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Lecture Topics

• Classical potential method for constant coefficient boundary value
problems: Indirect and direct boundary integral equations method.

• Scalar BVPs with one variable coefficient (isotropic case):
Parametrix based BDIE approach.

• Scalar BVPs with matrix variable coefficient (anisotropic case):
Localized harmonic parametrix based BDIE approach.

• Applications of BDIE method to transmission problems of
acoustic scattering by inhomogeneous anisotropic obstacles.
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LECTURE 1

CLASSICAL POTENTIAL METHOD

FOR CONSTANT COEFFICIENT

BOUNDARY VALUE PROBLEMS

DAVID NATROSHVILI

Georgian Technical University

Tbilisi, GEORGIA
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1. Classical formulation of the BVPs

2. Green’s formulas and Integral Representation of solutions

3. Weak formulation of the problems, uniqueness theorems

4. Properties of potentials

5. Reduction to BIEs: Direct and Indirect methods

6. Existence and regularity of solutions (based on the Fredholm-Riesz

Theory and the Theory of pseudodifferential equations)
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Classical Potential Method - Regular Case

N.M. Günter, Potential Theory and its application to the basic prob-
lems of mathematical physics. Fizmatgiz, Moscow 1953 (Russian).
Translation in English: Frederick Ungar Publishing, New York, 1967.

K. Miranda, Partial differential equations of elliptic type. Springer,

Berlin-Heidelberg, 2-nd edition, 1970.

R. Dautray and J.L. Lions, Mathematical analysis and numerical meth-

ods for science and technology. Vol. 4. Integral equations and nu-
merical methods. Springer-Verlag, Berlin, 1990.

G. Hsiao and W. Wendland, Boundary integral equations. Springer,

Berlin - Heidelberg, 2008.
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Theory of pseudodifferential equations on manifolds with
boundary

G. Eskin, Boundary value problems for elliptic pseudodifferential equa-
tions. Translation of Mathematical Monographs, vol. 52. American
Mathematical Society: Providence, RI, 1981.

E. Shargorodsky, An Lp analogue of the Vishik-Eskin theory. Mem-

oirs on Differential Equations and Mathematical Physics, 2 (1994),
41-146.
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CLASSICAL SETTING OF BVPs AND UNIQUENESS
THEOREMS

The Laplace equation in Ω ⊂ R3:

A(∂)u(x) ≡ ∆u(x) =
[ ∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

]
u(x) = 0; (1)

The Poisson equation in Ω ⊂ R3:

A(∂)u(x) ≡ ∆u(x) =
[ ∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

]
u(x) = Φ(x); (2)

u – is an unknown function in Ω ∈ {Ω+, Ω−}

Φ – is a given function in Ω
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Ω+ - a bounded domain in R3 with a simply connected boundary
∂Ω+ = S;

Ω+ = Ω+ ∪ S; Ω− := R3 \ Ω+;

S ∈ C∞ or S ∈ Lip or S ∈ Ck, β, 0 < β 6 1, k ∈ N;

Dissection of the boundary surface S = SD ∪ SN , SD ∩ SN = ∅,

ℓ = SD ∩ SN ;

The symbols { · }±
S denote one-sided limits (traces) on S from Ω± ;

n = (n1, n2, n3) - outward unit normal vector to S;

∂n :=
∂

∂n
= n1

∂

∂x1

+ n2

∂

∂x2

+ n3

∂

∂x3

– normal derivative.
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Ck,α, Lp,W r
p ,H

s
p, B

s
p,q – the well-known Höder, Lebesgue, Sobolev–

Slobodetskii, Bessel potential, and Besov function spaces
(r ≥ 0, s ∈ R, p ∈ (1,∞), 1 ≤ q ≤ ∞).
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Ck,α, Lp,W r
p ,H

s
p, B

s
p,q – the well-known Höder, Lebesgue, Sobolev–

Slobodetskii, Bessel potential, and Besov function spaces
(r ≥ 0, s ∈ R, p ∈ (1,∞), 1 ≤ q ≤ ∞).

Hr
2 = W r

2 = Br
2,2 for r ≥ 0, Hs

2 = Bs
2,2 for any s ∈ R,

Bt
p,p = W t

p and Hk
p = W k

p for any positive and non-integer t, for
any non-negative integer k and for any p > 1.
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Ck,α, Lp,W r
p ,H

s
p, B

s
p,q – the well-known Höder, Lebesgue, Sobolev–

Slobodetskii, Bessel potential, and Besov function spaces
(r ≥ 0, s ∈ R, p ∈ (1,∞), 1 ≤ q ≤ ∞).

