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Lecture Topics

e Classical potential method for constant coefficient boundary value
problems: Indirect and direct boundary integral equations method.

e Scalar BVPs with one variable coefficient (isotropic case):
Parametrix based BDIE approach.

e Scalar BVPs with matrix variable coefficient (anisotropic case):
Localized harmonic parametrix based BDIE approach.

e Applications of BDIE method to transmission problems of
acoustic scattering by inhomogeneous anisotropic obstacles.
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LECTURE 1

CLASSICAL POTENTIAL METHOD

FOR CONSTANT COEFFICIENT
BOUNDARY VALUE PROBLEMS

DAVID NATROSHVILI

Georgian Technical University
Thilisi, GEORGIA
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o A W N M

. Classical formulation of the BVPs
. Green’s formulas and Integral Representation of solutions

. Weak formulation of the problems, uniqueness theorems

Properties of potentials

Reduction to BlEs: Direct and Indirect methods

. Existence and regularity of solutions (based on the Fredholm-Riesz

Theory and the Theory of pseudodifferential equations)
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Classical Potential Method - Regular Case

N.M. Gunter, Potential Theory and its application to the basic prob-
lems of mathematical physics. Fizmatgiz, Moscow 1953 (Russian).
Translation in English: Frederick Ungar Publishing, New York, 1967.

K. Miranda, Partial differential equations of elliptic type. Springer,
Berlin-Heidelberg, 2-nd edition, 1970.

R. Dautray and J.L. Lions, Mathematical analysis and numerical meth-

ods for science and technology. Vol. 4. Integral equations and nu-
merical methods. Springer-Verlag, Berlin, 1990.

G. Hsiao and W. Wendland, Boundary integral equations. Springer,
Berlin - Heidelberg, 2008.
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Theory of pseudodifferential equations on manifolds with
boundary

G. Eskin, Boundary value problems for elliptic pseudodifferential equa-
tions. Translation of Mathematical Monographs, vol. 52. American
Mathematical Society: Providence, Rl, 1981.

E. Shargorodsky, An L, analogue of the Vishik-Eskin theory. Mem-

oirs on Differential Equations and Mathematical Physics, 2 (1994),
41-146.
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CLASSICAL SETTING OF BVPs AND UNIQUENESS
THEOREMS

The Laplace equation in 2 C R3:

ot o (@) = 05 (1)

oxr? i Oxr2 = Ox3

A@)u(z) = Au(z) = [

The Poisson equation in Q C RS3:

AO)u(@) = Au(@) = [y + o+~ u(a) = B(@); (2)

2 2 2
ori Ox5 Ox3

u — is an unknown function in Q € {QT, O~}

$ — is a given function in
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Q7 - a bounded domain in R3 with a simply connected boundary
oNT =8,

Qt=Qtus; Q :=R3\Qt;
SeC>® or Sclip or SeCkB, 0<B<1, keN;

Dissection of the boundary surface S = Sp U Sn, Sp NSy = 2,
L = §D M §N;

The symbols { - }fgl: denote one-sided limits (traces) on S from Q% ;

n = (ny,n2,n3) - outward unit normal vector to S;

9] 0 0 0 o
= ny—— + no—— + ng—— — normal derivative.

0, := —
on oxq Oxo Oxs

0-7



C**, Lp,, W?, HS, B _ - the well-known Héder, Lebesgue, Sobolev-
Slobodetsku Bessel potentlal and Besov function spaces
(r>0,seR, pe(1,00),1 < g < ).

0-8



C**, Lp,, W?, HS, B _ - the well-known Héder, Lebesgue, Sobolev-
Slobodetsku Bessel potentlal and Besov function spaces
(r>0,s€R, pe(l,00), 1< g < 00).

H; =Wy = B, , forr > 0, HS = B3 , for any s € R,

t _ Wt k _ ywk " :
B, , =W, and HS = W} for any positive and non-integer t, for

any non-negative integer k and for any p > 1.
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C**, Lp,, W?, HS, B _ - the well-known Héder, Lebesgue, Sobolev-
Slobodetsku Bessel potentlal and Besov function spaces
(r>0,seR, pe(1,00),1 < g < ).

