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Formulation of the problems

Consider a uniformly elliptic second order scalar partial differential
operator

A(x, ∂x)u =
∂

∂xk

(
akj(x)

∂u

∂xj

)
, (1)

where akj = ajk ∈ C∞(R3), a =
[
akj

]
3×3

is a positive definite

matrix, i.e., there are positive constants c1 and c2 such that

c1 |ξ|2 ≤ akj(x) ξk ξj ≤ c2 |ξ|2 ∀ x ∈ R3, ∀ ξ ∈ R3. (2)
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Formulation of the problems

Consider a uniformly elliptic second order scalar partial differential
operator

A(x, ∂x)u =
∂

∂xk

(
akj(x)

∂u

∂xj

)
, (3)

where akj = ajk ∈ C∞(R3), a =
[
akj

]
3×3

is a positive definite

matrix, i.e., there are positive constants c1 and c2 such that

c1 |ξ|2 ≤ akj(x) ξk ξj ≤ c2 |ξ|2 ∀ x ∈ R3, ∀ ξ ∈ R3. (4)

Let Ω+ ⊂ R3 be an open bounded domain with a simply connected
boundary ∂Ω+ = S ∈ C∞, Ω+ = Ω+ ∪ S. Ω− := R3 \ Ω+.

The symbols {u}+
S ≡ [u]+ ≡ u+ and {u}−

S ≡ [u]− ≡ u− denote
one-sided limits (traces) on S from Ω+ and Ω−, respectively;

n = (n1, n2, n3) - the outward unit normal vector to S.
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The Sobolev-Slobodetskii and Bessel potential spaces:

W r(Ω) = W r
2 = Hr

2 , r > 0 , and Ht = Ht
2, t ∈ R,

H1, 0(Ω+;A) := {u ∈ H1(Ω+) : Au ∈ H0(Ω+) } . (5)

The co-normal derivative operators on the surface S for sufficiently
smooth functions are defined by the relations

T+(x, n(x), ∂x)u(x) := akj(x)nk(x) {∂ju(x)}+, x ∈ S. (6)

The co-normal derivative operator can be extended by continuity to
functions u ∈ H1, 0(Ω+;A) by Green’s first formula⟨

T+u , v+
⟩
S
=

∫
Ω+

[
v Au+ akj(x) (∂ju) (∂kv)

]
dx, (7)

where v ∈ H1(Ω) and ⟨· , ·⟩
S
denotes the duality between the mu-

tually adjoint spaces H− 1
2 (S) and H

1
2 (S).

Evidently, T+u ∈ H− 1
2 (S) is well-defined by (7).
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Find a function u ∈ H1, 0(Ω+;A) satisfying the differential equation

A(x, ∂x)u = f in Ω+, f ∈ H0(Ω+), (8)

and one of the following boundary conditions:

Dirichlet condition -

{u}+ = φ0 on S, φ0 ∈ H
1
2 (S); (9)

Neumann condition -

T+u = ψ0 on S, ψ0 ∈ H− 1
2 (S); (10)

Robin condition -

T+u+ κ {u}+ = ψ1 on S, ψ1 ∈ H− 1
2 (S), κ > 0. (11)

Equation (8) is understood in the distributional sense, the Dirichlet
type boundary condition is understood in the usual trace sense and the
Neumann type condition for the co-normal derivative is understood
in the generalized functional sense.
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Uniqueness

The above formulated Dirichlet and Robin BVPs are uniquely solv-
able, while the condition∫

Ω+

f(x) dx = ⟨ψ0 , 1⟩S (12)

is necessary and sufficient for the Neumann problem to be solvable.
A solution of the Neumann problem is defined modulo a constant
summand.