Hr
2 = W r

2 = Br
2,2 for r ≥ 0, Hs

2 = Bs
2,2 for any s ∈ R,

Bt
p,p = W t

p and Hk
p = W k

p for any positive and non-integer t, for
any non-negative integer k and for any p > 1.

Let S1 be an open proper submanifold of S with smooth boundary:

X̃(S1) :=
{
f : f ∈ X(S), supp f ⊂ S1

}
,

X(S1) :=
{
rS1

f : f ∈ X(S)
}
,

(rM stands for the restriction operator onto M)
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Ck,α, Lp,W r
p ,H

s
p, B

s
p,q – the well-known Höder, Lebesgue, Sobolev–

Slobodetskii, Bessel potential, and Besov function spaces
(r ≥ 0, s ∈ R, p ∈ (1,∞), 1 ≤ q ≤ ∞).

Hr
2 = W r

2 = Br
2,2 for r ≥ 0, Hs

2 = Bs
2,2 for any s ∈ R,

Bt
p,p = W t

p and Hk
p = W k

p for any positive and non-integer t, for
any non-negative integer k and for any p > 1.

Let S1 be an open proper submanifold of S with smooth boundary:

X̃(S1) :=
{
f : f ∈ X(S), supp f ⊂ S1

}
,

X(S1) :=
{
rS1

f : f ∈ X(S)
}
,

(rM stands for the restriction operator onto M)

A regular functions in Ω ∈ {Ω+, Ω−}: u ∈ C2(Ω) ∩ C1(Ω).
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THE BASIC BVPs: Find a regular solution u to the equation

A(∂)u = Φ, x ∈ Ω+, (3)

satisfying one of the following boundary conditions:

The Dirichlet problem (D)+:

{u(x)}+ = f(x), x ∈ S; (4)

The Neumann problem (N)+:

{∂nu(x)}+ = F (x), x ∈ S; (5)

The mixed type problem (M)+:

{u(x)}+ = f∗(x), x ∈ SD, (6)

{∂nu(x)}+ = F ∗(x), x ∈ SN . (7)
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GREEN’s FORMULAS:

∫
Ω+

∆u v dx = −
∫
Ω+

∇u · ∇v dx+

∫
S

{∂nu}+ {v}+ dS (G1)∫
Ω+

[
∆u v − u ∆v

]
dx =

∫
S

[
{∂nu}+{v}+−{u}+{∂nv}+

]
dS (G2)
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GREEN’s FORMULAS:∫
Ω+

∆u v dx = −
∫
Ω+

∇u · ∇v dx+

∫
S

{∂nu}+ {v}+ dS (G1)∫
Ω+

[
∆u v − u ∆v

]
dx =

∫
S

[
{∂nu}+{v}+−{u}+{∂nv}+

]
dS (G2)

FUNDAMENTAL SOLUTION:

A(∂)Γ(x) = δ(x) ⇒ Γ(x) = −
1

4π |x|
, v(y) = Γ(x− y)

GENERAL INTEGRAL REPRESENTATION (∀ u ∈ C2(Ω)):

u(x) =

∫
Ω+

Γ(x− y)∆u(y)dy −
∫
S

Γ(x− y) {∂nu(y)}+ dS+

+

∫
S

[
∂n(y)Γ(x− y)

]
{u(y)}+dSy, x ∈ Ω; (G3)
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GREEN’s FORMULAS:∫
Ω+

∆u v dx = −
∫
Ω+

∇u · ∇v dx+

∫
S

{∂nu}+ {v}+ dS (G1)∫
Ω+

[
∆u v − u ∆v

]
dx =

∫
S

[
{∂nu}+{v}+−{u}+{∂nv}+

]
dS (G2)

FUNDAMENTAL SOLUTION:

A(∂)Γ(x) = δ(x) ⇒ Γ(x) = −
1

4π |x|
, v(y) = Γ(x− y)

GENERAL INTEGRAL REPRESENTATION (∀ u ∈ C2(Ω)):

u(x) =

∫
Ω+

Γ(x− y)∆u(y)dy −
∫
S

Γ(x− y) {∂nu(y)}+ dS+

+

∫
S

[
∂n(y)Γ(x− y)

]
{u(y)}+dSy, x ∈ Ω; (G3)

