University of Padua, Italy (June, 2017)

Mini-Course

Boundary-Domain Integral and Integro-Differential Equations for Elliptic BVPs

 with variable coefficients DAVID NATROSHVILIGeorgian Technical University Tbilisi, GEORGIA

Lecture Topics

- Classical potential method for constant coefficient boundary value problems: Indirect and direct boundary integral equations method.
- Scalar BVPs with one variable coefficient (isotropic case): Parametrix based BDIE approach.
- Scalar BVPs with matrix variable coefficient (anisotropic case): Localized harmonic parametrix based BDIE approach.
- Applications of BDIE method to transmission problems of acoustic scattering by inhomogeneous anisotropic obstacles.

LECTURE 1

CLASSICAL POTENTIAL METHOD FOR CONSTANT COEFFICIENT BOUNDARY VALUE PROBLEMS

DAVID NATROSHVILI
Georgian Technical University
Tbilisi, GEORGIA

1. Classical formulation of the BVPs
2. Green's formulas and Integral Representation of solutions
3. Weak formulation of the problems, uniqueness theorems
4. Properties of potentials
5. Reduction to BIEs: Direct and Indirect methods
6. Existence and regularity of solutions (based on the Fredholm-Riesz Theory and the Theory of pseudodifferential equations)

Classical Potential Method - Regular Case

N.M. Günter, Potential Theory and its application to the basic problems of mathematical physics. Fizmatgiz, Moscow 1953 (Russian). Translation in English: Frederick Ungar Publishing, New York, 1967.
K. Miranda, Partial differential equations of elliptic type. Springer, Berlin-Heidelberg, 2-nd edition, 1970.
R. Dautray and J.L. Lions, Mathematical analysis and numerical methods for science and technology. Vol. 4. Integral equations and numerical methods. Springer-Verlag, Berlin, 1990.
G. Hsiao and W. Wendland, Boundary integral equations. Springer, Berlin - Heidelberg, 2008.

Theory of pseudodifferential equations on manifolds with boundary

G. Eskin, Boundary value problems for elliptic pseudodifferential equations. Translation of Mathematical Monographs, vol. 52. American Mathematical Society: Providence, RI, 1981.
E. Shargorodsky, An L_{p} analogue of the Vishik-Eskin theory. Memoirs on Differential Equations and Mathematical Physics, 2 (1994), 41-146.

CLASSICAL SETTING OF BVPs AND UNIQUENESS THEOREMS

The Laplace equation in $\Omega \subset \mathbb{R}^{\mathbf{3}}$:

$$
\begin{equation*}
A(\partial) u(x) \equiv \Delta u(x)=\left[\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}\right] u(x)=0 \tag{1}
\end{equation*}
$$

The Poisson equation in $\Omega \subset \mathbb{R}^{\mathbf{3}}$:

$$
\begin{equation*}
A(\partial) u(x) \equiv \Delta u(x)=\left[\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}\right] u(x)=\Phi(x) \tag{2}
\end{equation*}
$$

u - is an unknown function in $\Omega \in\left\{\Omega^{+}, \Omega^{-}\right\}$
$\Phi-$ is a given function in Ω
Ω^{+}- a bounded domain in \mathbb{R}^{3} with a simply connected boundary $\partial \Omega^{+}=S ;$
$\overline{\Omega^{+}}=\Omega^{+} \cup S ; \quad \Omega^{-}:=\mathbb{R}^{3} \backslash \overline{\Omega^{+}} ;$
$S \in C^{\infty} \quad$ or $\quad S \in \operatorname{Lip} \quad$ or $\quad S \in C^{k, \beta}, \quad 0<\beta \leqslant 1, \quad k \in \mathbb{N}$;
Dissection of the boundary surface $S=\bar{S}_{D} \cup \bar{S}_{N}, S_{D} \cap S_{N}=\varnothing$, $\ell=\bar{S}_{D} \cap \bar{S}_{N} ;$

The symbols $\{\cdot\}_{S}^{ \pm}$denote one-sided limits (traces) on S from $\Omega^{ \pm}$;
$n=\left(n_{1}, n_{2}, n_{3}\right)$ - outward unit normal vector to S;
$\partial_{n}:=\frac{\partial}{\partial n}=n_{1} \frac{\partial}{\partial x_{1}}+n_{2} \frac{\partial}{\partial x_{2}}+n_{3} \frac{\partial}{\partial x_{3}}-$ normal derivative.
$C^{k, \alpha}, L_{p}, W_{p}^{r}, H_{p}^{s}, B_{p, q}^{s}$ - the well-known Höder, Lebesgue, SobolevSlobodetskii, Bessel potential, and Besov function spaces $(r \geq 0, s \in \mathbb{R}, p \in(1, \infty), 1 \leq q \leq \infty)$.
$C^{k, \alpha}, L_{p}, W_{p}^{r}, H_{p}^{s}, B_{p, q}^{s}$ - the well-known Höder, Lebesgue, SobolevSlobodetskii, Bessel potential, and Besov function spaces $(r \geq 0, s \in \mathbb{R}, p \in(1, \infty), 1 \leq q \leq \infty)$.
$H_{2}^{r}=W_{2}^{r}=B_{2,2}^{r}$ for $r \geq 0, H_{2}^{s}=B_{2,2}^{s}$ for any $s \in \mathbb{R}$, $B_{p, p}^{t}=W_{p}^{t}$ and $H_{p}^{k}=W_{p}^{k}$ for any positive and non-integer t, for any non-negative integer k and for any $p>1$.
$C^{k, \alpha}, L_{p}, W_{p}^{r}, H_{p}^{s}, B_{p, q}^{s}$ - the well-known Höder, Lebesgue, SobolevSlobodetskii, Bessel potential, and Besov function spaces $(r \geq 0, s \in \mathbb{R}, p \in(1, \infty), 1 \leq q \leq \infty)$.
$H_{2}^{r}=W_{2}^{r}=B_{2,2}^{r}$ for $r \geq 0, H_{2}^{s}=B_{2,2}^{s}$ for any $s \in \mathbb{R}$,
$B_{p, p}^{t}=W_{p}^{t}$ and $H_{p}^{k}=W_{p}^{k}$ for any positive and non-integer t, for any non-negative integer k and for any $p>1$.

Let S_{1} be an open proper submanifold of S with smooth boundary:

$$
\begin{aligned}
& \widetilde{\mathbb{X}}\left(S_{1}\right):=\left\{f: f \in \mathbb{X}(S), \operatorname{supp} f \subset \overline{S_{1}}\right\} \\
& \mathbb{X}\left(S_{1}\right):=\left\{r_{S_{1}} f: f \in \mathbb{X}(S)\right\}
\end{aligned}
$$

($r_{\mathcal{M}}$ stands for the restriction operator onto \mathcal{M})
$C^{k, \alpha}, L_{p}, W_{p}^{r}, H_{p}^{s}, B_{p, q}^{s}$ - the well-known Höder, Lebesgue, SobolevSlobodetskii, Bessel potential, and Besov function spaces $(r \geq 0, s \in \mathbb{R}, p \in(1, \infty), 1 \leq q \leq \infty)$.
$H_{2}^{r}=W_{2}^{r}=B_{2,2}^{r}$ for $r \geq 0, H_{2}^{s}=B_{2,2}^{s}$ for any $s \in \mathbb{R}$,
$B_{p, p}^{t}=W_{p}^{t}$ and $H_{p}^{k}=W_{p}^{k}$ for any positive and non-integer t, for any non-negative integer k and for any $p>1$.

