈ H2(Γ̂), BU
∣∣
∂Γ̂

= 0
}
−→ L2(Γ̂)

If not, we replace the condition BU
∣∣
∂Γ̂

= 0 by the action of B from H2(Γ̂) into trace
spaces H3/2(∂Γ̂) and H1/2(∂Γ̂).
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Mellin symbol, meromorphic resolvent

Theorem 2D Laplace

Let A = {L,B} be an elliptic system of order 2. Assume that L is homogeneous of
order 2 with radially constant coefficients, and the same for the boundary operators B`
with the order µ` equal to 0 or 1.

Then the Mellin symbol A associated with A has a meromorphic resolvent λ 7→ A[λ]−1

that satisfies the uniform parameter estimates

(1) ∀λ ∈ Λ, ∀G ∈ Hm−2(Γ̂), ‖A[λ]−1G‖
Hm(Γ̂;λ)

≤ CΛ‖G‖Hm−2(Γ̂;λ)

on any set Λ of the form

Λ =
{
λ ∈ C, Reλ ∈ [η0, η1]

}
\

⋃
λ0∈σ(A)

B(λ0, δ)

The proof is based on local elliptic estimates Theorem S.2, a parametrix construction,
and the Analytic Fredholm Theorem.

See also the early classical reference

M. S. AGRANOVICH, M. I. VISHIK.
Elliptic problems with a parameter and parabolic problems of general type.
Russian Math. Surveys 19 (1964) 53?157.
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Results

Model elliptic BVP in regular cones: Fredholm properties

Let A = {L,B} be an ellptic BVP, homogeneous with radially constant coefficients.
Assume that L is a d × d system of order 2 and set, for a cone Γ

K m
β (Γ) = K m

β (Γ)d and K m
β (Γ; B) = {u ∈ K m

β (Γ), Bu
∣∣
∂Γ

= 0}
Let A be its Mellin symbol and σ(A) the spectrum of A.

Theorem G.1

1 Let Γ be a regular cone in Rn. Let m ≥ 2 and β ∈ R. Set η = −β − n
2 . Assume

The line Reλ = η is disjoint from the Mellin spectrum σ(A)

Then A defines an isomorphismt from K m
β (Γ; B) onto K m−2

β−2 (Γ).

2 Let β′ > β, so that η′ := −β′ − n
2 is < η. If, moreover

The line Reλ = η′ is disjoint from the Mellin spectrum σ(A)

then A defines a Fredholm operator from (K m
β ∩ K m

β′ )(Γ; B) onto (K m−2
β−2 ∩ K m−2

β′−2)(Γ)

3 If moreover

The strip Reλ ∈ [η′, η] is disjoint from the Mellin spectrum σ(A)

then A defines an isomorphism from (K m
β ∩ K m

β′ )(Γ; B) onto (K m−2
β−2 ∩ K m−2

β′−2)(Γ)
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Results

Model elliptic BVP in regular cones: Residue formulas

Theorem G.2

a Let Γ be a regular cone in Rn. Let m ≥ 2 and β ∈ R. Set η = −β − n
2 . Assume

The line Reλ = η is disjoint from the Mellin spectrum σ(A)

b Let β′ > β, so that η′ := −β′ − n
2 is < η. Assume that u ∈ K m

β′ (Γ; B) satifies

Au =: f ∈ K m−2
β−2 (Γ)

Then the Mellin transform G[λ] of g := r2f is holomorphic in the strip Reλ ∈ [η′, η].

c Then there exists a unique uη ∈ K m
β (Γ; B) such that Auη = f and we have

uη − u =
∑

λ0∈σ(A)

Reλ0∈[η′,η)

Res
λ=λ0

rλA[λ]−1G[λ]

Denote as Φλ0 the residue at λ = λ0:

Φλ0 := Res
λ=λ0

rλA[λ]−1G[λ]
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Results

Structure of residues

Lemma

The singular functions Φλ0 have the general form

Φλ0 (x) =
∑Q

q=0
rλ0 logq r φp(x̂) with φp ∈ C∞( Γ̂ )

and satisfy
L Φλ0 = 0 in Γ and B Φλ0 = 0 on ∂Γ

Proof. We have, for a suitable closed contour γ around λ0

Φλ0 =
1

2iπ

∫
γ

rλ A[λ]−1G[λ] dλ

Therefore
L Φλ0 =

1
2iπ

∫
γ

r−2L(x̂ ; r∂r , ∂x̂ )
(

rλ A[λ]−1G[λ]
)

dλ

=
1

2iπ

∫
γ

r−2rλL(x̂ ;λ, ∂x̂ )A[λ]−1G[λ] dλ

=
1

2iπ

∫
γ

r−2rλA[λ]A[λ]−1G[λ] dλ = 0
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Taylor expansions

Choice of functional spaces to describe corner regularity

a To prepare for local analysis in general corner domains, we consider data f with
support in a compact NBH U of the vertex of a regular cone Γ ⊂ Rn.

b The previous theorems apply if f belong to some weighted spaces K `β(Γ), and
describe the solution u in weighted spaces.

c We have to relate weighted spaces to the standard scale of Sobolev spaces Hm on
Γ ∩ U. The natural embeddings

K m
−m(Γ ∩ U) ⊂ Hm(Γ ∩ U) ⊂ K m

0 (Γ ∩ U)

are rough and not sufficient (except for m = 0) do get relevant information.

d Note that K m
−m(Γ) is a space of functions that are flat in 0:

u ∈ K m
−m(Γ) ⇐⇒ r |α|−m∂αx u ∈ L2(Γ), ∀|α| ≤ m.

Check that:

If u ∈ K m
−m(Γ), for any α ∈ Nn with |α| < m − n

2 there holds ∂αx u(0) = 0.

e Comparison between the two scales of spaces K m
−m and Hm on Γ ∩ U involves

Taylor expansion at 0.
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Taylor expansions

Taylor expansion and weighted spaces

Generalize weighted spaces K m
β to positive non-integer exponents: Set

K s
−s(Γ) =

{
u, r |α|−s∂αx u ∈ L2(Γ), ∀|α| < s∫

Γ

∫
Γ

|∂αu(x)− ∂αu(y)|2

|x − y |2(s−[s])+n
dxdy , ∀|α| = [s]

}
and K s

γ−s(Γ) is the space of functions u such that rγu ∈ K s
−s(Γ).

Theorem [Dauge88, Th. (AA.7)]

Let Γ be an open cone in Rn, U be a compact NBH of 0, and let s > 0. Set

Hs
∗(Γ ∩ U) =

{
u ∈ Hs(Γ ∩ U), ∂αx u(0) = 0 ∀|α| < s − n

2

}
Then, if s − n

2 is not an integer

Hs
∗(Γ ∩ U) = K s

−s(Γ ∩ U)

and if s − n
2 is an integer, then

Hs
∗(Γ ∩ U) ⊂ K s

γ−s(Γ ∩ U) ∀γ > 0.
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Taylor expansions

Hardy’s inequality

The prrevious theorem partly relies on Hardy’s inequality:

Hardy’s inequality

For any f ∈ C∞0 (R+) and γ 6= 1:∫ ∞
0

rγ−2|f (r)|2 dr ≤
4

(1− γ)2

∫ ∞
0

rγ |f ′(r)|2 dr .

When γ < 1, this inequality still holds for any function f which is zero at 0 “Hardy’s
inequality at zero” in the following sense

∀R > 0, f ′ ∈ L1(0,R) and f (r) =

∫ r

0
f ′(s) ds

When γ > 1, this inequality still holds for any function f which is zero at infinity
“Hardy’s inequality at infinity” in the following sense

∀R > 0, f ′ ∈ L1(R,∞) and f (r) =

∫ ∞
r

f ′(s) ds

57/62



General cones and weighted spaces General cones and spaces without weight

Taylor expansions

Mellin transform and Taylor expansion

Let u ∈ Hs(Γ) with compact support. As u ∈ K s
0 (Γ), and ∈ K s

β(Γ) for all β ≥ 0, the
Mellin transform U[λ] well defined for Reλ = − n

2 , and is holomorphic in the half-plane
Reλ < − n

2 . A much better result holds

Theorem [Dauge88, Th. (AA.29)]