Green’s formulas can be extended to the space

W 1,0
p (Ω+,∆) ≡ H1,0

p (Ω+,∆) := {u ∈ H1
p(Ω

+) : ∆u ∈ Lp(Ω
+) }.
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VOLUME AND LAYER POTENTIALS:

NΩ(Ψ)(x) =

∫
Ω

Γ(x− y)Ψ(y)dy (8)

V (g)(x) =

∫
S

Γ(x− y) g(y)dSy (9)

W (h)(x) =

∫
S

[
∂n(y)Γ(x− y)

]
h(y)dSy (10)
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VOLUME AND LAYER POTENTIALS:

NΩ(Ψ)(x) =

∫
Ω

Γ(x− y)Ψ(y)dy (11)

V (g)(x) =

∫
S

Γ(x− y) g(y)dSy (12)

W (h)(x) =

∫
S

[
∂n(y)Γ(x− y)

]
h(y)dSy (13)

NΩ(Φ) is a particular solution of Poisson’s equation:
If Φ ∈ Lp(Ω) with p > 1 then NΩ(Φ) ∈ W 2

p (Ω) and

A(∂)NΩ(Φ) = Φ almost everywhere in Ω. (14)
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VOLUME AND LAYER POTENTIALS:

NΩ(Ψ)(x) =

∫
Ω

Γ(x− y)Ψ(y))dy (15)

V (g)(x) =

∫
S

Γ(x− y) g(y)dSy (16)

W (h)(x) =

∫
S

[
∂n(y)Γ(x− y)

]
h(y)dSy (17)

NΩ(Φ) is a particular solution of Poisson’s equation:
If Φ ∈ Lp(Ω) with p > 1 then NΩ(Φ) ∈ W 2

p (Ω) and

A(∂)NΩ(Φ) = Φ almost everywhere in Ω. (18)

The layer potentials V (g) and W (h) belong to C∞(Ω±) and are
solutions of the homogeneous equation A(∂)u = 0:

A(∂)V (g)(x) = A(∂)W (h)(x) = 0, x ∈ Ω±. (19)

0-18



In the case of weak formulation of the above BVPs we look
for weak solutions in the spaces H1,0

p (Ω+,∆), p > 1.

The differential equation A(∂)u = Φ is understood in the distribu-
tional sense in Ω+.

The Dirichlet type condition is understood in the usual trace sense in

the space B
1− 1

p
p,p (S);

The generalized trace of normal derivative is understood in the func-

tional sense {∂nu}+ ∈ B
− 1

p
p,p (S) = [B

1
p

p′,p′(S)]∗ defined with the
help of Green’s first identity:⟨

{∂nu}+ , {v}+
⟩
S
:=

∫
Ω+

[
(∆u) v + ∇u · ∇v

]
dx , (20)

u ∈ H1,0
p (Ω+,∆), v ∈ H1

p ′(Ω+), 1
p
+ 1

p ′ = 1.

The symbol ⟨·, ·⟩S denotes bilinear duality brackets between the mu-

tually adjoint spaces B
− 1

p
p,p (S) and B

1
p

p ′,p ′(S);
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UNIQUENESS THEOREM

Let the manifolds S, SD, and SN be Lipschitz.

The BVPs (D)+ and (M)+ possess at most one weak solution in
the space W 1

2 (Ω
+), while the general solution of the homogeneous

Neumann problem (N)+ is a constant.
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UNIQUENESS THEOREM

The homogeeous BVPs (D)+ and (M)+ possess only the trivial weak
solution in the space W 1

2 (Ω
+), while the general solution of the

homogeneous Neumann problem (N)+ is a constant.

Proof follows from Green’s first formula:∫
Ω+

∆u udx = −
∫
Ω+

|∇u|2 dx+ ⟨{∂nu}+ , {u}+⟩S (G1)
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PROPERTIES OF VOLUME POTENTIALS

NΩ+ is a pseudodifferential (smoothing)
operator of order −2.