Let S_{1} be an open proper submanifold of S with smooth boundary:

$$
\begin{aligned}
& \widetilde{\mathbb{X}}\left(\boldsymbol{S}_{1}\right):=\left\{f: f \in \mathbb{X}(S), \operatorname{supp} f \subset \overline{\boldsymbol{S}_{1}}\right\} \\
& \mathbb{X}\left(\boldsymbol{S}_{1}\right):=\left\{r_{S_{1}} f: f \in \mathbb{X}(S)\right\}
\end{aligned}
$$

($r_{\mathcal{M}}$ stands for the restriction operator onto \mathcal{M})
A regular functions in $\Omega \in\left\{\Omega^{+}, \Omega^{-}\right\}: u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$.

THE BASIC BVPs: Find a regular solution \boldsymbol{u} to the equation

$$
\begin{equation*}
A(\partial) u=\Phi, \quad x \in \Omega^{+} \tag{3}
\end{equation*}
$$

satisfying one of the following boundary conditions:
The Dirichlet problem (D) ${ }^{+}$:

$$
\begin{equation*}
\{u(x)\}^{+}=f(x), \quad x \in S \tag{4}
\end{equation*}
$$

The Neumann problem (N) ${ }^{+}$:

$$
\begin{equation*}
\left\{\partial_{n} u(x)\right\}^{+}=\boldsymbol{F}(x), \quad x \in S \tag{5}
\end{equation*}
$$

The mixed type problem (M)+:

$$
\begin{align*}
\{u(x)\}^{+} & =f^{*}(x), \quad x \in S_{D} \tag{6}\\
\left\{\partial_{n} u(x)\right\}^{+} & =F^{*}(x), \quad x \in S_{N} \tag{7}
\end{align*}
$$

GREEN's FORMULAS:

$$
\begin{array}{r}
\int_{\Omega^{+}} \Delta u v d x=-\int_{\Omega^{+}} \nabla u \cdot \nabla v d x+\int_{S}\left\{\partial_{n} u\right\}^{+}\{v\}^{+} d S \\
\int_{\Omega^{+}}[\Delta u v-u \Delta v] d x=\int_{S}\left[\left\{\partial_{n} u\right\}^{+}\{v\}^{+}-\{u\}^{+}\left\{\partial_{n} v\right\}^{+}\right] d S \tag{G2}
\end{array}
$$

GREEN's FORMULAS:

$$
\begin{array}{r}
\int_{\Omega^{+}} \Delta u v d x=-\int_{\Omega^{+}} \nabla u \cdot \nabla v d x+\int_{S}\left\{\partial_{n} u\right\}^{+}\{v\}^{+} d S \\
\int_{\Omega^{+}}[\Delta u v-u \Delta v] d x=\int_{S}\left[\left\{\partial_{n} u\right\}^{+}\{v\}^{+}-\{u\}^{+}\left\{\partial_{n} v\right\}^{+}\right] d S \tag{G2}
\end{array}
$$

FUNDAMENTAL SOLUTION:

$$
A(\partial) \Gamma(x)=\delta(x) \quad \Rightarrow \quad \Gamma(x)=-\frac{1}{4 \pi|x|}, \quad v(y)=\Gamma(x-y)
$$

GENERAL INTEGRAL REPRESENTATION $\left(\forall u \in C^{2}(\bar{\Omega})\right)$:

$$
\begin{align*}
u(x)= & \int_{\Omega^{+}} \Gamma(x-y) \Delta u(y) d y-\int_{S} \Gamma(x-y)\left\{\partial_{n} u(y)\right\}^{+} d S+ \\
& +\int_{S}\left[\partial_{n(y)} \Gamma(x-y)\right]\{u(y)\}^{+} d S_{y}, \quad x \in \Omega \tag{G3}
\end{align*}
$$

GREEN's FORMULAS:

$$
\begin{gather*}
\int_{\Omega^{+}} \Delta u v d x=-\int_{\Omega^{+}} \nabla u \cdot \nabla v d x+\int_{S}\left\{\partial_{n} u\right\}^{+}\{v\}^{+} d S \tag{G1}\\
\int_{\Omega^{+}}[\Delta u v-u \Delta v] d x=\int_{S}\left[\left\{\partial_{n} u\right\}^{+}\{v\}^{+}-\{u\}^{+}\left\{\partial_{n} v\right\}^{+}\right] d S \tag{G2}
\end{gather*}
$$

FUNDAMENTAL SOLUTION:

$$
A(\partial) \Gamma(x)=\delta(x) \quad \Rightarrow \quad \Gamma(x)=-\frac{1}{4 \pi|x|}, \quad v(y)=\Gamma(x-y)
$$

GENERAL INTEGRAL REPRESENTATION $\left(\forall u \in C^{2}(\bar{\Omega})\right)$:

$$
\begin{align*}
u(x)= & \int_{\Omega^{+}} \Gamma(x-y) \Delta u(y) d y-\int_{S} \Gamma(x-y)\left\{\partial_{n} u(y)\right\}^{+} d S+ \\
& +\int_{S}\left[\partial_{n(y)} \Gamma(x-y)\right]\{u(y)\}^{+} d S_{y}, \quad x \in \Omega \tag{G3}
\end{align*}
$$

Green's formulas can be extended to the space
$W_{p}^{1,0}\left(\Omega^{+}, \Delta\right) \equiv H_{p}^{1,0}\left(\Omega^{+}, \Delta\right):=\left\{u \in H_{p}^{1}\left(\Omega^{+}\right): \Delta u \in L_{p}\left(\Omega^{+}\right)\right\}$.

VOLUME AND LAYER POTENTIALS:

$$
\begin{align*}
N_{\Omega}(\Psi)(x) & =\int_{\Omega} \Gamma(x-y) \Psi(y) d y \tag{8}\\
V(g)(x) & =\int_{S} \Gamma(x-y) g(y) d S_{y} \tag{9}\\
W(h)(x) & =\int_{S}\left[\partial_{n(y)} \Gamma(x-y)\right] h(y) d S_{y} \tag{10}
\end{align*}
$$

VOLUME AND LAYER POTENTIALS:

$$
\begin{align*}
N_{\Omega}(\Psi)(x) & =\int_{\Omega} \Gamma(x-y) \Psi(y) d y \tag{11}\\
V(g)(x) & =\int_{S} \Gamma(x-y) g(y) d S_{y} \tag{12}\\
W(h)(x) & =\int_{S}\left[\partial_{n(y)} \Gamma(x-y)\right] h(y) d S_{y} \tag{13}
\end{align*}
$$

$N_{\Omega}(\Phi)$ is a particular solution of Poisson's equation: If $\Phi \in L_{p}(\Omega)$ with $p>1$ then $N_{\Omega}(\Phi) \in W_{p}^{2}(\Omega)$ and

$$
\begin{equation*}
A(\partial) N_{\Omega}(\Phi)=\Phi \text { almost everywhere in } \Omega \tag{14}
\end{equation*}
$$