Proof follows from Green’s first formula⟨
T+u , u+

⟩
S
=

∫
Ω+

[
uAu+ akj(x) (∂ju) (∂ku)

]
dx (13)

and uniform positive definiteness of the matrix [akj(x)]3×3.
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Classes of localizing functions

DEFINITION. We say χ ∈ Xk
+ for integer k ≥ 1 if χ(x) ≡ χ(|x|),

χ ∈ W k
1 (0,∞), χ(0) = 1, and

σχ(ω) > 0 ∀ ω ∈ R, (14)

where

σχ(ω) :=


χ̂s(ω)

ω
for ω ∈ R \ {0} ,∫ ∞

0

ϱχ (ϱ) dϱ for ω = 0 ,

(15)

χ̂s(ω) denotes the sine-transform of the function χ,

χ̂s(ω) :=

∫ ∞

0

χ (ϱ) sin(ϱω) dϱ . (16)
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The class Xk
+ is defined in terms of the sine-transform. The follow-

ing lemma provides an easily verifiable sufficient condition for non-
negative non-increasing functions to belong to this class.

LEMMA 1. Let k ≥ 1. If χ ∈ W k
1 (0,∞), χ(0) = 1, χ(ϱ) ≥ 0 for

all ϱ ∈ (0,∞), and χ is a non-increasing function on [0,+∞), then
χ ∈ Xk

+.
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The following lemma provides an easily verifiable sufficient condition
for non-negative non-increasing functions to belong to this class.

LEMMA 1. Let k ≥ 1. If χ ∈ W k
1 (0,∞), χ(0) = 1, χ(ϱ) ≥ 0 for

all ϱ ∈ (0,∞), and χ is a non-increasing function on [0,+∞), then
χ ∈ Xk

+.

Examples for χ with a compact support B(0, ε):

χ1k
(x) =


[
1 −

|x|2

ε2

]k
for |x| < ε,

0 for |x| ≥ ε,
(17)

χ2(x) =

 exp
[ |x|2

|x|2 − ε2

]
for |x| < ε,

0 for |x| ≥ ε,

(18)

χ1k ∈ Xk
+ ∩ Ck−1(R3), χ2 ∈ X∞

+ ∩ C∞(R3). (19)

Below we always assume that χ ∈ Xk
+ ∩ C2(R3) with k ≥ 3 if not

otherwise stated.
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Localized parametrix-based operators

Define a harmonic localized parametrix corresponding to the funda-
mental solution Γ(x) := −[ 4π |x| ]−1 of the Laplace operator

P (x) ≡ Pχ(x) := χ(x) Γ(x) = −
χ(x)

4π |x|
, (20)

where χ is a localizing function.
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Localized parametrix-based operators

Define a harmonic localized parametrix corresponding to the funda-
mental solution Γ(x) := −[ 4π |x| ]−1 of the Laplace operator

P (x) ≡ Pχ(x) := χ(x) Γ(x) = −
χ(x)

4π |x|
, (21)

where χ is a localizing function.

For u, v ∈ H1,0(Ω;A) the following Green’s second identity holds∫
Ω+

[
v Au− uAv

]
dx =

⟨
T+u , v+

⟩
S
−

⟨
T+v , u+

⟩
S
. (22)

Take u ∈ C2(Ω+) and v(x) = P (x − y), where y is an arbitrarily
fixed interior point in Ω+.
Evidently v ∈ C2(Ω+

ε ), where Ω+
ε := Ω+ \B(y, ε) with ε > 0, such

that the ball B(y, ε) ⊂ Ω+, and thus we can write Green’s second
identity for the region Ω+

ε :
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∫
Ω

+
ε

[
P (x− y) A(x, ∂x)u(x) − u(x) A(x, ∂x)P (x− y)

]
dx =

=

∫
S∪Σε

[
P (x−y)T+u(x)−{T (x, ∂x)P (x−y)}u+(x)

]
dSx. (Gε)
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∫
Ω

+
ε

[
P (x− y) A(x, ∂x)u(x) − u(x) A(x, ∂x)P (x− y)

]
dx =

=

∫
S∪Σε

[
P (x−y)T+u(x)−{T (x, ∂x)P (x−y)}u+(x)

]
dSx. (Gε)

Here A(x, ∂x)P (x− y) generates a Cauchy singular kernel

A(x, ∂x)P (x−y)=β(x) δ(x−y)+v.p. A(x, ∂)P (x− y), (23)

with β(x) = 3−1 [ a11(x) + a22(x) + a33(x) ],

v.p. A(x, ∂)P (x− y) = v.p.
[
−
akj(x)