The following operators are continuous

NΩ+ : C0,α(Ω+) → C2,α(Ω+), 0 < α < 1, (21)

: H̃s
p(Ω

+) → Hs+2
p (Ω+), s ∈ R , (22)

: Hs
p(Ω

+) → Hs+2
p (Ω+), s > −1 +

1

p
. (23)
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PROPERTIES OF LAYER POTENTIALS

The boundary operators generated by the single and double layer
potentials

(H g)(x) :=

∫
S

Γ(x− y) g(y) dSy , x ∈ S, (24)

(K g)(x) :=

∫
S

[
∂n(x)Γ(x− y)

]
g(y) dSy, x ∈ S, (25)

(K̃h)(x) :=

∫
S

[
∂n(y) Γ(x− y)

]
h(y)dSy, x ∈ S, (26)

(Lh)(x) :=
{
∂n(x)W (h)(x)

}+
, x ∈ S. (27)

The boundary operators H and L are pseudodifferential operators
of order −1 and 1, respectively, while the operators K and K̃ are
mutually adjoint weakly singular integral operators.

H – is a (smoothing) weakly singular integral operator;
L – is a singular integro-differential operator;
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JUMP RELATIONS

{
V (g)

}+
=

{
V (g)

}−
= H g on S (28)

{
∂nV (g)

}±
= ∓

1

2
g + Kg ≡ [∓ 2−1I + K ] g on S (29)

{
W (h)

}±
= ±

1

2
h+ K̃h ≡ [± 2−1I + K̃ ]h on S (30)

{
∂nW (h)

}+
=

{
∂nW (h)

}−
= Lh on S (31)

g ∈ B
− 1

p
p,p (S), h ∈ B

1− 1
p

p,p (S), p > 1. (32)
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MAPPING PROPERTIES OF LAYER POTENTIALS

Let S be C∞-smooth and k ∈ N, 0 < α < 1, 1 < p < ∞,
1 ≤ t ≤ ∞, s ∈ R. Then the operators are continuous:

V : Ck,α(S) → Ck+1,α(Ω+)

: Bs
p,p(S) → H

s+1+ 1
p

p (Ω+)

W : Ck,α(S) → Ck,α(Ω+)

: Bs
p,p(S) → H

s+ 1
p

p (Ω+)
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Let S be C∞-smooth and k ∈ N, 0 < α < 1, 1 < p < ∞,
1 ≤ t ≤ ∞, s ∈ R. Then

H : Ck−1,α(S) → Ck,α(S),

±2−1I + K, ±2−1I + K̃ : Ck,α(S) → Ck,α(S),

L : Ck,α(S) → Ck−1,α(S)
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Let S be C∞-smooth and k ∈ N, 0 < α < 1, 1 < p < ∞,
1 ≤ t ≤ ∞, s ∈ R. Then

H : Ck−1,α(S) → Ck,α(S),

±2−1I + K, ±2−1I + K̃ : Ck,α(S) → Ck,α(S),

L : Ck,α(S) → Ck−1,α(S)

H : Hs
p(S) → Hs+1

p (S)
[
Bs

p,t(S) → Bs+1
p,t (S)

]
,

±2−1I + K : Hs
p(S) → Hs

p(S)
[
Bs

p,t(S) → Bs
p,t(S)

]
,

±2−1I + K̃ : Hs
p(S) → Hs

p(S)
[
Bs

p,t(S) → Bs
p,t(S)

]
,

L : Hs+1
p (S) → Hs

p(S)
[
Bs+1

p,t (S) → Bs
p,t(S)

]
These operators are Fredholm operators with zero index.
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Let S be C∞-smooth and k ∈ N, 0 < α < 1, 1 < p < ∞,
1 ≤ t ≤ ∞, s ∈ R. Then

H : Ck−1,α(S) → Ck,α(S),

±2−1I + K, ±2−1I + K̃ : Ck,α(S) → Ck,α(S),

L : Ck,α(S) → Ck−1,α(S)

H : Hs
p(S) → Hs+1

p (S)
[
Bs

p,t(S) → Bs+1
p,t (S)

]
,

±2−1I + K : Hs
p(S) → Hs

p(S)
[
Bs

p,t(S) → Bs
p,t(S)

]
,

±2−1I + K̃ : Hs
p(S) → Hs

p(S)
[
Bs

p,t(S) → Bs
p,t(S)

]
,

L : Hs+1
p (S) → Hs

p(S)
[
Bs+1

p,t (S) → Bs
p,t(S)

]
These operators are Fredholm operators with zero index.