VOLUME AND LAYER POTENTIALS:

$$
\begin{align*}
N_{\Omega}(\Psi)(x) & \left.=\int_{\Omega} \Gamma(x-y) \Psi(y)\right) d y \tag{15}\\
V(g)(x) & =\int_{S} \Gamma(x-y) g(y) d S_{y} \tag{16}\\
W(h)(x) & =\int_{S}\left[\partial_{n(y)} \Gamma(x-y)\right] h(y) d S_{y} \tag{17}
\end{align*}
$$

$N_{\Omega}(\Phi)$ is a particular solution of Poisson's equation: If $\Phi \in L_{p}(\Omega)$ with $p>1$ then $N_{\Omega}(\Phi) \in W_{p}^{2}(\Omega)$ and

$$
\begin{equation*}
A(\partial) N_{\Omega}(\Phi)=\Phi \text { almost everywhere in } \Omega \tag{18}
\end{equation*}
$$

The layer potentials $V(g)$ and $W(h)$ belong to $C^{\infty}\left(\Omega^{ \pm}\right)$and are solutions of the homogeneous equation $A(\partial) u=0$:

$$
\begin{equation*}
A(\partial) V(g)(x)=A(\partial) W(h)(x)=0, \quad x \in \Omega^{ \pm} \tag{19}
\end{equation*}
$$

In the case of weak formulation of the above BVPs we look for weak solutions in the spaces $H_{p}^{1,0}\left(\Omega^{+}, \Delta\right), p>1$.
The differential equation $A(\partial) u=\Phi$ is understood in the distributional sense in Ω^{+}.

The Dirichlet type condition is understood in the usual trace sense in the space $B_{p, p}^{1-\frac{1}{p}}(S)$;

The generalized trace of normal derivative is understood in the functional sense $\left\{\partial_{n} u\right\}^{+} \in B_{p, p}^{-\frac{1}{p}}(S)=\left[B_{p^{\prime}, p^{\prime}}^{\frac{1}{p}}(S)\right]^{*}$ defined with the help of Green's first identity:

$$
\begin{align*}
&\left\langle\left\{\partial_{n} u\right\}^{+},\{v\}^{+}\right\rangle_{S}:= \int_{\Omega^{+}}[(\Delta u) v+\nabla u \cdot \nabla v] d x \tag{20}\\
& u \in H_{p}^{1,0}\left(\Omega^{+}, \Delta\right), \quad v \in H_{p}^{1}\left(\Omega^{+}\right), \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1
\end{align*}
$$

The symbol $\langle\cdot, \cdot\rangle_{S}$ denotes bilinear duality brackets between the mutually adjoint spaces $B_{p, p}^{-\frac{1}{p}}(S)$ and $B_{p^{\prime}, p^{\prime}}^{\frac{1}{p}}(S)$;

UNIQUENESS THEOREM

Let the manifolds S, S_{D}, and S_{N} be Lipschitz.
The BVPs (D) ${ }^{+}$and $(M)^{+}$possess at most one weak solution in the space $W_{2}^{1}\left(\Omega^{+}\right)$, while the general solution of the homogeneous Neumann problem (N$)^{+}$is a constant.

UNIQUENESS THEOREM

The homogeeous BVPs (D) ${ }^{+}$and (M) ${ }^{+}$possess only the trivial weak solution in the space $W_{2}^{1}\left(\Omega^{+}\right)$, while the general solution of the homogeneous Neumann problem (N$)^{+}$is a constant.

Proof follows from Green's first formula:

$$
\begin{equation*}
\int_{\Omega^{+}} \Delta u u d x=-\int_{\Omega^{+}}|\nabla u|^{2} d x+\left\langle\left\{\partial_{n} u\right\}^{+},\{u\}^{+}\right\rangle_{s} \tag{G1}
\end{equation*}
$$

PROPERTIES OF VOLUME POTENTIALS

$N_{\Omega^{+}}$is a pseudodifferential (smoothing) operator of order $\mathbf{- 2}$.

The following operators are continuous

$$
\begin{align*}
N_{\Omega^{+}} & : C^{0, \alpha}\left(\overline{\Omega^{+}}\right) \rightarrow C^{2, \alpha}\left(\overline{\Omega^{+}}\right), \quad 0<\alpha<1 \tag{21}\\
& : \widetilde{H}_{p}^{s}\left(\Omega^{+}\right) \rightarrow H_{p}^{s+2}\left(\Omega^{+}\right), \quad s \in \mathbb{R} \tag{22}\\
& : H_{p}^{s}\left(\Omega^{+}\right) \rightarrow H_{p}^{s+2}\left(\Omega^{+}\right), \quad s>-1+\frac{1}{p} \tag{23}
\end{align*}
$$

PROPERTIES OF LAYER POTENTIALS

The boundary operators generated by the single and double layer potentials

$$
\begin{align*}
&(\mathcal{H} g)(x):=\int_{S} \Gamma(x-y) g(y) d S_{y}, x \in S \tag{24}\\
&(\mathcal{K} g)(x):=\int_{S}\left[\partial_{n(x)} \Gamma(x-y)\right] g(y) d S_{y}, x \in S \tag{25}\\
&(\widetilde{\mathcal{K}} h)(x):=\int_{S}\left[\partial_{n(y)} \Gamma(x-y)\right] h(y) d S_{y}, x \in S \tag{26}\\
&(\mathcal{L} h)(x):=\left\{\partial_{n(x)} W(h)(x)\right\}^{+}, x \in S \tag{27}
\end{align*}
$$

The boundary operators \mathcal{H} and \mathcal{L} are pseudodifferential operators of order -1 and 1 , respectively, while the operators \mathcal{K} and $\widetilde{\mathcal{K}}$ are mutually adjoint weakly singular integral operators.
\mathcal{H} - is a (smoothing) weakly singular integral operator;
\mathcal{L} - is a singular integro-differential operator;

JUMP RELATIONS

$$
\begin{align*}
&\{V(g)\}^{+}=\{V(g)\}^{-}=\mathcal{H} g \text { on } S \tag{28}\\
&\left\{\partial_{n} V(g)\right\}^{ \pm}=\mp \frac{1}{2} g+\mathcal{K} g \equiv\left[\mp 2^{-1} I+\mathcal{K}\right] g \text { on } S \tag{29}\\
&\{W(h)\}^{ \pm}= \pm \frac{1}{2} h+\widetilde{\mathcal{K}} h \equiv\left[\pm 2^{-1} I+\widetilde{\mathcal{K}}\right] h \text { on } S \tag{30}\\
&\left\{\partial_{n} W(h)\right\}^{+}=\left\{\partial_{n} W(h)\right\}^{-}=\mathcal{L} h \text { on } S \tag{31}\\
& g \in B_{p, p}^{-\frac{1}{p}}(S), \quad h \in B_{p, p}^{1-\frac{1}{p}}(S), \quad p>1 . \tag{32}
\end{align*}
$$