4π

∂2

∂xk∂xj

1

|x− y|

]
+ (24)

+R(x, y),

R(x, y) = O(|x− y|−2). (25)

REMARK. If akj(x) = a(x)δkj , then the singular part in (24) van-
ishes and A(x, ∂x)P (x− y) becomes a weakly singular kernel. This
is a principal difference between the isotropic and anisotropic cases.
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By direct calculations one can deduce

lim
ε→0

∫
Σε

P (x− y)T (x, ∂x)u(x) dSx = 0, (26)

lim
ε→0

∫
Σε

{T (x, ∂x)P (x− y)}u(x) dSx = −β(y)u(y). (27)

Introduce the singular integral operator

N u(y) := v.p.

∫
Ω+

[A(x, ∂x)P (x− y) ]u(x) dx

:= lim
ε→0

∫
Ω

+
ε

[A(x, ∂x)P (x− y) ]u(x) dx. (SIO)
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By direct calculations one can deduce

lim
ε→0

∫
Σε

P (x− y)T (x, ∂x)u(x) dSx = 0, (26)

lim
ε→0

∫
Σε

{T (x, ∂x)P (x− y)}u(x) dSx = −β(y)u(y). (27)

Introduce the singular integral operator

N u(y) := v.p.

∫
Ω+

[A(x, ∂x)P (x− y) ]u(x) dx

:= lim
ε→0

∫
Ω

+
ε

[A(x, ∂x)P (x− y) ]u(x) dx. (SIO)

Passing to the limit in Green’s second formula for the domain Ωε as
ε → 0, we obtain the localized harmonic parametrix-based
Green’s third identity:

β(y)u(y)+Nu(y)−V (T+u)(y) +W (u+)(y)=P
(
Au

)
(y), (G3)
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V (g)(y) :=−
∫
S

P (x− y) g(x)dSx=

∫
S

χ(|x− y|)
4π|x− y|

g(x)dSx, (28)

W (g)(y) := −
∫
S

[
T (x, n(x), ∂x)P (x− y)

]
g(x) dSx, (29)

P(h)(y) :=

∫
Ω+

P (x− y)h(x)dx=−
∫
Ω+

χ(|x− y|)
4π|x− y|

h(x)dx. (30)

Due to the density of C2(Ω+) inH1, 0(Ω+;A), Green’s third identity
(G3) is valid also for u ∈ H1, 0(Ω+;A).

If the domain of integration is R3 we use the notation P and N for
P and N .
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Properties of localized potentials

Introduce the LBDIO generated by the direct values of the localized
single and double layer potentials on S:

V g(y) := −
∫
S

P (x− y) g(x) dSx, y ∈ S, (31)

W g(y) := −
∫
S

[
T (x, ∂x)P (x− y)

]
g(x) dSx, y ∈ S, (32)

Note that V is a weakly singular integral operator (pseudodifferential
operator of order −1) and represents a compact perturbation of the
harmonic single layer operator;

The operator W is a singular integral operator (pseudodiffer-
ential operator of order 0).
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Properties of the localized volume potential
The complete symbol S(P; ξ) of the operator P is given by formula:

S(P; ξ)=Fx→ξ

[
−
χ(x)

4π|x|

]
=−

1

4 π

∫
R3

χ(x)

|x|
ei x·ξdx, ξ ∈ R3 (33)

LEMMA 1. Let χ ∈ Xk
+ with k ≥ 1. Then

(i) S(P; ·) ∈ C∞(R3) and S(P; ξ) < 0 for all ξ ∈ R3,

(ii) for ξ ̸= 0 the following equality holds

S(P; ξ) =

k∗∑
m=0

(−1)m+1

|ξ|2m+2
χ(2m)(0)−

−
1

|ξ|k+1

∫ ∞

0

sin
(
|ξ|ϱ+

kπ

2

)
χ(k)(ϱ)dϱ, (34)

where k∗ is the integer part of (k − 1)/2.
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LEMMA 2. Let χ ∈ Xk
+ with k ≥ 1. There exist positive constants

c1 and c2 such that

c2 (1 + |ξ|2)−1≤|S(P; ξ)|≤c1 (1 + |ξ|2)−1 for all ξ ∈ R3, (35)

and the following operator is invertible

P : Hs(R3) → Hs+2(R3) ∀ s ∈ R. (36)