The principal homogeneous symbols of the operators −H and L are
positive: S0(H; ξ) = 1/(2|ξ|), S0(L; ξ) = |ξ|/2, ξ ∈ R2 \ {0}.
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Reduction of BVPs to BIEs: INDIRECT METHOD

Indirect BIE method (Potential method) for the Dirichlet problem:

∆u = 0 in Ω+, u ∈ W 1
p (Ω

+), (33)

{u}+ = f on S = ∂Ω+, f ∈ B
1− 1

p
p,p (S), p > 1. (34)

Look for a solution as a double layer potential,

u(x) = W (g)(x), x ∈ Ω+, (35)

g ∈ B
1− 1

p
p,p (S) . (36)

The Dirichlet boundary condition and jump relations for the double
layer potential lead to the integral equation for g,

D g ≡ ( 2−1 I + K̃ ) g = f on S. (37)
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For a smooth boundary S, the operator K̃ with weakly singular kernel
generates a compact operator and therefore the operator

D ≡ 2−1 I + K̃ : L2(S) → L2(S) (38)

is a Fredholm-Riesz operator with zero index. Therefore the injectivity
property implies invertibility of the operator.
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For a smooth boundary S, the operator K̃ with weakly singular kernel
generates a compact operator and therefore the operator

D ≡ 2−1 I + K̃ : L2(S) → L2(S) (38)

is a Fredholm-Riesz operator with zero index. Therefore the injectivity
property implies invertibility of the operator.

Injectivity easily follows from the uniqueness results:

(2−1 I + K̃)g = 0, g ∈ L2(S) (39)

⇒ (bootstrap arguments) ⇒ g ∈ C1,α(S) (40)

⇒ W (g) ∈ C1,α(Ω±) & {W (g)}+
S = 0 (41)

⇒ W (g)(x) = 0, x ∈ Ω+ (42)

⇒ {∂nW (g)}+
S = {∂nW (g)}−

S = 0 (43)

⇒ W (g)(x) = 0, x ∈ Ω− (44)

⇒ {W (g)}+
S − {W (g)}−

S = g = 0 (45)

Consequently, the operator (38) is invertible.
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Due to the general theory of pseudodifferential operators, it then
follows that the operators

D ≡ 2−1 I + K̃ : Ht
p(S) → Ht

p(S) (46)

: Bt
p,p(S) → Bt

p,p(S) (47)

are invertible as well for arbitrary t ∈ R, p > 1 and 1 6 q 6 ∞.

This leads to the following existence result.
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THEOREM 1. The Dirichlet problem (D)+ with arbitrary boundary

function f ∈ B
1− 1

p
p,p (S) is uniquely solvable in the space W 1

p (Ω
+),

p > 1, and the solution is representable as a double layer potential

u(x) = W (g)(x), x ∈ Ω+, (48)

where the density vector function g ∈ B
1− 1

p
p,p (S) is defined by the

uniquely solvable integral equation

D g ≡ ( 2−1 I + K̃ ) g = f on S. (49)
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THEOREM 1. The Dirichlet problem (D)+ with arbitrary boundary

function f ∈ B
1− 1

p
p,p (S) is uniquely solvable in the space W 1

p (Ω
+),

p > 1, and the solution is representable as a double layer potential

u(x) = W (g)(x), x ∈ Ω+, (48)

where the density vector function g ∈ B
1− 1

p
p,p (S) is defined by the

uniquely solvable integral equation

D g ≡ ( 2−1 I + K̃ ) g = f on S. (49)

In addition, if f ∈ B
t− 1

p
p,p (S) for t > 1 and p > 1, then g ∈ B

t− 1
p

p,p (S)
and u ∈ Bt

p,p(Ω
+).

In particular, f ∈ C∞(S) ⇒ u ∈ C∞(Ω+).
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Single layer approach: If we look for a solution to the same
Dirichlet problem as a single layer potential,

u(x) = V (g)(x), x ∈ Ω+. (50)

we arrive at the integral equation for g,

H g = f on S. (51)

The operator

−H : H
− 1

2
2 (S) → H

1
2
2 (S) (52)

is strongly coercive, i.e. ⟨−Hφ , φ⟩S > C ∥φ∥2

H
− 1

2
2 (S)

, implying that

the operators

H : Ht
p(S) → Ht+1

p (S) (53)

: Bt
p,q(S) → Bt+1

p,q (S) (54)

are invertible for t ∈ R, p > 1, 1 6 q 6 ∞.
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Any solution u of the Laplace equation of the class W 1
p (Ω

+) with
p > 1 and t > 1 can be uniquely represented as a single layer
potential:

u(x) = V
(
H−1f

)
(x) in Ω+ with f := {u}+

S . (55)
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Any solution u of the Laplace equation of the class W 1
p (Ω