MAPPING PROPERTIES OF LAYER POTENTIALS

Let S be C^{∞}-smooth and $k \in \mathbb{N}, 0<\alpha<1,1<p<\infty$, $1 \leq t \leq \infty, s \in \mathbb{R}$. Then the operators are continuous:

$$
\begin{aligned}
V & : \quad C^{k, \alpha}(S) \rightarrow C^{k+1, \alpha}\left(\overline{\Omega^{+}}\right) \\
& : \quad B_{p, p}^{s}(S) \rightarrow H_{p}^{s+1+\frac{1}{p}}\left(\Omega^{+}\right) \\
W & : \quad C^{k, \alpha}(S) \rightarrow C^{k, \alpha}\left(\overline{\Omega^{+}}\right) \\
& : \quad B_{p, p}^{s}(S) \rightarrow H_{p}^{s+\frac{1}{p}}\left(\Omega^{+}\right)
\end{aligned}
$$

Let S be C^{∞}-smooth and $k \in \mathbb{N}, 0<\alpha<1,1<p<\infty$, $1 \leq t \leq \infty, s \in \mathbb{R}$. Then

$$
\begin{aligned}
\mathcal{H} & : C^{k-1, \alpha}(S) \rightarrow C^{k, \alpha}(S) \\
\pm 2^{-1} I+\mathcal{K}, \pm 2^{-1} I+\widetilde{\mathcal{K}} & : C^{k, \alpha}(S) \rightarrow C^{k, \alpha}(S) \\
\mathcal{L} & : C^{k, \alpha}(S) \rightarrow C^{k-1, \alpha}(S)
\end{aligned}
$$

Let S be C^{∞}-smooth and $k \in \mathbb{N}, 0<\alpha<1,1<p<\infty$, $1 \leq t \leq \infty, s \in \mathbb{R}$. Then

$$
\begin{array}{rll}
\mathcal{H} & : & C^{k-1, \alpha}(S) \rightarrow C^{k, \alpha}(S) \\
\pm 2^{-1} I+\mathcal{K}, \pm 2^{-1} I+\widetilde{\mathcal{K}} & : & C^{k, \alpha}(S) \rightarrow C^{k, \alpha}(S) \\
\mathcal{L}: & C^{k, \alpha}(S) \rightarrow C^{k-1, \alpha}(S) \\
\mathcal{H}: & H_{p}^{s}(S) \rightarrow H_{p}^{s+1}(S) & {\left[B_{p, t}^{s}(S) \rightarrow B_{p, t}^{s+1}(S)\right],} \\
\pm 2^{-1} I+\mathcal{K}: & H_{p}^{s}(S) \rightarrow H_{p}^{s}(S) & {\left[B_{p, t}^{s}(S) \rightarrow B_{p, t}^{s}(S)\right]} \\
\pm 2^{-1} I+\widetilde{\mathcal{K}}: \quad H_{p}^{s}(S) \rightarrow H_{p}^{s}(S) & {\left[B_{p, t}^{s}(S) \rightarrow B_{p, t}^{s}(S)\right]} \\
\mathcal{L}: \quad H_{p}^{s+1}(S) \rightarrow H_{p}^{s}(S) & {\left[B_{p, t}^{s+1}(S) \rightarrow B_{p, t}^{s}(S)\right]}
\end{array}
$$

These operators are Fredholm operators with zero index.

Let S be C^{∞}-smooth and $k \in \mathbb{N}, 0<\alpha<1,1<p<\infty$, $1 \leq t \leq \infty, s \in \mathbb{R}$. Then

$$
\begin{array}{rlll}
\mathcal{H} & : & C^{k-1, \alpha}(S) \rightarrow C^{k, \alpha}(S) \\
\pm 2^{-1} I+\mathcal{K}, \pm 2^{-1} I+\widetilde{\mathcal{K}}: & C^{k, \alpha}(S) \rightarrow C^{k, \alpha}(S) \\
\mathcal{L}: & C^{k, \alpha}(S) \rightarrow C^{k-1, \alpha}(S) \\
\mathcal{H}: \quad H_{p}^{s}(S) \rightarrow H_{p}^{s+1}(S) & {\left[B_{p, t}^{s}(S) \rightarrow B_{p, t}^{s+1}(S)\right]} \\
\pm \mathbf{2}^{-1} I+\mathcal{K}: \quad H_{p}^{s}(S) \rightarrow H_{p}^{s}(S) & {\left[B_{p, t}^{s}(S) \rightarrow B_{p, t}^{s}(S)\right]} \\
\pm \mathbf{2}^{-1} I+\widetilde{\mathcal{K}}: \quad H_{p}^{s}(S) \rightarrow H_{p}^{s}(S) & {\left[B_{p, t}^{s}(S) \rightarrow B_{p, t}^{s}(S)\right]} \\
\mathcal{L}: \quad H_{p}^{s+1}(S) \rightarrow H_{p}^{s}(S) & {\left[B_{p, t}^{s+1}(S) \rightarrow B_{p, t}^{s}(S)\right]}
\end{array}
$$

These operators are Fredholm operators with zero index.
The principal homogeneous symbols of the operators $-\mathcal{H}$ and \mathcal{L} are positive: $\mathfrak{S}_{0}(\mathcal{H} ; \xi)=1 /(2|\xi|), \mathfrak{S}_{0}(\mathcal{L} ; \xi)=|\xi| / 2, \xi \in \mathbb{R}^{2} \backslash\{0\}$.

Reduction of BVPs to BIEs: INDIRECT METHOD

Indirect BIE method (Potential method) for the Dirichlet problem:

$$
\begin{align*}
& \Delta u=0 \text { in } \Omega^{+}, \quad u \in W_{p}^{1}\left(\Omega^{+}\right) \tag{33}\\
& \{u\}^{+}=f \text { on } S=\partial \Omega^{+}, \quad f \in B_{p, p}^{1-\frac{1}{p}}(S), \quad p>1 \tag{34}
\end{align*}
$$

Look for a solution as a double layer potential,

$$
\begin{gather*}
u(x)=W(g)(x), \quad x \in \Omega^{+} \tag{35}\\
g \in B_{p, p}^{1-\frac{1}{p}}(S) \tag{36}
\end{gather*}
$$

The Dirichlet boundary condition and jump relations for the double layer potential lead to the integral equation for g,

$$
\begin{equation*}
\mathcal{D} g \equiv\left(2^{-1} I+\widetilde{\mathcal{K}}\right) g=f \text { on } S \tag{37}
\end{equation*}
$$

For a smooth boundary S, the operator $\widetilde{\mathcal{K}}$ with weakly singular kernel generates a compact operator and therefore the operator

$$
\begin{equation*}
\mathcal{D} \equiv 2^{-1} I+\widetilde{\mathcal{K}}: L_{2}(S) \rightarrow L_{2}(S) \tag{38}
\end{equation*}
$$

is a Fredholm-Riesz operator with zero index. Therefore the injectivity property implies invertibility of the operator.

For a smooth boundary S, the operator $\widetilde{\mathcal{K}}$ with weakly singular kernel generates a compact operator and therefore the operator

$$
\begin{equation*}
\mathcal{D} \equiv 2^{-1} I+\widetilde{\mathcal{K}}: L_{2}(S) \rightarrow L_{2}(S) \tag{38}
\end{equation*}
$$

is a Fredholm-Riesz operator with zero index. Therefore the injectivity property implies invertibility of the operator.