In particular,

P : H0(Ω+) → H2(Ω+).
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Properties of the localized layer potentials
The localized single layer potential can be represented in terms of
the localized volume potential,

V (ψ)(y) = −
∫
S

P (x− y)ψ(x) dSx = −⟨γSP (· − y), ψ⟩S =

= − ⟨P (· − y), γ∗
S
ψ⟩R3 = −P

(
γ∗

S
ψ
)
(y), (37)

where γ∗
S
= δS denotes the operator adjoint to the trace operator

γS : Ht(R3) → Ht− 1
2 (S), t > 1/2, (38)

and possesses the following mapping property

γ∗
S
: H

1
2−t(∂Ω) → H−t

S (R3), t > 1/2, (39)

where the space H−t
S consists of distributions from H−t(R3), whose

supports belong to S = ∂Ω, i.e. supp γ∗
S
⊂ S.
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In turn, the localized double layer potential can also be represented
in terms of the localized single layer potential,

W (φ)(y) = −
∫
S

[
T (x, ∂x)P (x− y)

]
φ(x) dSx =

= −
∫
S

[
akj(x)nk(x) ∂xjP (x− y)

]
φ(x) dSx

= −∂yj V (akj nk φ)(y) , y ∈ R3 \ S . (40)
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In turn, the localized double layer potential can also be represented
in terms of the localized single layer potential,

W (φ)(y) = −
∫
S

[
T (x, ∂x)P (x− y)

]
φ(x) dSx =

= −
∫
S

[
akj(x)nk(x) ∂xjP (x− y)

]
φ(x) dSx

= −∂yj V (akj nk φ)(y) , y ∈ R3 \ S . (41)

LEMMA 3. The following jump relations hold on S:

{V ψ}± = Vψ, ψ ∈ H− 1
2 (S), (42)

{Wφ}± = ∓µφ+ Wφ, φ ∈ H
1
2 (S), (43)

where

µ(y) :=
1

2
akj(y)nk(y)nj(y) > 0, y ∈ S. (44)
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LEMMA 4. The following operators are continuous

V : H− 1
2 (S) → H1,0(Ω+;∆) (45)

W : H
1
2 (S) → H1,0(Ω+;∆) (46)

V : H− 1
2 (S) → H

1
2 (S), (47)

W : H
1
2 (S) → H

1
2 (S), (48)

ESSENTIAL REMARK: H1,0(Ω+;∆) ̸= H1,0(Ω+;A)
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TWO BASIC LEMMAS

BASIC LEMMA 1. Let ψ ∈ H− 1
2 (∂Ω), f ∈ H0(Ω+). If

V (ψ)(y) + P(f)(y) = 0 in Ω+,

then ψ = 0 on ∂Ω and f = 0 in Ω+.

[Lemma 6.3 in

O. Chkadua, S. Mikhailov, and D. Natroshvili, Analysis of some local-
ized boundary-domain integral equations, Journal of Integral Equa-
tions and Applications, 21, No. 3 (2009), 407–447.]
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Now, let us recall localized Green’s third identity

β(y)u(y)+Nu(y)−V (T+u)(y) +W (u+)(y)=P
(
Au

)
(y) (49)

and consider the following counterpart of relation (49):

β(y)u(y)+Nu(y)−V (ψ)(y)+W (φ)(y)=F (y)+P(f)(y), (50)

where

ψ∈H− 1
2 (S), φ∈H 1

2 (S), F ∈H1, 0(Ω+;∆), f ∈H0(Ω+) (51)

BASIC LEMMA 2. If u ∈ H1(Ω+) solves equation (50), then u ∈
H1,0(Ω+, A).

COROLLARY 5. If χ ∈ X3, then the following operator is bounded

β I + N : H1,0(Ω+, A) → H1,0(Ω+;∆).
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The singular operator

Nu(y) := v.p.