H; =Wy = B, , forr > 0, HS = B3 , for any s € R,

B;;,p = W/ and H = W for any positive and non-integer ¢, for

any non-negative integer k and for any p > 1.

Let S; be an open proper submanifold of S with smooth boundary:
X(S1) == {f: f€X(S), supp f C 51},
X(S1) := {rslf : f € X(S)},

(r,, stands for the restriction operator onto M)

0-10



C**, Lp,, W?, HS, B _ - the well-known Héder, Lebesgue, Sobolev-
Slobodetsku Bessel potentlal and Besov function spaces
(r>0,seR, pe(1,00),1 < g < ).

H; =W; =B;, forr > 0, HS = B3 , for any s € R,

B;;,p = W/ and H = W for any positive and non-integer ¢, for

any non-negative integer k and for any p > 1.

Let S; be an open proper submanifold of S with smooth boundary:
X(81) :={f: f €X(S), supp f C S1},
X(S1) := {rslf : f € X(S)},

(r,, stands for the restriction operator onto M)

A regular functions in Q2 € {Q1, Q~}: u € C?(Q) N CH(Q).
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THE BASIC BVPs: Find a regular solution u to the equation
A u=®, xcQt, (3)

satisfying one of the following boundary conditions:

The Dirichlet problem (D)*:
{u(@)}* = f(z), =€S; (4)
The Neumann problem (N)T:
{Bpu(x)}T = F(x), =€ S; (5)
The mixed type problem (M)T:

{u(z)}t = f*(z), =€ Sp, (6)
{Opu(x)}T = F*(z), = € SnN. (7)
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GREEN’s FORMULAS:

Au vdx = —/ Vu-Vvder + / {Bpu}t {v}TdS (G1)
Q-+ Q-+ S

/ Au v —u Av|de :/ {Onu} T {v}T—{u} {0 ,v}T]dS (G2)
Q-+ S
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GREEN’s FORMULAS:

Au vdx = —/ Vu:-Vvder + / {Opu}T {v}TdS (Gl)
Q-+ Q-+ S
/ Au v —u Av|dz :/ {0 u} T {v}T—{u}T{0,v}T]dS (G2)
Q-+ S
FUNDAMENTAL SOLUTION:

AO)T(z) = 6(x) = T(z)=—

ypl v(y) =T'(z —y)

GENERAL INTEGRAL REPRESENTATION (V¥ u € C?(Q)):
u(@) = [ Te—y)Au@)dy — [ T(@ - y) {Dnu(w)}* dS+

+ [ [T = 0)] (u}ds,, w0 (63)
S
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GREEN’s FORMULAS:

Au vdr = —/ Vu-Vouvdx + / {Opu}T {v}TdS (Gl)
Q+ Q+ S

[Au v —u Avlde = [{Opu} T {v}T—{u}T{0,v}T]|dS (G2)
Q-+ S

FUNDAMENTAL SOLUTION:

AO)T(z) = §(x) = T(z)=—

yp i v(y) =T'(z —y)

GENERAL INTEGRAL REPRESENTATION (V u € C?(Q)):
u(@) = [ T(@—y)Aulw)dy - [ T@—y) {d.u(@)}* ds+

+ [ [Pal@ = v)] u@)} s, =0 (©3)
S

Green’s formulas can be extended to the space
WI}’O(Q'l',A) = H;’O(Q'l',A) = {u € H;(Q'l') : Au € L,(QT) }.
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VOLUME AND LAYER POTENTIALS:

N (¥)(x) = /ﬂ (e — y) T(y)dy (8)
Vig)(x) = / I'(z — y) g(y)dS, (9)
W (h)(z) = /S 0y T(@ — )] h(y)dS, (10)
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VOLUME AND LAYER POTENTIALS:

N (¥)(x) = /Q (e — y) T(y)dy (11)
Vig)(z) = /S I'(z — y) g(y)dS, (12)
W (h)(z) = /S 0y T(@ — )] h(y)dS, (13)