Injectivity easily follows from the uniqueness results:

$$
\begin{align*}
& \left(2^{-1} I+\widetilde{\mathcal{K}}\right) g=0, \quad g \in L_{2}(S) \tag{39}\\
& \Rightarrow \quad \text { (bootstrap arguments }) \Rightarrow g \in C^{1, \alpha}(S) \tag{40}\\
& \Rightarrow W(g) \in C^{1, \alpha}\left(\overline{\Omega^{ \pm}}\right) \&\{W(g)\}_{S}^{+}=0 \tag{41}\\
& \Rightarrow W(g)(x)=0, \quad x \in \overline{\Omega^{+}} \tag{42}\\
& \Rightarrow \quad\left\{\partial_{n} W(g)\right\}_{S}^{+}=\left\{\partial_{n} W(g)\right\}_{S}=0 \tag{43}\\
& \Rightarrow W(g)(x)=0, \quad x \in \overline{\Omega^{-}} \tag{44}\\
& \Rightarrow \quad\{W(g)\}_{S}^{+}-\{W(g)\}_{S}^{-}=g=0 \tag{45}
\end{align*}
$$

Consequently, the operator (38) is invertible.

Due to the general theory of pseudodifferential operators, it then follows that the operators

$$
\begin{align*}
\mathcal{D} \equiv 2^{-1} I+\widetilde{\mathcal{K}} & : H_{p}^{t}(S) \rightarrow H_{p}^{t}(S) \tag{46}\\
& : B_{p, p}^{t}(S) \rightarrow B_{p, p}^{t}(S) \tag{47}
\end{align*}
$$

are invertible as well for arbitrary $t \in \mathbb{R}, p>1$ and $1 \leqslant q \leqslant \infty$.
This leads to the following existence result.

THEOREM 1. The Dirichlet problem (D) ${ }^{+}$with arbitrary boundary function $f \in B_{p, p}^{1-\frac{1}{p}}(S)$ is uniquely solvable in the space $W_{p}^{1}\left(\Omega^{+}\right)$, $p>1$, and the solution is representable as a double layer potential

$$
\begin{equation*}
u(x)=W(g)(x), \quad x \in \Omega^{+} \tag{48}
\end{equation*}
$$

where the density vector function $g \in B_{p, p^{1-\frac{1}{p}}(S) \text { is defined by the }}$ uniquely solvable integral equation

$$
\begin{equation*}
\mathcal{D} g \equiv\left(2^{-1} I+\widetilde{\mathcal{K}}\right) g=f \text { on } S \tag{49}
\end{equation*}
$$

THEOREM 1. The Dirichlet problem (D) ${ }^{+}$with arbitrary boundary function $f \in B_{p, p}^{1-\frac{1}{p}}(S)$ is uniquely solvable in the space $W_{p}^{1}\left(\Omega^{+}\right)$, $p>1$, and the solution is representable as a double layer potential

$$
\begin{equation*}
u(x)=W(g)(x), \quad x \in \Omega^{+} \tag{48}
\end{equation*}
$$

where the density vector function $g \in B_{p, p^{1-\frac{1}{p}}(S) \text { is defined by the }}$ uniquely solvable integral equation

$$
\begin{equation*}
\mathcal{D} g \equiv\left(2^{-1} I+\widetilde{\mathcal{K}}\right) g=f \text { on } S \tag{49}
\end{equation*}
$$

In addition, if $f \in B_{p, p}^{t-\frac{1}{p}}(S)$ for $t \geqslant 1$ and $p>1$, then $g \in B_{p, p}^{t-\frac{1}{p}}(S)$ and $u \in B_{p, p}^{t}\left(\Omega^{+}\right)$.
In particular, $f \in C^{\infty}(S) \Rightarrow u \in C^{\infty}\left(\overline{\Omega^{+}}\right)$.

Single layer approach: If we look for a solution to the same Dirichlet problem as a single layer potential,

$$
\begin{equation*}
u(x)=V(g)(x), \quad x \in \Omega^{+} \tag{50}
\end{equation*}
$$

we arrive at the integral equation for g,

$$
\begin{equation*}
\mathcal{H} g=f \text { on } S . \tag{51}
\end{equation*}
$$

The operator

$$
\begin{equation*}
-\mathcal{H}: H_{2}^{-\frac{1}{2}}(S) \rightarrow H_{2}^{\frac{1}{2}}(S) \tag{52}
\end{equation*}
$$

is strongly coercive, i.e. $\langle-\mathcal{H} \varphi, \varphi\rangle_{S} \geqslant C\|\varphi\|_{H_{2}^{-\frac{1}{2}}(S)}^{2}$, implying that the operators

$$
\begin{align*}
\mathcal{H} & : H_{p}^{t}(S) \rightarrow H_{p}^{t+1}(S) \tag{53}\\
& : B_{p, q}^{t}(S) \rightarrow B_{p, q}^{t+1}(S) \tag{54}
\end{align*}
$$

are invertible for $t \in \mathbb{R}, \quad p>1, \quad 1 \leqslant q \leqslant \infty$.

Any solution u of the Laplace equation of the class $W_{p}^{1}\left(\Omega^{+}\right)$with $p>1$ and $t \geqslant 1$ can be uniquely represented as a single layer potential:

$$
\begin{equation*}
u(x)=V\left(\mathcal{H}^{-1} f\right)(x) \quad \text { in } \quad \Omega^{+} \quad \text { with } \quad f:=\{u\}_{S}^{+} \tag{55}
\end{equation*}
$$

Any solution u of the Laplace equation of the class $W_{p}^{1}\left(\Omega^{+}\right)$with $p>1$ and $t \geqslant 1$ can be uniquely represented as a single layer potential:

$$
\begin{equation*}
u(x)=V\left(\mathcal{H}^{-1} f\right)(x) \quad \text { in } \quad \Omega^{+} \quad \text { with } \quad f:=\{u\}_{S}^{+} \tag{55}
\end{equation*}
$$

Steklov-Poincaré operator:

$$
\begin{gather*}
(55) \Rightarrow\left\{\partial_{n} u(x)\right\}^{+}=\left(-2^{-1} I+\mathcal{K}\right) \mathcal{H}^{-1}\{u\}^{+} \tag{56}\\
\mathcal{A} \equiv\left(-2^{-1} I+\mathcal{K}\right) \mathcal{H}^{-1} \tag{57}\\
\mathcal{A}: B_{p, q}^{t}(S) \rightarrow B_{p, q}^{t-1}(S) \tag{58}\\
\forall \psi \in H^{\frac{1}{2}}(S):\langle\mathcal{A} \psi, \psi\rangle_{S} \geqslant C_{1}\|\psi\|_{H_{2}^{\frac{1}{2}}(S)}-C_{2}\|\psi\|_{H_{2}^{0}(S)} \tag{59}
\end{gather*}
$$

\mathcal{A} is a pseudodifferential operator of order +1 with positive principal homogeneous symbol and with index equal to zero.

This operator plays a crucial role in the study of mixed BVPs.

