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. Formulation of the Dirichlet, Neumann, and Robin type
BVPs for PDEs with variable matrix coefficients.

. Localized parametrix. Classes of cut off functions.
. Harmonic localized parametrix approach: Green’s formulas.

. Properties of localized potentials and reduction to Localized
Boundary—domain integral Equations (LBDIE) systems.
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. Some auxiliary theorems.

. Investigation of the localized LBDIE systems.
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Formulation of the problems

Consider a uniformly elliptic second order scalar partial differential
operator

9] ou
Az, 0) u = — (ap:(z) —2), 1
(@00 u = 5 (ars(@) 5.-) (1)
where ar; = ajr, € C®(R3), a = [akj}ng is a positive definite

matrix, i.e., there are positive constants c; and c; such that

c1|€]? < apj(x) €y < c2|§]* VxeR? VEER (2)
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Formulation of the problems

Consider a uniformly elliptic second order scalar partial differential
operator

9] ou
A(x,0z) u = —— (akj (x) —), (3)
8213k Bwj
where ai; = ajr € C*(R?), a = [a’“ﬂ'}3x3 is a positive definite
matrix, i.e., there are positive constants c; and c; such that
C1 |€|2 Sakj(a:)ﬁkﬁj SCZ |£|2 VSEERS, V€ER3. (4)

Let QT C R3 be an open bounded domain with a simply connected
boundary 90T =S € C>~, Qt =QTUS. Q™ :=R3\ Q+.

The symbols {u}$ = [u]t = ut and {u}g = [u]~ = u~ denote
one-sided limits (traces) on S from Q7 and 2, respectively;

n = (ny,n2,n3) - the outward unit normal vector to S.
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The Sobolev-Slobodetskii and Bessel potential spaces:
W"(Q)=W;=H),r>0,and H* = H., t € R,

HY°(QT;A) :={uec H(QT) : Auec H°(QT)}. (5)

The co-normal derivative operators on the surface S for sufficiently
smooth functions are defined by the relations

T (2, n(z), 8:) u(@) := ai;(2) ni (@) {du()}t, z€S. (6)

The co-normal derivative operator can be extended by continuity to
functions u € H1°(Q1; A) by Green’s first formula

(TFu, v‘|‘>s = /[fv Au + agj(x) (8ju) (Oxv)|de, (7)

Q-+

where v € H'(Q) and (-, -), denotes the duality between the mu-
tually adjoint spaces H—2(S) and Hz(S).
Evidently, T7u € H~2(S) is well-defined by (7).
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Find a function u € H1:°(QT; A) satisfying the differential equation

A(z,9)u=f in QF, fe H(QM),

and one of the following boundary conditions:

Dirichlet condition -

{u}t =¢, on S, ¢, € H(S);
Neumann condition -

TTu =1, on 8, W, € H™2(S);

Robin condition -

TYu+ k{u}™ =, on S, wleH_%(S), k > 0.

(8)

(9)

(10)

(11)

Equation (8) is understood in the distributional sense, the Dirichlet
type boundary condition is understood in the usual trace sense and the
Neumann type condition for the co-normal derivative is understood

in the generalized functional sense.
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Uniqueness

The above formulated Dirichlet and Robin BVPs are uniquely solv-
able, while the condition

/ f(x) dz = (o, 1), (12)

is necessary and sufficient for the Neumann problem to be solvable.
A solution of the Neumann problem is defined modulo a constant
summand.

Proof follows from Green’s first formula

(T+u, uwt) = / w Au + ag;(2) (8;u) (Bpu)|dz  (13)

and uniform positive definiteness of the matrix [ag;(x)]3xs3-
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Classes of localizing functions

DEFINITION. We say x € X* for integer k > 1 if x(z) = x(|z|),

X € Wlk(oa o0), x(0) =1, and
oy(w) >0 VweR, (14)

where R

(
Xs(@) for we R\ {0},

Ty (W) 1=« ii (15)
/ ox (0)dg for w=0,

\ Jo

X s(w) denotes the sine-transform of the function 1y,

Xs(w) := /000 x (0) sin(ow) do. (16)
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The class Xfl"_ is defined in terms of the sine-transform. The follow-
ing lemma provides an easily verifiable sufficient condition for non-
negative non-increasing functions to belong to this class.