N, (®) is a particular solution of Poisson’s equation:
If & € L,(Q2) with p > 1 then Nq(®) € W2(Q2) and

A(O)Ngq(®) = & almost everywhere in €. (14)
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VOLUME AND LAYER POTENTIALS:

N, (T)(2) = /Q T'(z — y) ¥(y))dy (15)
Vig)(z) = /5 I'(z —y) g(y)dS, (16)
W () (x) = L By T(@ — )] h(y)dS, (17)

N, (@) is a particular solution of Poisson’s equation:
If & € L,(Q2) with p > 1 then No(®) € W2(Q2) and

A(O)Nq(®) = ® almost everywhere in (. (18)

The layer potentials V' (g) and W (h) belong to C*(Q*) and are
solutions of the homogeneous equation A(9)u = 0:

A@)V(9)(z) = A(D)W (h)(z) =0, z € Q. (19)
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In the case of weak formulation of the above BVPs we look
for weak solutions in the spaces H1°(Q+,A), p > 1.

The differential equation A(9)u = ® is understood in the distribu-
tional sense in Q7.

The Dirichlet type condition is understood in the usual trace sense in

the space B;,;; (S);

The generalized trace of normal derivative is understood in the func-

tional sense {9,u}t € B, (S) = [BE,,p,(S)]* defined with the
help of Green’s first identity:

{Onu}T, {v}+>s 1= / [ (Au)v 4+ Vu-Vovldz, (20)
Q-+

uwe H°Qt,A), ve H(QF), l + i, =1
The symbol (-, ‘) g denotes bilinear duallty brackets between the mu-

tually adjoint spaces B, ; (S) and Bp »(S);
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UNIQUENESS THEOREM

Let the manifolds S, Sp, and S be Lipschitz.

The BVPs (D)* and (M)T possess at most one weak solution in
the space W, (Q27), while the general solution of the homogeneous

Neumann problem (N)™ is a constant.
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UNIQUENESS THEOREM

The homogeeous BVPs (D)™ and (M) ™ possess only the trivial weak
solution in the space W3 (921), while the general solution of the

homogeneous Neumann problem (N)T is a constant.

Proof follows from Green’s first formula:

- Au udr = — /Q+ IVu|?dz + ({8pu}T, {u}T), (G1)
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PROPERTIES OF VOLUME POTENTIALS

Nq+ is a pseudodifferential (smoothing)
operator of order —2.

The following operators are continuous

Ng+ : Co*(Qt) - C**(Qt), 0<a<1, (21)
: H>(QT) — HXP?(QT), s eR, (22)

1
: H2(QT) — HXP2(Q1), s> -1+ o (23)
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PROPERTIES OF LAYER POTENTIALS

The boundary operators generated by the single and double layer
potentials

(Ho)(@) == [ T@—y)gw)ds,. v €S, (24)
(K9)@) = [ [doT@=9)]9w)ds, s €S, (@5)
(KK h) () := /S [ Ony) T(x — y) | h(y)dS,, = € S, (26)
(Lh) (@) = {Bn@ W (B)(2)}", = € S. (27)

The boundary operators ‘H and L are pseudodifferential operators
of order —1 and 1, respectively, while the operators K and K are
mutually adjoint weakly singular integral operators.

H — is a (smoothing) weakly singular integral operator;
L — is a singular integro-differential operator;
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JUMP RELATIONS

{Vg}" = {V(g)}  =Hg on § (28)
[0,V(9)}T = ?%ng’CgE[]FZ_lIJr’C]g on S (29)
(W(h)}* = :I:%h+l€hz[:|:2_1I—|—I€]h on S (30)
(0, W(R)}" = {8,W(h)) =Lh on S (31)
g€ Byi(S), heBpp(S), p>1. (32)
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MAPPING PROPERTIES OF LAYER POTENTIALS

Let S be C*®-smooth and £k € N, 0 < a < 1,1 < p < o0,
1 <t< oo, s €R. Then the operators are continuous:

V o Cko(S) = CktLhe(Qt)

: 41t}
Bp,p(S) — Hp (Q+)