Indirect BIE method (Potential method) for the Neumann problem:

$$
\begin{equation*}
\Delta u=0 \text { in } \Omega^{+}, \quad\left\{\partial_{n} u\right\}^{+}=F \text { on } S=\partial \Omega^{+} \tag{60}
\end{equation*}
$$

Look for a solution as a single layer potential,

$$
\begin{equation*}
u(x)=V(h)(x), \quad x \in \Omega^{+} \tag{61}
\end{equation*}
$$

The Neumann boundary condition and jump relations for the single layer potential lead to the Fredholm-Riesz integral equation for h,

$$
\begin{equation*}
\mathcal{N} h \equiv\left(-2^{-1} I+\mathcal{K}\right) h=F \text { on } S \tag{62}
\end{equation*}
$$

$$
\operatorname{dim} \operatorname{Ker}\left(-2^{-1} I+\mathcal{K}\right)=\operatorname{dim} \operatorname{Ker}\left(-2^{-1} I+\widetilde{\mathcal{K}}\right)=1
$$

$$
\operatorname{Ker}\left(-2^{-1} I+\widetilde{\mathcal{K}}\right)=\{1\} \quad \text { and } \quad \operatorname{Ker}\left(-2^{-1} I+\mathcal{K}\right)=\left\{\mathcal{H}^{-1} 1\right\}
$$

Necessary and sufficient condition for solvability of integral equation (62) and of the interior Neumann problem read as:

$$
\begin{equation*}
\int_{S} F(y) d S=0 \text { on } S \tag{63}
\end{equation*}
$$

THEOREM 2. The Neumann problem (N) ${ }^{+}$with a boundary function $F \in B_{p, p}^{-\frac{1}{p}}(S)$ satisfying the necessary orthogonality condition (63), is solvable in the space $W_{p}^{1}\left(\Omega^{+}\right), p>1$, modulo a constant and solutions are representable in the form of single layer potential

$$
\begin{equation*}
u(x)=V(h)(x), \quad x \in \Omega^{+} \tag{64}
\end{equation*}
$$

where the density vector function $h \in B_{p, p}^{-\frac{1}{p}}(S)$ is defined modulo the summand $h_{0}=\operatorname{const}\left(\mathcal{H}^{-1} 1\right)$ by the integral equation

$$
\begin{equation*}
\mathcal{N} h \equiv\left(2^{-1} I+\mathcal{K}\right) h=F \text { on } S \tag{65}
\end{equation*}
$$

If $F \in B_{p, p}^{t-1-\frac{1}{p}}(S)$ for $t \geqslant 1$ and $p>1$, then $u \in W_{p}^{t}\left(\Omega^{+}\right)$.
In particular, $F \in C^{\infty}(S) \Rightarrow u \in C^{\infty}\left(\overline{\Omega^{+}}\right)$.

Indirect BIE method (Potential method) for the Mixed problem:

$$
\begin{array}{ll}
\Delta u=0 \text { in } \Omega^{+}, & u \in W_{p}^{1}\left(\Omega^{+}\right) \\
\{u\}^{+}=f^{*} \text { on } S_{D}, & f^{*} \in B_{p, p}^{1-\frac{1}{p}}(S) \\
\left\{\partial_{n} u\right\}^{+}=F^{*} \text { on } S_{N}, & F^{*} \in B_{p, p}^{-\frac{1}{p}}(S) \tag{68}
\end{array}
$$

Let f_{e} be some fixed extension of the function f^{*} from S_{D} onto the whole of S preserving the space:

$$
\begin{equation*}
f_{e} \in B_{p, p}^{1-\frac{1}{p}}(S), \quad r_{S_{D}} f_{e}=f^{*} \tag{69}
\end{equation*}
$$

Look for a solution as a single layer potential:

$$
\begin{equation*}
u(x)=V\left(\mathcal{H}^{-1}\left(f_{e}+\varphi\right)\right)(x) \quad \text { with } \quad \varphi \in \widetilde{B}_{p, p}^{1-\frac{1}{p}}\left(S_{N}\right) \tag{70}
\end{equation*}
$$

where φ is a sought for function.
Conditions (66) and (67) are satisfied automatically, while the Neumann condition (68) leads to the pseudodifferential equation on S_{N} :

$$
\begin{align*}
r_{S_{N}} \mathcal{A} \varphi & =Q^{*} \text { on } S_{N} \tag{71}\\
\varphi \in \widetilde{B}_{p, p}^{1-\frac{1}{p}}\left(S_{N}\right), \quad Q^{*} & =F^{*}-r_{S_{N}} \mathcal{A} f_{e} \in B_{p, p}^{-\frac{1}{p}}\left(S_{N}\right) \tag{72}
\end{align*}
$$

where $\mathcal{A}:=\left(-2^{-1} I+\mathcal{K}\right) \mathcal{H}^{-1}$ is the Steklov-Poincaré operator.

$$
\begin{align*}
r_{S_{N}} \mathcal{A} \varphi & =Q^{*} \text { on } S_{N} \tag{71}\\
\varphi \in \widetilde{B}_{p, p}^{1-\frac{1}{p}}\left(S_{N}\right), \quad Q^{*} & =F^{*}-r_{S_{N}} \mathcal{A} f_{e} \in B_{p, p}^{-\frac{1}{p}}\left(S_{N}\right) \tag{72}
\end{align*}
$$

where $\mathcal{A}:=\left(-2^{-1} I+\mathcal{K}\right) \mathcal{H}^{-1}$ is the Steklov-Poincaré operator.
The following operator is continuous for $s \in \mathbb{R}, p>1,1 \leqslant q \leqslant \infty$:

$$
\begin{equation*}
r_{S_{N}} \mathcal{A}: \quad \widetilde{B}_{p, q}^{s}\left(S_{N}\right) \rightarrow B_{p, q}^{s-1}\left(S_{N}\right) \tag{73}
\end{equation*}
$$

$$
\begin{align*}
r_{S_{N}} \mathcal{A} \varphi & =Q^{*} \text { on } S_{N} \tag{7}\\
\varphi \in \widetilde{B}_{p, p}^{1-\frac{1}{p}}\left(S_{N}\right), \quad Q^{*} & =F^{*}-r_{S_{N}} \mathcal{A} f_{e} \in B_{p, p}^{-\frac{1}{p}}\left(S_{N}\right) \tag{72}
\end{align*}
$$

where $\mathcal{A}:=\left(-2^{-1} I+\mathcal{K}\right) \mathcal{H}^{-1}$ is the Steklov-Poincaré operator.
The following operator is continuous for $s \in \mathbb{R}, p>1,1 \leqslant q \leqslant \infty$:

$$
\begin{equation*}
r_{s_{N}} \mathcal{A}: \quad \widetilde{B}_{p, q}^{s}\left(S_{N}\right) \rightarrow B_{p, q}^{s-1}\left(S_{N}\right) . \tag{73}
\end{equation*}
$$