LEMMA 1. Let k > 1. If x € W{(0,00), x(0) = 1, x(0) > 0 for
all o € (0,00), and x is a non-increasing function on [0, +00), then
x € X%.
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The following lemma provides an easily verifiable sufficient condition
for non-negative non-increasing functions to belong to this class.

LEMMA 1. Let k > 1. If x € W¥(0,00), x(0) = 1, x(g) > 0 for
all o € (0,00), and x is a non-increasing function on [0, +00), then
x € X%&.

Examples for x with a compact support B(0,¢):

jz|* 1%
[1——] for |x| < e,

X1 (%) = g2 (17)
0 for |x| > e,
exp [ Gl } for |x| <e

X () = |x|? — 2 ’ (18)
0 for |x| > e,

X, € X5 NC 1R, x, € X NC®(R?). (19)

Below we always assume that x € X* N C?(R?) with k£ > 3 if not
otherwise stated.
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Localized parametrix-based operators

Define a harmonic localized parametrix corresponding to the funda-
mental solution I'(x) := —[4 « |z|]~! of the Laplace operator

x(x)

P(@) = Py() = x(z) D(@) = = =5

(20)

where Y is a localizing function.
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Localized parametrix-based operators

Define a harmonic localized parametrix corresponding to the funda-
mental solution I'(x) := —[4 « |z|]~! of the Laplace operator

x(x)

P(@) = Py() = x(z) D(@) = = =5

(21)

where x is a localizing function.

For u,v € H»°(Q; A) the following Green’s second identity holds

/ (v Au— wAv]de = (THu, o). — (T, ut) .. (22)

S Ch
Take u € C?(Q+) and v(x) = P(x — y), where y is an arbitrarily
fixed interior point in Q7.
Evidently v € C%(QF), where QF := Q1 \ B(y, ¢) with € > 0, such
that the ball B(y,e) C QT, and thus we can write Green’s second
identity for the region Q7 :
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/ﬂ;F P(x —y) Az, 9z)u(x) — u(z) A(x,8,)P(x — y)] de =

— [S  [P@—y) T u@ (T (@, 0.) P(e—y)}u* @)] S, (Ge)

0-14



/m P(z — y) Az, Oz)u(z) — u(z) A(z,9:)P(z — y)| de =
— SUs: [P(iv—y)T+u(w)—{T(w, 833)P(m—y)}u+(w)]dsw. (G&')

Here A(x,d.)P(x — y) generates a Cauchy singular kernel
Az, 0z)P(z—y)=pB(x) §(x—y)+v.p. A(z, ) P(z — y), (23)
with 8(z) = 37" [a11(x) + az22(z) + ass(z) ],

ar;(x) 02
47  Ox0x; |Tr — Y|
+ R(z,y),
R(z,y) = O(|z — y|77). (25)

v.p. A(x,0)P(x —y) = v.p.| — + (24)

REMARK. If ak;(x) = a(x)dk;, then the singular part in (24) van-
ishes and A(x, ;)P (x — y) becomes a weakly singular kernel. This
is a principal difference between the isotropic and anisotropic cases.
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By direct calculations one can deduce

lim /2 P(z — y)T(z, ,)u(z) dS, = 0, (26)

e—0

e—0

lim | {T(2,0,)P(c )} u(e) dS, = —B(y) u(y).  (27)
e
Introduce the singular integral operator
Nu@) = vp. | [A@,0.)P(—y)]ue) do
Q-+

= ;1_1;1% - |[A(x,0,)P(x — y) ]| u(x) de. (SIO)
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By direct calculations one can deduce

e—0

lim /2 P(x —y)T(x,0z)u(x)dS; = 0, (26)

lim /2 (T(2,0,)P(x — y)} u(z) dSs = —B(y) u(y).  (27)

e—0

Introduce the singular integral operator
Nu@) = vp. | [A@,0.)P(—y)]u(e) do
Q

= ;1_1;[(1) - |A(x, 0,)P(x — y) | u(x) dx. (SIO)