+) with
p > 1 and t > 1 can be uniquely represented as a single layer
potential:

u(x) = V
(
H−1f

)
(x) in Ω+ with f := {u}+

S . (55)

Steklov-Poincaré operator:

(55) ⇒ {∂nu(x)}+ = (−2−1 I + K)H−1{u}+ (56)

A ≡ (−2−1 I + K)H−1 (57)

A : Bt
p,q(S) → Bt−1

p,q (S) (58)

∀ψ ∈ H
1
2 (S) : ⟨Aψ , ψ⟩S >C1 ∥ψ∥

H
1
2
2 (S)

− C2 ∥ψ∥H0
2(S) (59)

A is a pseudodifferential operator of order +1 with positive principal
homogeneous symbol and with index equal to zero.

This operator plays a crucial role in the study of mixed BVPs.
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Indirect BIE method (Potential method) for the Neumann problem:

∆u = 0 in Ω+, {∂nu}+ = F on S = ∂Ω+. (60)

Look for a solution as a single layer potential,

u(x) = V (h)(x), x ∈ Ω+. (61)

The Neumann boundary condition and jump relations for the single
layer potential lead to the Fredholm-Riesz integral equation for h,

N h ≡ (−2−1 I + K)h = F on S. (62)

dim Ker (−2−1 I + K) = dim Ker (−2−1 I + K̃) = 1

Ker (−2−1 I + K̃) = {1} and Ker (−2−1 I + K) = {H−11}

Necessary and sufficient condition for solvability of integral equation
(62) and of the interior Neumann problem read as:∫

S

F (y) dS = 0 on S. (63)

0-38



THEOREM 2. The Neumann problem (N)+ with a boundary function

F ∈ B
− 1

p
p,p (S) satisfying the necessary orthogonality condition (63),

is solvable in the space W 1
p (Ω

+), p > 1, modulo a constant and
solutions are representable in the form of single layer potential

u(x) = V (h)(x), x ∈ Ω+, (64)

where the density vector function h ∈ B
− 1

p
p,p (S) is defined modulo

the summand h0 = const (H−11 ) by the integral equation

N h ≡ ( 2−1 I + K )h = F on S. (65)

If F ∈ B
t−1− 1

p
p,p (S) for t > 1 and p > 1, then u ∈ W t

p(Ω
+).

In particular, F ∈ C∞(S) ⇒ u ∈ C∞(Ω+).
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Indirect BIE method (Potential method) for the Mixed problem:

∆u = 0 in Ω+, u ∈ W 1
p (Ω

+), (66)

{u}+ = f∗ on SD, f∗ ∈ B
1− 1

p
p,p (S), (67)

{∂nu}+ = F ∗ on SN , F ∗ ∈ B
− 1

p
p,p (S). (68)

Let fe be some fixed extension of the function f∗ from SD onto the
whole of S preserving the space:

fe ∈ B
1− 1

p
p,p (S), rSD

fe = f∗. (69)

Look for a solution as a single layer potential:

u(x) = V
(
H−1(fe + φ)

)
(x) with φ ∈ B̃

1− 1
p

p,p (SN) , (70)

where φ is a sought for function.
Conditions (66) and (67) are satisfied automatically, while the Neu-
mann condition (68) leads to the pseudodifferential equation on SN :
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rSN
Aφ = Q∗ on SN , (71)

φ ∈ B̃
1− 1

p
p,p (SN), Q∗ = F ∗ − rSN

Afe ∈ B
− 1

p
p,p (SN) (72)

where A := (−2−1 I + K)H−1 is the Steklov-Poincaré operator.
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rSN
Aφ = Q∗ on SN , (71)

φ ∈ B̃
1− 1

p
p,p (SN), Q∗ = F ∗ − rSN

Afe ∈ B
− 1

p
p,p (SN) (72)

where A := (−2−1 I + K)H−1 is the Steklov-Poincaré operator.

The following operator is continuous for s ∈ R, p > 1, 1 6 q 6 ∞:

rSN
A : B̃s

p,q(SN) → Bs−1
p,q (SN). (73)
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rSN
Aφ = Q∗ on SN , (71)

φ ∈ B̃
1− 1

p
p,p (SN), Q∗ = F ∗ − rSN

Afe ∈ B
− 1

p
p,p (SN) (72)

where A := (−2−1 I + K)H−1 is the Steklov-Poincaré operator.