The operator (73) is invertible if [Vishik-Eskin; Shargorodski]

$$
\begin{equation*}
\frac{1}{p}-1<s-\frac{1}{2}<\frac{1}{p} \tag{74}
\end{equation*}
$$

$$
\begin{align*}
r_{S_{N}} \mathcal{A} \varphi & =Q^{*} \text { on } S_{N} \tag{71}\\
\varphi \in \widetilde{B}_{p, p}^{1-\frac{1}{p}}\left(S_{N}\right), \quad Q^{*} & =F^{*}-r_{S_{N}} \mathcal{A} f_{e} \in B_{p, p}^{-\frac{1}{p}}\left(S_{N}\right) \tag{72}
\end{align*}
$$

where $\mathcal{A}:=\left(-2^{-1} I+\mathcal{K}\right) \mathcal{H}^{-1}$ is the Steklov-Poincaré operator.
The following operator is continuous for $s \in \mathbb{R}, p>1,1 \leqslant q \leqslant \infty$:

$$
\begin{equation*}
r_{S_{N}} \mathcal{A}: \widetilde{B}_{p, q}^{s}\left(S_{N}\right) \rightarrow B_{p, q}^{s-1}\left(S_{N}\right) \tag{73}
\end{equation*}
$$

The operator (73) is invertible if [Vishik-Eskin; Shargorodski]

$$
\begin{equation*}
\frac{1}{p}-1<s-\frac{1}{2}<\frac{1}{p} \tag{74}
\end{equation*}
$$

(74) $\Rightarrow r_{S_{N}} \mathcal{A}: \widetilde{B}_{p, p}^{1-\frac{1}{p}}\left(S_{N}\right) \rightarrow B_{p, p}^{-\frac{1}{p}}\left(S_{N}\right)$ is invertible and (71) is uniquely solvable if

$$
\begin{equation*}
\frac{4}{3}<p<4 \tag{75}
\end{equation*}
$$

Pseudodifferential operators on manifolds with boundary:

[Vishik-Eskin; Shargorodski]
THEOREM Let $\bar{S}_{1} \in C^{\infty}$ be a compact, 2 -dimensional, non-selfintersecting, two-sided surface with boundary $\partial S_{1} \in C^{\infty}$, and $s \in \mathbb{R}$, $1<p<\infty, 1 \leq q \leq \infty$. Further, let \mathcal{B} be a pseudo-differential operator of order $\alpha \in \mathbb{R}$ on S_{1} having a uniformly positive principal homogeneous symbol, i.e., $\mathfrak{S}(\mathcal{B} ; \boldsymbol{y}, \xi) \geq c_{0}>0$ for $y \in \bar{S}_{1}, \xi \in \mathbb{R}^{2}$ with $|\xi|=1$, where c_{0} is a constant.
Then the operators

$$
\begin{equation*}
\mathcal{B}: \quad \widetilde{H}_{p}^{s}\left(S_{1}\right) \rightarrow H_{p}^{s-\alpha}\left(S_{1}\right) \quad\left[\widetilde{B}_{p, q}^{s}\left(S_{1}\right) \rightarrow B_{p, q}^{s-\alpha}\left(S_{1}\right)\right] \tag{76}
\end{equation*}
$$

are Fredholm operators of index zero if

$$
\begin{equation*}
1 / p-1<s-\alpha / 2<1 / p \tag{77}
\end{equation*}
$$

Moreover, the null-spaces of operators (76) are the same (for all values of the parameters $q \in[1,+\infty]$ and $p, s)$ provided p and s satisfy inequality (77).

EXISTENCE THEOREM. Let $4 / 3<p<4$, and $f^{*} \in B_{p, p}^{1-\frac{1}{p}}\left(S_{D}\right)$, $F^{*} \in B_{p, p}^{-\frac{1}{p}}\left(S_{N}\right)$. The mixed problem (M)+ is uniquely solvable in the space $W_{p}^{1}\left(\Omega^{+}\right)$and the solution is representable as a single potential

$$
\begin{equation*}
u(x)=V\left(\mathcal{H}^{-1}\left(f_{e}+\varphi\right)\right)(x) \tag{89}
\end{equation*}
$$

where $f_{e} \in\left[B_{p, p}^{1-\frac{1}{p}}(S)\right]^{3}$ is some fixed extension of the function f^{*} from S_{D} onto the whole of S, while $\varphi \in \widetilde{B}_{p, p}^{1-\frac{1}{p}}\left(S_{N}\right)$ is defined by the uniquely solvable elliptic pseudodifferential equation

$$
\begin{equation*}
r_{s_{N}} \mathcal{A} \varphi=Q^{*} \text { on } S_{N} \tag{90}
\end{equation*}
$$

where \mathcal{A} is the Steklov-Poncaré operator and $Q^{*}=F^{*}-r_{S_{N}} \mathcal{A} f_{e}$.

EXISTENCE THEOREM. Let $4 / 3<p<4$, and $f^{*} \in B_{p, p}^{1-\frac{1}{p}}\left(S_{D}\right)$, $F^{*} \in B_{p, p}^{-\frac{1}{p}}\left(S_{N}\right)$. The mixed problem (M)+ is uniquely solvable in the space $W_{p}^{1}\left(\Omega^{+}\right)$and the solution is representable as a single potential

$$
\begin{equation*}
u(x)=V\left(\mathcal{H}^{-1}\left(f_{e}+\varphi\right)\right)(x) \tag{89}
\end{equation*}
$$

where $f_{e} \in\left[B_{p, p}^{1-\frac{1}{p}}(S)\right]^{3}$ is some fixed extension of the function f^{*} from S_{D} onto the whole of S, while $\varphi \in \widetilde{B}_{p, p}^{1-\frac{1}{p}}\left(S_{N}\right)$ is defined by the uniquely solvable elliptic pseudodifferential equation

$$
\begin{equation*}
r_{S_{N}} \mathcal{A} \varphi=Q^{*} \text { on } S_{N} \tag{90}
\end{equation*}
$$

where \mathcal{A} is the Steklov-Poncaré operator and $Q^{*}=F^{*}-r_{S_{N}} \mathcal{A} f_{e}$. If, in addition,

$$
\begin{equation*}
f^{*} \in C^{\alpha}\left(\overline{S_{D}}\right), \quad F^{*} \in C^{\alpha}\left(\overline{S_{N}}\right), \quad \alpha>0 \tag{78}
\end{equation*}
$$

then $U \in \bigcap_{\beta<\kappa}\left[C^{\beta}\left(\overline{\Omega^{+}}\right)\right]^{6}, \quad$ with $\kappa=\min \left\{\alpha, \frac{1}{2}\right\}>0$.