Passing to the limit in Green’s second formula for the domain (2. as
e — 0, we obtain the localized harmonic parametrix-based
Green’s third identity:

B)u(y) +Nu(y) -V (THu)(y) + W(ut)(y) =P (Au)(y), (G3)
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V@ = [ Pl - pa@ds.= [ X F= g@)as.. (28)

W(g)(y) = — /S [T(z,n(2),8,) Pz — )] g(x)dSes  (29)

P(h)(y) :zfﬂf(a: — o) h(z)de = —/Q XUz =y vae. (30)

+ 4m|x — y|

Due to the density of C%(Q+) in H°(Q1; A), Green’s third identity
(G3) is valid also for u € HV?(Q1; A).

If the domain of integration is R® we use the notation P and N for

P and N .
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Properties of localized potentials

Introduce the LBDIO generated by the direct values of the localized
single and double layer potentials on §:

Valy) = — /S P(z — y) g()dSs, y €S, (31)
Waly) = — /5 (T(x,8,) P(z — y)] g(z)dS., y €S, (32)

Note that V is a weakly singular integral operator (pseudodifferential
operator of order —1) and represents a compact perturbation of the
harmonic single layer operator;

The operator W is a singular integral operator (pseudodiffer-
ential operator of order 0).

0-19



Properties of the localized volume potential
The complete symbol &(P; &) of the operator P is given by formula:

c ) — _X(CI}) _ 1 X(:E) izt 3
S(Pi€)=Fonre[- 1| = o/ STeTedn, £ R (33)
R3

LEMMA 1. Let x € X_’f_ with £ > 1. Then
(i) S(P; -) € C°(R?) and &S(P;&) < 0 for all £ € R3,
(ii) for & # 0 the following equality holds

— (-1
S(P;¢) = ) e x 2™ (0)—
m=0
1 S km
— o [, sin (lele+ )X ¥ (@)de. (39

where k* is the integer part of (k — 1) /2.
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LEMMA 2. Let x € X% with k > 1. There exist positive constants
c1 and ¢ such that

c2 (1+ [€°) 7 <|S(P;€)|<ei (1 + [€*)7" forall £ € R, (35)
and the following operator is invertible
P: H°R?® — HT?(R3®) VscR. (36)
In particular,

P : H°(Q'T) = H?*(Q).
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Properties of the localized layer potentials

The localized single layer potential can be represented in terms of
the localized volume potential,

V()(y) = — /P(w —y)Y(x)dSz = —(vsP(- —y),P)s =
S

=—(P(- — y),’y;"’gb)Rs = —P<’Y;'¢> (y), (37)

where 77 = d0s denotes the operator adjoint to the trace operator

vs : HY(R®) — H'™2(S), t>1/2, (38)
and possesses the following mapping property
v*: H274(9Q) — Hg'(R?), t>1/2, (39)

where the space Hgt consists of distributions from H ~*(R?), whose
supports belong to S = 02, i.e. supp 7. CS.
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In turn, the localized double layer potential can also be represented
in terms of the localized single layer potential,

W) = - [ [T(2,0,) P~ )] ¢(@)dS. =

= —/S Lapj(x) n(x) 0z, P(x — y) | ¢(x) dS,

— 8y, V(ar; nie)(y), yER®\S. (40)
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In turn, the localized double layer potential can also be represented
in terms of the localized single layer potential,

W) = — [ [T@0,) P~ )] ¢(x) dS, =
S
= — [ lak;(@) mi(@) 02, Pz — v) | o(x) dS,
= =08y, V(ar;n ) (y), y R\ S. (41)
LEMMA 3. The following jump relations hold on S:
{(Vy}E = vy, % € H%(S), (42)
{(WelE = F e+ We, p € H2(S), (43)
where
1Y) = = a; (W) me(¥) ni(y) > 0, y € S. (44)