W : Cke(S) - Ck(Qt)

B; ,(S) — Hp " (Q7F)
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Let S be C*®-smooth and £k € N, 0 < a < 1,1 < p < o0,
1<t< oo, s€eR. Then

H : C1H¥(8) = CF(S),
+27 11+ K, £27T 4+ K CPX(S) = CF(9),
L : CFY(8) = CF1(S)

0-26



Let S be C*®-smooth and £k € N, 0 < a < 1,1 < p < o0,
1<t< oo, s€eR. Then

H : C1H¥(8) = CF(S),
+27 11+ K, £27T 4+ K CPX(S) = CF(9),
L : CFY(8) = CF1(S)

H : HE(S) — H:T(S) [ 5.(8) = By (9)],
27T+ K ¢ HS(S) — H(S) B; .(S) — Bs,t(S)_,

12T+ K : HE(S) — HE(S) B:,(S) = B ,(9)],

p,t

L : HItY(S) — H:(S) [ 8+1(5)—>Bst(5)}

These operators are Fredholm operators with zero index.
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Let S be C*®-smooth and £k € N, 0 < a < 1,1 < p < o0,
1<t< oo, s€eR. Then

H : CF1b(8) = CH(8S),
+27 T4+ KK, £27 T4+ K 2 CPY(S) — CP(9),
L : CkFY(8) = CF1(S)

H o H2(S) — H:H(S) {B;’;’t(S) — stgl(S)},
+271+ K : HE(S) — H:(S) B:,(S) — B:,(S)/,

+2-11+ K : H2(S) — H(S) :Bz,t(S) - Bs,t(S):,
£ : H:Y(S) — H(S) [BS“(S) N Bs,t(S)}

p,t
These operators are Fredholm operators with zero index.

The principal homogeneous symbols of the operators —H and L are
positive: So(H;&) = 1/(2|€|), So(L;5€) = [€]/2, &€ € R?\ {0}.
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Reduction of BVPs to BIEs: INDIRECT METHOD

Indirect BIE method (Potential method) for the Dirichlet problem:

Au =0 in QT, u € W, (Qt), (33)
{u}t =F on S=08QF, feBiy"(S), p>1 (34)
Look for a solution as a double layer potential,
u(z) = W(g)(xz), =€ QT, (35)
9 € By’ (S)- (36)

The Dirichlet boundary condition and jump relations for the double
layer potential lead to the integral equation for g,

Dg= (27 'I+K)g=7Ff on S. (37)
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For a smooth boundary S, the operator IC with weakly singular kernel
generates a compact operator and therefore the operator

D=2"1'T+K : Ly(S) = L(S) (38)

is a Fredholm-Riesz operator with zero index. Therefore the injectivity
property implies invertibility of the operator.
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For a smooth boundary S, the operator IC with weakly singular kernel
generates a compact operator and therefore the operator

D=2"1T4+K : La(S) = La(S) (38)

is @ Fredholm-Riesz operator with zero index. Therefore the injectivity
property implies invertibility of the operator.

Injectivity easily follows from the uniqueness results:

21T+ K)g=0, g€ LyS) (39)
= (bootstrap arguments) = g € CY%(S) (40)
= W(g) € CT*(QF) & {W(g)}i =0 (41)
= W(g)(x) =0, x€QF (42)
= {0.W(9)}§ = {0.W(9)}5 =0 (43)
= W(g)(x) =0, x€ Q- (44)
= W@ —{W(@}s=g=0 (45)

Consequently, the operator (38) is invertible.
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Due to the general theory of pseudodifferential operators, it then
follows that the operators

D=2"'1+K : H.(S) — H.(S) (46)
: B! (S) — B _(9) (47)

are invertible as well for arbitrary t € R, p > 1 and 1 < g < oc.