The following operator is continuous for s ∈ R, p > 1, 1 6 q 6 ∞:

rSN
A : B̃s

p,q(SN) → Bs−1
p,q (SN). (73)

The operator (73) is invertible if [Vishik-Eskin; Shargorodski]

1

p
− 1 < s−

1

2
<

1

p
. (74)
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r
SN

Aφ = Q∗ on SN , (71)

φ ∈ B̃
1− 1

p
p,p (SN), Q∗ = F ∗ − rSN

Afe ∈ B
− 1

p
p,p (SN) (72)

where A := (−2−1 I + K)H−1 is the Steklov-Poincaré operator.

The following operator is continuous for s ∈ R, p > 1, 1 6 q 6 ∞:

rSN
A : B̃s

p,q(SN) → Bs−1
p,q (SN). (73)

The operator (73) is invertible if [Vishik-Eskin; Shargorodski]

1

p
− 1 < s−

1

2
<

1

p
. (74)

(74) ⇒ rSN
A : B̃

1− 1
p

p,p (SN) → B
− 1

p
p,p (SN) is invertible and (71)

is uniquely solvable if

4

3
< p < 4 . (75)
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Pseudodifferential operators on manifolds with boundary:
[Vishik-Eskin; Shargorodski]

THEOREM Let S1 ∈ C∞ be a compact, 2-dimensional, non–self–
intersecting, two–sided surface with boundary ∂S1 ∈ C∞, and s ∈ R,
1 < p < ∞, 1 ≤ q ≤ ∞. Further, let B be a pseudo–differential
operator of order α ∈ R on S1 having a uniformly positive principal
homogeneous symbol, i.e., S(B; y, ξ) ≥ c0 > 0 for y ∈ S1, ξ ∈ R2

with |ξ| = 1, where c0 is a constant.

Then the operators

B : H̃s
p(S1) → Hs−α

p (S1)
[
B̃s

p,q(S1) → Bs−α
p,q (S1)

]
(76)

are Fredholm operators of index zero if

1/p− 1 < s− α/2 < 1/p. (77)

Moreover, the null-spaces of operators (76) are the same (for all
values of the parameters q ∈ [1,+∞] and p, s) provided p and s
satisfy inequality (77).
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EXISTENCE THEOREM. Let 4/3 < p < 4, and f∗ ∈ B
1− 1

p
p,p (SD),

F ∗ ∈ B
− 1

p
p,p (SN). The mixed problem (M)+ is uniquely solvable in the

spaceW 1
p (Ω

+) and the solution is representable as a single potential

u(x) = V
(
H−1(fe + φ)

)
(x), (89)

where fe ∈
[
B

1− 1
p

p,p (S)
]3

is some fixed extension of the function f∗

from SD onto the whole of S, while φ ∈ B̃
1− 1

p
p,p (SN) is defined by

the uniquely solvable elliptic pseudodifferential equation

rSN
Aφ = Q∗ on SN , (90)

where A is the Steklov-Poncaré operator and Q∗ = F ∗ − rSN
Afe.
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EXISTENCE THEOREM. Let 4/3 < p < 4, and f∗ ∈ B
1− 1

p
p,p (SD),

F ∗ ∈ B
− 1

p
p,p (SN). The mixed problem (M)+ is uniquely solvable in the

spaceW 1
p (Ω

+) and the solution is representable as a single potential

u(x) = V
(
H−1(fe + φ)

)
(x), (89)

where fe ∈
[
B

1− 1
p

p,p (S)
]3

is some fixed extension of the function f∗

from SD onto the whole of S, while φ ∈ B̃
1− 1

p
p,p (SN) is defined by

the uniquely solvable elliptic pseudodifferential equation

rSN
Aφ = Q∗ on SN , (90)

where A is the Steklov-Poncaré operator and Q∗ = F ∗ − rSN
Afe.

If, in addition,

f∗ ∈ Cα(SD), F ∗ ∈ Cα(SN), α > 0, (78)

then U ∈
∩

β<κ

[Cβ(Ω+ ) ]6, with κ = min{α, 1
2
} > 0.
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DIRECT METHOD FOR THE DIRICHLET PROBLEM

∆u = Φ in Ω+, Φ ∈ L2(Ω
+) ⇒ u ∈ H1,0

2 (Ω+,∆), (D1)

{u}+
S = f on S, f ∈ H

1
2
2 (S). (D2)

Green’s third formula in Ω+ and its trace on S:

u = NΩ+(∆u) +W ({u}+) − V ({∂nu}+) in Ω+, (G3)

[−2−1I + K̃]{u}+ − H{∂nu}+ = −{NΩ+(∆u)}+
S on S. (GB)

Substitute here the data of the Dirichlet problem

u+ V (ψ) = NΩ+(Φ) +W (f) in Ω+, (E1)

Hψ = {NΩ+(Φ)}+
S + [−2−1 I + K̃ ]f on S, (E2)

where ψ = {∂nu}+.