∫
R3

[A(x, ∂x)P (x− y) ]u(x) dx ,

can be represented as

Nu(y) = −β(y)u(y) + ∂l P
(
akl ∂ku

)
(y), ∀ y ∈ R3, (52)

and using the mapping properties of the operator P, we deduce that
the following operator is continuous

N : Hs(R3) → Hs(R3), s ∈ R.

Denote by E0 the extension operator by zero from Ω+ onto Ω−.
For a function u ∈ H1(Ω+) we have (note that E0u ̸∈ H1(R3)!!!)(

N u
)
(y) =

(
NE0u

)
(y) for y ∈ Ω+. (53)

Due to (52), this implies continuity of the operator

r
Ω+

NE0 : H1(Ω+) → H1(Ω+). (54)
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Rewrite Green’s third formula for u ∈ H1, 0(Ω+;A) in a form more
convenient for our further analysis:

[β I + N ]E0u (y) − V (T+u)(y) +W (u+)(y) =

= P
(
A(x, ∂x)u

)
(y), y ∈ Ω+, (55)

where I stands for the identity operator.
The trace of equation (55) on S reads as:

N+E0u− V(T+u) + (β − µ)u+ + W(u+) =

= P+
(
A(x, ∂x)u

)
on S. (56)

where N+w := {Nw}+
S and P+w := {Pw}+

S .

(55) and (56) are basic equations for the LBDIE
method.
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Reduction to LBDIE systems

and equivalence theorems

LBDIE system for the Dirichlet problem:

A(x, ∂x)u = f in Ω+, f ∈ H0(Ω+), (57)

{u}+ = φ0 on S, φ0 ∈ H
1
2 (S); (58)

Equations (55) and (56) can be rewritten as follows

[β I + N ]E0u− V (ψ) = P(f) −W (φ0) in Ω+, (59)

N+E0u− V(ψ) = P+(f) − (β − µ)φ0 − W(φ0) on S, (60)

where ψ := T+u ∈ H− 1
2 (S).

One can consider these relations as the LBDIE system with respect
to the segregated unknown functions u and ψ.
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EQUIVALENCE THEOREM

THEOREM 6. Let χ ∈ X3
+, φ0 ∈ H

1
2 (S) and f ∈ H0(Ω+).

(i) If a function u∈H1,0(Ω+;A) solves the Dirichlet BVP (57)-(58),
then the solution is unique and the pair

(u, ψ) ∈ H1,0(Ω+;A) ×H− 1
2 (S)

with

ψ = T+u , (61)

solves the LBDIE system (59)-(60).

(ii) Vice versa, if a pair (u, ψ) ∈ H1,0(Ω+;A)×H− 1
2 (S) solves

LBDSIE system (59)-(60), then the solution is unique, the function
u solves the Dirichlet BVP (8)-(9), and equation (61) holds.
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PROOF. (i) The first part of the theorem directly follows form
Green’ third formula.

(ii) Let a pair (u, ψ) ∈ H1, 0(Ω+;A) × H− 1
2 (S) solve the LBDIE

system (59)-(60). Taking the trace of (59) on S and comparing with
(60) we get

γ+u = φ0 on S. (62)

Further, by BASIC LEMMA 2, u ∈ H1, 0(Ω+;A) and we can write
Green’s third formula (55) which in view of (62) can be rewritten as

[βI + N ]E0u−V (T+u)=P
(
A(x, ∂x)u

)
−W (φ0) in Ω+. (63)

Comparing the relations (59) and (63) we deduce

V (T+u− ψ)+P
(
A(x, ∂x)u−f

)
=0 in Ω+. (64)

Whence by BASIC LEMMA 1, A(x, ∂x)u = f in Ω+ and T+u = ψ
on S.