This leads to the following existence result.
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THEOREM 1. The Dirichlet problem (D)™ with arbitrary boundary

1—1
function f € B, " (S) is uniquely solvable in the space Wp1 (Qt),
p > 1, and the solution is representable as a double layer potential

u(z) = W(g)(z), =z¢€Q, (48)

1—1
where the density vector function g € B, 7 (S) is defined by the
uniquely solvable integral equation

Dg=(2"'I+K)g=7f on S. (49)
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THEOREM 1. The Dirichlet problem (D)™ with arbitrary boundary
-1

function f € B;,pp(S) is uniquely solvable in the space Wp1 (Q1),

p > 1, and the solution is representable as a double layer potential

u(z) = W(g)(z), =z¢€Q, (48)

1—1
where the density vector function g € B, 7 (S) is defined by the
uniquely solvable integral equation

Dg=(2"'I+K)g=7f on S. (49)

In addition, if f € By, ,”(S) fort > 1 and p > 1, then g € Bp* (S)
and u € Bt _(QT).

pb,p

In particular, f € C®(S) = u € C®(QT).
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Single layer approach: If we look for a solution to the same
Dirichlet problem as a single layer potential,

u(z) = V(g)(z), =€Q . (50)
we arrive at the integral equation for g,
Hg=f on S. (51)
The operator
—H : Hj*(S) — HZ(S) (52)

is strongly coercive, i.e. (—Hep, p)s > C ||¢]|? .. , implying that
H, %(S)
the operators

H : H.(S) — H.T(S) (53)
: B! (S) — BLTL(S) (54)

are invertible fort € R, p>1, 1< g < oc.
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Any solution u of the Laplace equation of the class Wz}(ﬂ"‘) with
p > 1 and t > 1 can be uniquely represented as a single layer
potential:

uw(z) = V(H1f)(z) in QF with f:={u}l. (55)
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Any solution u of the Laplace equation of the class Wz}(ﬂ+) with
p > 1 and t > 1 can be uniquely represented as a single layer
potential:

uw(z) = V(H1f)(z) in QF with f:={u}l. (55)
Steklov-Poincaré operator:

(55) = {Onu(x)} = (—2"'T+K)H H{u}t  (56)

A= (—2"1T+K)H? (57)

A: B! (S) — By 1(S) (58)

Vi € HZ(S): (AY, ), >C1 19|l 1 — Co|[¥lluosy (59)

HZ(S)

A is a pseudodifferential operator of order +1 with positive principal
homogeneous symbol and with index equal to zero.

This operator plays a crucial role in the study of mixed BVPs.
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Indirect BIE method (Potential method) for the Neumann problem:

Au=0 in QT, {B,u}tT =F on S =0QT. (60)
Look for a solution as a single layer potential,
u(x) = V(h)(x), =€ Q. (61)

The Neumann boundary condition and jump relations for the single
layer potential lead to the Fredholm-Riesz integral equation for h,

Nh= (-27'T+K)h=F on S. (62)
dim Ker (=211 + K) = dim Ker (=271 T + K) = 1
Ker (=2 1T+ K) = {1} and Ker(—2"1T+4K) = {H 11}

Necessary and sufficient condition for solvability of integral equation
(62) and of the interior Neumann problem read as:

/ F(y)dS =0 on S. (63)
S
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THEOREM 2. The Neumann problem (N)™ with a boundary function

_1
F € By g (S) satisfying the necessary orthogonality condition (63),
is solvable in the space W (1), p > 1, modulo a constant and
solutions are representable in the form of single layer potential

u(x) = V(h)(z), = €QT, (64)

_1
where the density vector function h € B, ;5 (S) is defined modulo
the summand hg = const (‘H~'1) by the integral equation

Nh=(2'T+K)h=F on S. (65)

t—1—21

If F € Bp,p1 ?(S) fort > 1 and p > 1, then u € W} (QT).