Consider (E1)-(E2) as a system with respect to segregated pair of

unknowns (u, ψ) ∈ H1
2(Ω

+) ×H
− 1

2
2 (S).
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{
u+ V (ψ) = NΩ+(Φ) +W (f) in Ω+, (E1)

Hψ = {NΩ+(Φ)}+
S + [−2−1 I + K̃ ]f on S. (E2)
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{
u+ V (ψ) = NΩ+(Φ) +W (f) in Ω+, (E1)

Hψ = {NΩ+(Φ)}+
S + [−2−1 I + K̃ ]f on S. (E2)

The Dirichlet problem is equivalent to system (E1)-(E2):

(i) If u ∈ H1,0
2 (Ω+,∆) solves the Dirichlet problem, then the pair

(u, ψ) with ψ = {∂nu}+ ∈ H
− 1

2
2 (S) solves system (E1)-(E2);

(ii) If a pair (u, ψ) ∈ H1,0
2 (Ω+,∆) ×H

− 1
2

2 (S) solves system
(E1)-(E2), then ψ = {∂nu}+ and u solves the Dirichlet problem.
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{
u+ V (ψ) = NΩ+(Φ) +W (f) in Ω+, (E1)

Hψ = {NΩ+(Φ)}+
S + [−2−1 I + K̃ ]f on S. (E2)

The Dirichlet problem is equivalent to system (E1)-(E2):

(i) If u ∈ H1,0
2 (Ω+,∆) solves the Dirichlet problem, then the pair

(u, ψ) with ψ = {∂nu}+ ∈ H
− 1

2
2 (S) solves system (E1)-(E2);

(ii) If a pair (u, ψ) ∈ H1,0
2 (Ω+,∆) ×H

− 1
2

2 (S) solves system
(E1)-(E2), then ψ = {∂nu}+ and u solves the Dirichlet problem.

Proof follows from the properties of potentials:

(i) u = NΩ+(∆u) +W ({u}+) − V ({∂nu}+) in Ω+; (G3)
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{
u+ V (ψ) = NΩ+(Φ) +W (f) in Ω+, (E1)

Hψ = {NΩ+(Φ)}+
S + [−2−1 I + K̃ ]f on S. (E2)

The Dirichlet problem is equivalent to system (E1)-(E2):

(i) If u ∈ H1,0
2 (Ω+,∆) solves the Dirichlet problem, then the pair

(u, ψ) with ψ = {∂nu}+ ∈ H
− 1

2
2 (S) solves system (E1)-(E2);

(ii) If a pair (u, ψ) ∈ H1,0
2 (Ω+,∆) ×H

− 1
2

2 (S) solves system
(E1)-(E2), then ψ = {∂nu}+ and u solves the Dirichlet problem.

Proof follows from the properties of potentials:

(i) u = NΩ+(∆u) +W ({u}+) − V ({∂nu}+) in Ω+; (G3)

(ii) (E1) ⇒ ∆u = Φ with Φ ∈ L2(Ω
+);

(E1)+−(E2) ⇒ {u}+ = f on S;

(G3)−(E1) ⇒ V
(
{∂nu}+−ψ

)
=0 in Ω+ ⇒ ψ={∂nu}+ on S.
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Introduce the operator generated by the left hand side expressions of
system (E1)-(E2):

D :=

[
I V
0 H

]
2×2

(79)

We have just shown that the operator

D : H1,0
2 (Ω+,∆) ×H

− 1
2

2 (S) →

→ H1,0
2 (Ω+,∆) ×H

1
2
2 (S) (80)

is invertible.

It is easy to see that the following operators are invertible as well

D : H1
2(Ω

+) ×H
− 1

2
2 (S) → H1

2(Ω
+) ×H

1
2
2 (S) (81)

D : Hr
2(Ω

+) ×H
r− 1

2
2 (S) → Hr

2(Ω
+) ×H

r+ 1
2

2 (S) (82)
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THANK YOU!
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