Thus u solves the Dirichlet BVP and equation (61) holds. �
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Invertibility of the Dirichlet LBDIO
LBDIE system for the Dirichlet problem:

[β I + N ]E0u− V (ψ) = P(f) −W (φ0) in Ω+, (65)

N+E0u− V(ψ) = P+(f) − (β − µ)φ0 − W(φ0) on S, (66)

Denote by D the localized boundary-domain integral operator gener-
ated by the left-hand side expressions in LBDIE system (65)–(66),

D :=

[
r
Ω+

(β I + N)E0 −r
Ω+
V

N+E0 −V

]
, (67)

r
Ω+

NE0 : H1(Ω+) → H1(Ω+), (68)

V : H− 1
2 (S) → H1(Ω+), (69)

⇓
D : H1(Ω+) ×H− 1

2 (S) → H1(Ω+) ×H
1
2 (S) . (70)

INVERTIBILITY of (70) is quite nontrivial!
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The main goal is to show that the equation

D

[
u
ψ

]
=

[
F1

F2

]
(71)

i.e., the system

r
Ω+

(β I + N)E0u− V (ψ) = F1 in Ω+, (72)

N+E0u− V(ψ) = F2 on S, (73)

is uniquely solvable in the space H1(Ω+) × H− 1
2 (S) for arbitrary

F1 ∈ H1(Ω+) and F2 ∈ H
1
2 (S).

Invertibility of the operator D is shown in several steps.
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STEP 1: Fredholm properties of the domain operators

The principal homogeneous symbols of the singular integral operators
N and β I + N read as

S0(N; y, ξ) =
A(y, ξ) − β |ξ|2

|ξ|2
, ∀ y ∈ R3, ∀ ξ ∈ R3 \ {0}, (74)

S0(βI+N; y, ξ)=
A(y, ξ)

|ξ|2
> 0, ∀y ∈ R3, ∀ξ ∈ R3 \ {0}. (75)

A(y, ξ) := akl(y) ξk ξl, β(y) = 3−1
[
a11 + a22 + a33

]
(76)

These principal homogeneous symbols are even
rational homogeneous functions in ξ of order 0.
This plays a crucial role in the study of the operator D.
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Introduce the notation:

B ≡ r
Ω+

(β I + N)E0. (77)

LEMMA 7. The operator

B : H1(Ω+) → H1(Ω+) (78)

is Fredholm with zero index.
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Introduce the notation:

B ≡ r
Ω+

(β I + N)E0. (79)

LEMMA 7. The operator

B : H1(Ω+) → H1(Ω+) (80)

is Fredholm with zero index.

Proof. Since the principal homogeneous symbol S0(B; y, ξ) of the
operator B is an even, rational, positive, homogeneous func-
tion of order 0 in ξ ∈ R3 \ {0},

S0(B; y, ξ) =
A(y, ξ)

|ξ|2
=

akl(y)ξkξl

ξ21 + ξ22 + ξ23
> 0, (81)

it follows that the factorization index κ of the symbol (81) equals to
zero, and due to the general theory of pseudodifferential operators we
deduce that the operator (80) is Fredholm for all s ≥ 0 [G.ESKIN].
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To show that IndB = 0 we use the fact that the operators B and

Bt = r
Ω+

[ (1 − t) I + t (β I + N) ]E0, t ∈ [0, 1], (82)

are homotopic. Note that B0 = r
Ω+

IE0 is invertible and B1 = B.
For the principal homogeneous symbol of the operator Bt we have

S0(Bt; y, ξ) =
(1 − t)|ξ|2 + t akl(y)ξkξl

|ξ|2
> 0.

Since S0(Bt; y, ξ) is rational, even, and homogeneous of order zero
in ξ, we conclude that the operator Bt : Hs(Ω+) → Hs(Ω+) is
Fredholm for all s ≥ 0 and for all t ∈ [0, 1].

Therefore IndBt is the same for all t ∈ [0, 1]. Since B0 = I is invert-
ible, we get IndB = IndB1 = IndBt = IndB0 = 0. �
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STEP 2: Fredholm properties of the operator D

LEMMA 8. The operator

D : H1(Ω+) ×H− 1
2 (S) → H1(Ω+) ×H

1
2 (S) . (83)

is Fredholm with zero index.