2
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LEMMA 4. The following operators are continuous
V:H 3(8) » H(Q1; A)
W : Hz(S) » H°(QT;A)
V: H 2(S) —» H(S),
W : Hz(S) — H=(S),

ESSENTIAL REMARK: HL0(Q+;A) # HLO(Q+; A)
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TWO BASIC LEMMAS
BASIC LEMMA 1. Let ¢ € H™z(89Q), f € H°(QT). If

V(¥)(y) + P(f)(y) =0 in QF,
then 9» =0 on 9N and f = 0 in Q.

[Lemma 6.3 in

O. Chkadua, S. Mikhailov, and D. Natroshvili, Analysis of some local-

ized boundary-domain integral equations, Journal of Integral Equa-
tions and Applications, 21, No. 3 (2009), 407-447.]
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Now, let us recall localized Green’s third identity
B(y)u(y) +Nu(y) =V (THu)(y) + W(uh)(y) =P (Au)(y) (49)
and consider the following counterpart of relation (49):

By)u(y)+Nu(y) =V () (y) +W(p)(y) =F(y)+P(f)(y), (50)

where

YEH™2(S), p€H?(S), FEH"°(QT;A), feH(Qt) (51)

BASIC LEMMA 2. If u € H'(Q™1) solves equation (50), then u €
HLO(QF, A).
COROLLARY 5. If x € X3, then the following operator is bounded

BI+N : HY(QT,A) - HM(QT; A).
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The singular operator

Nu(y) = v-p. | [A@0:)P(z —y)]u() do,
can be represented as
Nu(y) = —B(y) u(y) + 6, P(ar Oku)(y), VyeR®  (52)

and using the mapping properties of the operator P, we deduce that
the following operator is continuous

N : H*(R*) - H*(R®), s€R.

Denote by E, the extension operator by zero from Q7 onto Q.
For a function u € H'(Q2T) we have (note that Equ ¢ H*'(R3)!!!)

(NMu)(y) = (NEou)(y) for y € Q7. (53)
Due to (52), this implies continuity of the operator
r \NE,: HY(Q") - H(Q7). (54)
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Rewrite Green'’s third formula for u € HY'%(Q1; A) in a form more
convenient for our further analysis:

[BI+ N] Eou(y) — V(TTu)(y) + W(ut)(y) =
— P(A(CE‘, 821:)'“) (y), y € Q_I_a (55)

where I stands for the identity operator.
The trace of equation (55) on S reads as:

Nt Equ — V(TTu) + (8 — p) ut + W(ut) =
— P+ (A(a:, Bm)’u,) on S. (56)

where Ntw := {Nw}d and Ptw := {Pw}{.

(55) and (56) are basic equations for the LBDIE
method.
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Reduction to LBDIE systems
and equivalence theorems
LBDIE system for the Dirichlet problem:

Az, 8,)u = f in Qf, fe H(QM),
{u}t =@, on 8, @, € Hi(S);
Equations (55) and (56) can be rewritten as follows

[B1+ N] Eou — V() = P(f) — W(p,) in QF,

Nt Eou — V() = PT(f) — (8 — 1) ¢, — W(sp,) on S,

where ¢ := Ttu € H—2(8S).

(57)

(58)

(59)
(60)

One can consider these relations as the LBDIE system with respect

to the segregated unknown functions u and .
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EQUIVALENCE THEOREM

THEOREM 6. Let x € X2, ¢, € HZ(S) and f € HO(QT).

(i) If a function u € H}9(QT; A) solves the Dirichlet BVP (57)-(58),
then the solution is unique and the pair

(u,9) € HYO(QF; A) x H™3(S)
with
Y =T"u, (61)

solves the LBDIE system (59)-(60).

(i) Vice versa, if a pair (u,¥) € HY°(Q1; A) x H~2(S) solves
LBDSIE system (59)-(60), then the solution is unique, the function
u solves the Dirichlet BVP (8)-(9), and equation (61) holds.
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PROOF. (i) The first part of the theorem directly follows form
Green’ third formula.