In particular, F € C*(S) = u € C>®(Qt).
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Indirect BIE method (Potential method) for the Mixed problem:

Au=0 in QT, u € W, (QT), (66)
{u}t = f* on Sp, f* € Bpp¥(S),  (67)
{O,u}" = F* on Sy, F* € B, 2 (S). (68)

Let f. be some fixed extension of the function f* from Sp onto the
whole of S preserving the space:

1—1
fe € Bpp”(S), 7T fe=T". (69)
Look for a solution as a single layer potential:
: ~1—1
u(z) = V<7't_1(fe + go))(a:) with ¢ € Bpp”(Sn), (70)

where ¢ is a sought for function.
Conditions (66) and (67) are satisfied automatically, while the Neu-
mann condition (68) leads to the pseudodifferential equation on Sp:
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rs Ap=Q" on Sy, (71)
~1—1 -1
o € Byp? (Sn), Q" =F" —r, Af. € Byi(Sn) (12)

where A := (=271 1 + IC) H 1 is the Steklov-Poincaré operator.
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rs Ap=Q" on S, (71)
~1—1 1
0 € Brp? (Sn), @ = F" —r, Af. € Bpi(Sn) (72)
where A := (=211 + K) H ! is the Steklov-Poincaré operator.

The following operator is continuous for s € R, p > 1,1 < q < oc:

A : B _(Sn)— B '(SN). (73)

r »q

SN
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rs Ap=Q" on S, (71)
~1—1 1
¢ € By’ (Sn), @ =F* —r, Afc € By3(Sn) (72)

where A := (=211 + K) H ! is the Steklov-Poincaré operator.

The following operator is continuous for s € R, p > 1,1 < q < oc:

A : B _(Sn)— B '(SN). (73)

r »q

SN
The operator (73) is invertible if [Vishik-Eskin; Shargorodski]

1 1 1
——1<s— =< —. (74)
P 2 p
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rs Ap =Q" on Sn, (71)
~1—1 -1
¢ € By’ (Sn), @ =F* —r, Af. € Byi(Sn) (72)
where A := (=271 T + K) H ! is the Steklov-Poincaré operator.

The following operator is continuous for s € R, p > 1,1 < g < oc:

’I"SNA : p,q(SN) —> BS 1(SN) (73)
The operator (73) is invertible if [Vishik-Eskin; Shargorodski]
1 1 1
- —l<s—=-—< —. (74)
p 2 p

(714) = rg A: ézl,,;; (Sny) — By 5 (Sn) is invertible and (71)
is uniquely solvable if

4
§<p<4. (75)
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Pseudodifferential operators on manifolds with boundary:
[Vishik-Eskin; Shargorodski]

THEOREM Let S; € C* be a compact, 2-dimensional, non—self—
intersecting, two—sided surface with boundary 85, € C°°, and s € R,
1 < p<oo, 1< qg< oo. Further, let B be a pseudo—differential
operator of order € R on S; having a uniformly positive principal
homogeneous symbol, i.e., S(B;y,£) > co > 0fory € S1, € € R?
with |£| = 1, where ¢ is a constant.

Then the operators

B: H:(S1) — H:7*(S1) (S1) = B:.*(S1)] (76)

[ p.q

are Fredholm operators of index zero if
1/p—1<s—a/2<1/p. (77)

Moreover, the null-spaces of operators (76) are the same (for all
values of the parameters ¢ € [1,+o0] and p, s) provided p and s
satisfy inequality (77).
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EXISTENCE THEOREM. Let 4/3 < p < 4, and f* € By ,” (Sb),

-1
F* € B, 5 (SN). The mixed problem (M) is uniquely solvable in the
space WI}(Q"') and the solution is representable as a single potential

u(z) = V(H " (fe + ¢))(2), (89)

where f. € [B,l,;,E (S)]3 is some fixed extension of the function f*

from Sp onto the whole of S, while ¢ € By ,”(Sx) is defined by
the uniquely solvable elliptic pseudodifferential equation

rs . Ap=Q" on Sy, (90)

where A is the Steklov-Poncaré operator and Q* = F* —r, _Af..
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EXISTENCE THEOREM. Let 4/3 < p < 4, and f* € By ,” (Sb),