Let Γ be an open cone in Rn, U be a compact NBH of 0, and let s > 0.
Let u ∈ Hs(Γ) with compact support and U = Mu its Mellin transform.
Then U has a meromrphic extension for Reλ < s − n

2 and its poles are non-negative
integers 0 ≤ k < s − n

2

Res
λ=k

rλU[λ] = −
∑
|α|=k

∂αx u(0)

α!
xα

Moreover, if s − n
2 is not an integer, the function

ξ 7−→ ‖U[s − n
2 + iξ]‖

Hs(Γ̂;|ξ|)
belongs to L2(R)
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Results

Corner expansion

Let A = {L,B} be an ellptic BVP, homogeneous with radially constant coefficients with
L a system of order 2. We have the following variant/improvement of Theorem G.2

Theorem G.2’

a Let Γ be a regular cone in Rn. Let s ≥ 2. Assume

η := s − n
2 6∈ N and the line Reλ = η is disjoint from the Mellin spectrum σ(A)

b Let f ∈ Hs−2(Γ) with compact support. Then the Mellin transform G[λ] of g := r2f
is meromorphic in the strip Reλ ∈ (−∞, η].

c Let β′, so that η′ := −β′ − n
2 is < η. Assume that u ∈ K 2

β′ (Γ; B) satifies Au = f .
Then there exists a unique uη ∈ K s

−s(Γ; B) such that Auη = f and we have

uη − u =
∑

λ0∈σ(A)∪N
Reλ0∈[η′,η)

Res
λ=λ0

rλA[λ]−1G[λ]

Note the differences Th. G.2 versus Th. G.2’:
f belongs to an unweighted Sobolev space
The regularity exponent does not need to be real
The initial regularity of u does not need to be at exponent s.
Residues may appear on a larger set.
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Results

Injectivity modulo polynomials

What is not satisfactory with Th. G.2’:
a Cannot handle integer s and even dim. (e.g. n = 2) “curse of even dimensions”
b The residues can be polynomial function in x , thus regular in Cartesian coord.

Definition

Let Γ be a regular cone in Rn, with Γ̂ its section. Let λ ∈ C.
1 Let Sλ be the space of quasi-homogeneous d-component functions

Sλ(Γ) =
{

Ψ = rλ
∑Q

q=0
logq r ψq(x̂), ψq ∈ C∞(Γ)d

}
We mention zero boundary conditions BΨ = 0 as usual: Ψ ∈ Sλ(Γ; B).

2 Let Pλ be the space of homogeneous polynomials in Cartesian var. x , of deg. λ
3 The system A = {L,B} said to be injective modulo polynomials if

(1) Ψ ∈ Sλ(Γ; B) and LΨ ∈ Pλ−2 =⇒ Ψ ∈ Pλ

This condition can be written as

L : Sλ(Γ; B)/Pλ(Γ; B) −→ Sλ−2(Γ)/Pλ−2 injective

4 Let σ?(A) be the set of λ ∈ C such that (1) is not satisfied.
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Results

Injectivity modulo polynomials and corner expansion

Improvement of Theorem G.2’ using the new set σ?(A):

Theorem G.3 → remark on cracks

a Let Γ be a regular cone in Rn. Let s ≥ 2. Assume

The line Reλ = η := s − n
2 is disjoint from the set σ?(A)

b Let f ∈ Hs−2(Γ) with compact support, and G[λ] = M[g := r2f ].

c Let β′, so that η′ := −β′ − n
2 is < η. Assume that u ∈ K 2

β′ (Γ; B) satifies Au = f .
Then we have

u +
∑

λ0∈σ?(A)

Reλ0∈[η′,η)

Res
λ=λ0

rλA[λ]−1G[λ] =: uη ∈ Hs(Γ ∩ U)

If the system A = {L,B} ensues from a coercive variational pb with V ⊂ X = H1:

Theorem G.3’ a & b same as above

c Assume that u ∈ V satifies Au = f . Then we have

u +
∑

λ0∈σ?(A)
Reλ0∈(1− n

2 ,s−
n
2 )

Res
λ=λ0

rλA[λ]−1G[λ] =: uη ∈ Hs(Γ ∩ U)
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