(i) Let a pair (u,v) € HV°(Q1; A) x H~2(S) solve the LBDIE
system (59)-(60). Taking the trace of (59) on S and comparing with
(60) we get

~vtu = o on S. (62)

Further, by BASIC LEMMA 2, u € HY%(Q2T; A) and we can write
Green'’s third formula (55) which in view of (62) can be rewritten as

[BI + N] Eou—V (TTu)=P(A(z, 0z)u) —W(p,) in Q. (63)
Comparing the relations (59) and (63) we deduce
V(T u — ¢)+P(A(z,8;)u—f)=0 in Q. (64)

Whence by BASIC LEMMA 1, A(z,0,)u = fin QT and TTu =
on S.

Thus u solves the Dirichlet BVP and equation (61) holds. ]
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Invertibility of the Dirichlet LBDIO
LBDIE system for the Dirichlet problem:

[BI+N]Eou — V() = P(f) — W(p,) in QF, (65)
N*Eou —V(¢) = P (f) — (B8 — 1) ¢, — W(p,) on S, (66)

Denote by ® the localized boundary-domain integral operator gener-
ated by the left-hand side expressions in LBDIE system (65)—(66),

oo | T (BI+N)E, —r .V | (67)
NTE, -y
r  NEp : H'(QT) - H(QT), (68)
V : H2(S) —» HY(Q"), (69)
J
D HY(QY) x H 2(S) —» HY(QT) x Hz(S).  (70)

INVERTIBILITY of (70) is quite nontrivial!
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The main goal is to show that the equation

u L Fl
°|3]=15] ™)
I.e., the system
T+ (/6 I+ N) Eou — V(va) = F1 in Q—l—a (72)
Nt Equ — V() = F> on S, (73)

is uniquely solvable in the space H'(Q1) x H~z(S) for arbitrary
F, € HY(Q1) and F, € Hz(8S).

Invertibility of the operator ® is shown in several steps.
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STEP 1: Fredholm properties of the domain operators

The principal homogeneous symbols of the singular integral operators
N and 81 + N read as

€12

A(y,
So(BI+N;y,£) = |(§|2£)

A(y,€) == ap(y) & &, By) =371 [afll + a22 + 033} (706)

6O(N§ Y, 5) — , Yy € Rsa VE € R* \ {0}9 (74)

>0, Vy € R%, V€ e R?\ {0}. (75)

These principal homogeneous symbols are even
rational homogeneous functions in £ of order O.

This plays a crucial role in the study of the operator .
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Introduce the notation:

Bzrﬂ+(BI+N)EO. (77)
LEMMA 7. The operator

B : H'(QT) - H'(QT) (78)

iIs Fredholm with zero index.
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Introduce the notation:

B=r  (B1+N)E,. (79)
LEMMA 7. The operator

B : H(QT) - HY(QT) (80)
is Fredholm with zero index.

Proof. Since the principal homogeneous symbol &y (B;y, &) of the
operator B is an even, rational, positive, homogeneous func-
tion of order 0 in ¢ € R3\ {0},

AW, &) _ ar(y)éeé
€17 & +E3+E3
it follows that the factorization index s of the symbol (81) equals to

zero, and due to the general theory of pseudodifferential operators we
deduce that the operator (80) is Fredholm for all s > 0 [G.ESKIN].

So(B;y,§) = > 0, (81)
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To show that Ind B = 0 we use the fact that the operators B and
Bt:rQJr[(l—t)I—l—t(BI—I—N)]EO, t € [0,1], (82)

are homotopic. Note that By = T, IE, is invertible and B; = B.
For the principal homogeneous symbol of the operator B; we have

. 2
So(Bt3y, &) = (L= OIS + ¢ am(y)eeds > 0.

€12

Since S (By; y, &) is rational, even, and homogeneous of order zero
in £, we conclude that the operator B; : H*(Q1) — H*(QT) is
Fredholm for all s > 0 and for all t € [0, 1].