-1
F* € B, 5 (SN). The mixed problem (M) is uniquely solvable in the
space WI}(Q"') and the solution is representable as a single potential

u(z) = V(H (fe + ¢))(2), (89)

where f. € [B,l,,;5 (.S’)]3 is some fixed extension of the function f*

from Sp onto the whole of S, while ¢ € Bp,” (Sn) is defined by
the uniquely solvable elliptic pseudodifferential equation

rs Ap=Q" on Sy, (90)

where A is the Steklov-Poncaré operator and Q* = F* — Ts. Afe.
If, in addition,

f* e Cc*(Sp), F*eC*Sn), a>0, (78)

thenU € N [CP(Q1)]%, with k= min{a, %} > 0.
B< K
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DIRECT METHOD FOR THE DIRICHLET PROBLEM

Au=® in QF, ®cL,(Q") = ue HY°QT,A), (D1)

{u}d =Ff on 8, f € HZ(S). (D2)
Green’s third formula in Q1 and its trace on S:
u = No+(Au) + W({u}t) — V{0pu}t) in QF, (G3)

[—27 4+ K|{u}t — H{Opu}t = —{Ng+(Au)}E on S. (GB)
Substitute here the data of the Dirichlet problem
u+ V(¢) = No+(®) + W(f) in QF, (E1)
Hip = {No+(®)}E +[—27'T+K]f on S, (E2)
where ¢ = {0, u}T.

Consider (E1)-(E2) as a system with respect to segregated pair of
unknowns (u, ) € Hy(QT) x H, 2(9).
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{ u + V(1) = No+(®) + W(f) in QF, (E1)
Hp = {Ng+(®)}s +[-2"*T+K]f on S. (E2)
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{ u + V(1) = No+(®) + W(f) in QF, (E1)
Hp = {Ng+(®)}t +[-2"*T+K]f on S. (E2)

The Dirichlet problem is equivalent to system (E1)-(E2):

i) If u € H'°(Q21, A) solves the Dirichlet problem, then the pair
2 1
(u, 1) with ¢ = {8,u}T € H, 2(S) solves system (E1)-(E2);

(ii) If a pair (u,v) € Hy°(Q1,A) x H;%(S) solves system
(E1)-(E2), then v» = {8,,u}™ and u solves the Dirichlet problem.
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{ u + V(1) = No+(®) + W(f) in QF, (E1)
Hp = {Ng+(®)}t +[-2"*T+K]f on S. (E2)

The Dirichlet problem is equivalent to system (E1)-(E2):

(i) If w € HY° (221, A) solves the Dirichlet problem, then the pair
(u, 1) with ¢ = {8,u}T € H, 2(S) solves system (E1)-(E2);

(ii) If a pair (u,v) € Hy°(Q1,A) x H;%(S) solves system
(E1)-(E2), then v» = {8,,u}™ and u solves the Dirichlet problem.

Proof follows from the properties of potentials:

(i) u= No+(Au) + W({u}") = V({nu}T) in Q75 (G3)
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{ u + V(1) = No+(®) + W(f) in QF, (E1)
Hp = {Ng+(®)}t +[-2"*T+K]f on S. (E2)

The Dirichlet problem is equivalent to system (E1)-(E2):

i) If u e Hy°(Qt+, A) solves the Dirichlet problem, then the pair
2 1
(u, 1) with ¢ = {8,u}™ € H, 2(S) solves system (E1)-(E2);

(ii) If a pair (u, ) € Hy°(Q1, A) x H;%(S) solves system
(E1)-(E2), then ¢» = {8,,u}™ and u solves the Dirichlet problem.

Proof follows from the properties of potentials:
(i) u= No+(Au) + W({u}") = V({du}T) in QF; (G3)

(i) (El)= Au=& with ® € Lo(Q");
(E1)*—(E2) = {u}T =f on S;

(G3)—(E1) = V ({8,u}T—4)=0in QF = ¢p={8,u}* on S.
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Introduce the operator generated by the left hand side expressions of
system (E1)-(E2):

[ty

We have just shown that the operator

D: HY(QT,A) x H, 2(S) —
s HY(QF,A) x HZ(S) (80)

Is invertible.

It is easy to see that the following operators are invertible as well

D : HX(QF) x Hy ?(S) — HL(QF) x H2(S) (81)

©: HI(QF) x H 2(S) — HI(QF) x Hy T2 (S) (82)
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THANK YOU!
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