Proof. Recall that

D :=

[
B −r

Ω+
V

N+E0 −V

]
. (84)

We apply Vishik-Eskin theory for pseudodifferential operators based
on the local principal which states that since the operator B =
r
Ω+

(β I + N)E0 is Fredholm with zero index, it follows that the

operator (83) is Fredholm if the so-called generalized Šapiro-
Lopatinskĭi condition holds.
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To formulate the Šapiro-Lopatinskĭi condition we have to introduce
two operators Π+ and Π′:

Π+(h)(ξ) :=
i

2π
lim

t→0+

∫ +∞

−∞

h(ξ′, η3) dη3

ξ3 + i t− η3
, (85)

Π′(g)(ξ′) = −
1

2π

∫
Γ−

g(ξ′, ζ) dζ, (86)

ξ = (ξ′, ξ3) ∈ R3, ξ′ = (ξ1, ξ2) ∈ R2 \ {0}, (87)

where g(ξ′, ζ) is a rational function of a complex variable ζ and Γ−

is a contour in the lower ζ-complex half-plane, orientated anticlock-
wise and enclosing all the poles of the rational function g(ξ′, ζ) with
respect to ζ.
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Šapiro-Lopatinskĭi condition for the operator D:

e(y, ξ′) = − Π ′
[

S0(N; y, ·)
S

(+)

0 (B; y, ·)
Π+

(
S0(P; y, ·)
S

(−)

0 (B; y, ·)

)]
(ξ′)−

− S0(V; y, ξ′) ̸= 0, (88)

∀ ξ′ = (ξ1, ξ2) ̸= 0, ∀ y ∈ ∂Ω,

S0(N), S0(B), S0(P), and S0(V) are the corresponding principal
homogeneous symbols

S
(+)

0 (B) and S
(−)

0 (B) denote the so called “plus” and “minus” fac-
tors in the factorization of the symbol S0(B; y, ξ) with respect to
the variable ξ3:

S0(B) = S
(+)

0 (B)S
(−)

0 (B).
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By direct calculations it is shown that the Šapiro-Lopatinskĭi
condition for the operator D holds!
Therefore the operator D is Fredholm.

Further it is shown that the operator

D t :=

[
B −r

Ω+
V

tN+E0 −V

]
with t ∈ [0, 1]

is homotopic to the operator D = D1 and the Šapiro-Lopatinskĭi
condition for the operator D t is also satisfied for all t ∈ [0, 1], which
implies that the operator

Dt : H1(Ω+) ×H− 1
2 (S) → H1(Ω+) ×H

1
2 (S)

is Fredholm and has the same index for all t ∈ [0, 1].
On the other hand, since the upper triangular matrix operator D0

has zero index, it follows that

IndD = IndD 1 = IndDt = IndD0 = 0 .

0-42



THEOREM 9. The operator

D : H1(Ω+) ×H− 1
2 (S) → H1(Ω+) ×H

1
2 (S) . (89)

is invertible.

Proof. Since the operator (89) is Fredholm with zero index it remains
to show that the null space of the operator D is trivial.
Assume that U = (u, ψ)⊤ ∈ H1(Ω+) × H− 1

2 (S) is a solution to
the homogeneous equation DU = 0, i.e.

r
Ω+

(β I + N)E0u− V (ψ) = 0 in Ω+, (90)

N+E0u− V(ψ) = 0 on S, (91)

By BASIC LEMMA 2, from (90) it follows that u ∈ H1,0(Ω+, A).

Further, by EQUIVALENCE THEOREM, we conclude that u solves
the homogeneous Dirichlet problem and the relation T+u = ψ holds
on S, which implies that U = (u, ψ)⊤ is zero vector. Thus the null

space of the operator D is trivial in the class H1(Ω+) ×H− 1
2 (S).

Consequently, the operator D is invertible. �
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COROLLARY 10. The operator

D : H1,0(Ω+, A) ×H− 1
2 (S) → H1,0(Ω+,∆) ×H

1
2 (S) (92)

is invertible.

For a localizing function χ of infinite smoothness the following regu-
larity result holds.

THEOREM 11. Let χ ∈ X∞
+ and r > 0. Then the operator

D : Hr+1(Ω+) ×Hr− 1
2 (S) → Hr+1(Ω+) ×Hr+ 1

2 (S) (93)

is invertible.
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THANK YOU!
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