Therefore Ind B; is the same for all t € [0, 1]. Since By = I is invert-
ible, we get Ind B = Ind B; = Ind B; = Ind Bg = 0. L]
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STEP 2: Fredholm properties of the operator ®

LEMMA 8. The operator
D HY Q) x H 2(S) » HY Q1) x Hz(S).  (83)
is Fredholm with zero index.

Proof. Recall that

B —r .V
D = h : (84)
NTE, =l Z

We apply Vishik-Eskin theory for pseudodifferential operators based
on the local principal which states that since the operator B —=
r (B1 4+ N) Ep is Fredholm with zero index, it follows that the

operator (83) is Fredholm if the so-called generalized Sapiro—
Lopatinskii condition holds.
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To formulate the Sapiro-Lopatinskii condition we have to introduce
two operators IIT and IT’:

N i T h(€',m3) dns
() = 5 tim [ ZSUEREE (g
1
(9)(€) = —, - [ 9(€.¢)dc. (86)
J

§= (5,753) S RS? 5, — (519 52) € R? \ {0}9 (87)

where g(&’, ) is a rational function of a complex variable ¢ and '™
is @ contour in the lower (-complex half-plane, orientated anticlock-
wise and enclosing all the poles of the rational function g(&’, () with
respect to (.
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Sapiro-Lopatinskii condition for the operator ©:

N x| SoMNs5y,) o So(Psy,-) "n_
ow,s)=—1 6f)+)(B;.7J,-)H <68_)(B;y,-)>] &)

— &o(V5y,¢) #0, (88)
Vf’z (51362) #O’ ‘v’yE BQ,

So(N), So(B), So(P), and So(V) are the corresponding principal
homogeneous symbols

6(()+) (B) and GB_)(B) denote the so called “plus” and “minus” fac-

tors in the factorization of the symbol Sg(B;y, &) with respect to
the variable &3:

(+)

So(B) = &, (B) &, (B).
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By direct calculations it is shown that the Sapiro-Lopatinskii

condition for the operator ® holds!
Therefore the operator 3 is Fredholm.

Further it is shown that the operator

B —r .V
Dy = R with ¢t € [0, 1]
tNTE, %

is homotopic to the operator ® = ©; and the Sapiro-Lopatinskii
condition for the operator ®, is also satisfied for all t € [0, 1], which
implies that the operator

D, : H'(QT) x H™3(S) » H'(QT) x H3(S)

is Fredholm and has the same index for all t € [0, 1].
On the other hand, since the upper triangular matrix operator g
has zero index, it follows that

Ind® =Ind®; =Ind®; =Ind®g =0.
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THEOREM 9. The operator
© :HY(QT)x H 2(S) - HY(Q1) x HZ(S).  (89)
is invertible.

Proof. Since the operator (89) is Fredholm with zero index it remains
to show that the null space of the operator 2 is trivial.

Assume that U = (u,v)! € HY(QT) x H~2(S) is a solution to
the homogeneous equation ® U = 0, i.e.
r  (BI+N)Eou—V(¢) =0 in QT, (90)
NT Eou — V() =0 on S, (91)
By BASIC LEMMA 2, from (90) it follows that u € HV°(Q™T, A).

Further, by EQUIVALENCE THEOREM, we conclude that u solves
the homogeneous Dirichlet problem and the relation T7u = 1 holds
on S, which implies that U = (u, 1)) ' is zero vector. Thus the null

space of the operator D is trivial in the class H'(QT) x H~z(S).
Consequently, the operator ® is invertible. ]
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COROLLARY 10. The operator
D : HY(QF,4) x H 3(S) —» HY(Q1,A) x H3(S) (92)

Is invertible.

For a localizing function x of infinite smoothness the following regu-
larity result holds.

THEOREM 11. Let x € X?° and 7 > 0. Then the operator

© : H™TH Q) x H3(S) —» H™TH(Q1) x H™t3(S)  (93)

Is invertible.
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THANK YOU!
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