DIRECT METHOD FOR THE DIRICHLET PROBLEM

$$
\begin{align*}
& \Delta u=\Phi \quad \text { in } \quad \Omega^{+}, \quad \Phi \in L_{2}\left(\Omega^{+}\right) \Rightarrow u \in H_{2}^{1,0}\left(\Omega^{+}, \Delta\right) \tag{D1}\\
& \{u\}_{S}^{+}=f \quad \text { on } \quad S, \quad f \in H_{2}^{\frac{1}{2}}(S) \tag{D2}
\end{align*}
$$

Green's third formula in Ω^{+}and its trace on S :

$$
\begin{align*}
& u=N_{\Omega^{+}}(\Delta u)+W\left(\{u\}^{+}\right)-V\left(\left\{\partial_{n} u\right\}^{+}\right) \text {in } \Omega^{+}, \tag{G3}\\
& {\left[-2^{-1} I+\widetilde{\mathcal{K}}\right]\{u\}^{+}-\mathcal{H}\left\{\partial_{n} u\right\}^{+}=-\left\{N_{\Omega^{+}}(\Delta u)\right\}_{S}^{+} \text {on } S .} \tag{GB}
\end{align*}
$$

Substitute here the data of the Dirichlet problem

$$
\begin{align*}
& u+V(\psi)=N_{\Omega^{+}}(\Phi)+W(f) \text { in } \Omega^{+} \tag{E1}\\
& \mathcal{H} \psi=\left\{N_{\Omega^{+}}(\Phi)\right\}_{S}^{+}+\left[-2^{-1} I+\widetilde{\mathcal{K}}\right] f \quad \text { on } S \tag{E2}
\end{align*}
$$

where $\psi=\left\{\partial_{n} u\right\}^{+}$.
Consider (E1)-(E2) as a system with respect to segregated pair of unknowns $(u, \psi) \in H_{2}^{1}\left(\Omega^{+}\right) \times H_{2}^{-\frac{1}{2}}(S)$.

$$
\left\{\begin{array}{l}
u+V(\psi)=N_{\Omega^{+}}(\Phi)+W(f) \text { in } \Omega^{+}, \tag{E1}\\
\mathcal{H} \psi=\left\{N_{\Omega^{+}}(\Phi)\right\}_{S}^{+}+\left[-2^{-1} I+\widetilde{\mathcal{K}}\right] f \text { on } S .
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
u+V(\psi)=N_{\Omega^{+}}(\Phi)+W(f) \text { in } \Omega^{+}, \tag{E1}\\
\mathcal{H} \psi=\left\{N_{\Omega^{+}}(\Phi)\right\}_{S}^{+}+\left[-2^{-1} I+\widetilde{\mathcal{K}}\right] f \text { on } S .
\end{array}\right.
$$

The Dirichlet problem is equivalent to system (E1)-(E2):
(i) If $u \in H_{2}^{1,0}\left(\Omega^{+}, \Delta\right)$ solves the Dirichlet problem, then the pair (u, ψ) with $\psi=\left\{\partial_{n} u\right\}^{+} \in H_{2}^{-\frac{1}{2}}(S)$ solves system (E1)-(E2);
(ii) If a pair $(u, \psi) \in H_{2}^{1,0}\left(\Omega^{+}, \Delta\right) \times H_{2}^{-\frac{1}{2}}(S)$ solves system (E1)-(E2), then $\psi=\left\{\partial_{n} u\right\}^{+}$and u solves the Dirichlet problem.

$$
\left\{\begin{array}{l}
u+V(\psi)=N_{\Omega^{+}}(\Phi)+W(f) \text { in } \Omega^{+}, \tag{E1}\\
\mathcal{H} \psi=\left\{N_{\Omega^{+}}(\Phi)\right\}_{S}^{+}+\left[-2^{-1} I+\widetilde{\mathcal{K}}\right] f \text { on } S .
\end{array}\right.
$$

The Dirichlet problem is equivalent to system (E1)-(E2):
(i) If $u \in H_{2}^{1,0}\left(\Omega^{+}, \Delta\right)$ solves the Dirichlet problem, then the pair (u, ψ) with $\psi=\left\{\partial_{n} u\right\}^{+} \in H_{2}^{-\frac{1}{2}}(S)$ solves system (E1)-(E2);
(ii) If a pair $(u, \psi) \in H_{2}^{1,0}\left(\Omega^{+}, \Delta\right) \times H_{2}^{-\frac{1}{2}}(S)$ solves system (E1)-(E2), then $\psi=\left\{\partial_{n} u\right\}^{+}$and u solves the Dirichlet problem.
Proof follows from the properties of potentials:

$$
\begin{equation*}
\text { (i) } u=N_{\Omega^{+}}(\Delta u)+W\left(\{u\}^{+}\right)-V\left(\left\{\partial_{n} u\right\}^{+}\right) \text {in } \Omega^{+} \text {; } \tag{G3}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
u+V(\psi)=N_{\Omega^{+}}(\Phi)+W(f) \text { in } \Omega^{+}, \tag{E1}\\
\mathcal{H} \psi=\left\{N_{\Omega^{+}}(\Phi)\right\}_{S}^{+}+\left[-2^{-1} I+\widetilde{\mathcal{K}}\right] f \text { on } S .
\end{array}\right.
$$

The Dirichlet problem is equivalent to system (E1)-(E2):
(i) If $u \in H_{2}^{1,0}\left(\Omega^{+}, \Delta\right)$ solves the Dirichlet problem, then the pair (u, ψ) with $\psi=\left\{\partial_{n} u\right\}^{+} \in H_{2}^{-\frac{1}{2}}(S)$ solves system (E1)-(E2);
(ii) If a pair $(u, \psi) \in H_{2}^{1,0}\left(\Omega^{+}, \Delta\right) \times H_{2}^{-\frac{1}{2}}(S)$ solves system (E1)-(E2), then $\psi=\left\{\partial_{n} u\right\}^{+}$and u solves the Dirichlet problem.
Proof follows from the properties of potentials:

$$
\begin{equation*}
\text { (i) } u=N_{\Omega^{+}}(\Delta u)+W\left(\{u\}^{+}\right)-V\left(\left\{\partial_{n} u\right\}^{+}\right) \text {in } \Omega^{+} ; \tag{G3}
\end{equation*}
$$

(ii) $(\mathrm{E} 1) \Rightarrow \Delta u=\Phi$ with $\Phi \in L_{2}\left(\Omega^{+}\right)$;
$(\mathrm{E} 1)^{+}-(\mathrm{E} 2) \Rightarrow\{u\}^{+}=f \quad$ on $\quad S$;
(G3) $-(\mathrm{E} 1) \Rightarrow V\left(\left\{\partial_{n} u\right\}^{+}-\psi\right)=0$ in $\Omega^{+} \Rightarrow \psi=\left\{\partial_{n} u\right\}^{+}$on S.

Introduce the operator generated by the left hand side expressions of system (E1)-(E2):

$$
\mathfrak{D}:=\left[\begin{array}{ll}
I & V \tag{79}\\
0 & \mathcal{H}
\end{array}\right]_{2 \times 2}
$$

We have just shown that the operator

$$
\begin{align*}
\mathfrak{D}: H_{2}^{1,0}\left(\Omega^{+}, \Delta\right) \times H_{2}^{-\frac{1}{2}}(S) & \\
& \rightarrow H_{2}^{1,0}\left(\Omega^{+}, \Delta\right) \times H_{2}^{\frac{1}{2}}(S) \tag{80}
\end{align*}
$$

is invertible.
It is easy to see that the following operators are invertible as well

$$
\begin{gather*}
\mathfrak{D}: H_{2}^{1}\left(\Omega^{+}\right) \times H_{2}^{-\frac{1}{2}}(S) \rightarrow H_{2}^{1}\left(\Omega^{+}\right) \times H_{2}^{\frac{1}{2}}(S) \tag{81}\\
\mathfrak{D}: H_{2}^{r}\left(\Omega^{+}\right) \times H_{2}^{r-\frac{1}{2}}(S) \rightarrow H_{2}^{r}\left(\Omega^{+}\right) \times H_{2}^{r+\frac{1}{2}}(S) \tag{82}
\end{gather*}
$$

THANK YOU!

