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INTRODUCTION

We consider the time-harmonic acoustic wave scattering by a bounded
anisotropic inhomogeneity embedded in an unbounded anisotropic ho-
mogeneous medium.

We assume that the material parameters are functions of position
within the inhomogeneous bounded obstacle.

The problem is formulated as a transmission problem (TP) for a sec-
ond order elliptic partial differential equation with variable coefficients

A2(x, ∂x)u(x) ≡ ∂xk

[
a
(2)
kj (x)∂xju(x)

]
+ ω2κ(x)u(x) = f2 (1)

in the inhomogeneous anisotropic region Ω2 and for the “anisotropic”
Helmoltz type equation with constant coefficients

A1(∂x)u(x) ≡ ∂xk

[
a
(1)
kj ∂xju(x)

]
+ ω2 u(x) = f1 (2)

in the unbounded homogeneous region Ω1.

0-4



Since the material parameters a
(q)
kj and the refractive index κ are

assumed to be discontinuous across the interface S = ∂Ω1 = ∂Ω2

between the inhomogeneous interior and homogeneous exterior re-
gions, there are given standard transmission conditions relating the
interior and exterior traces of the sought for wave functions and their
co-normal derivatives on S.
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Since the material parameters a
(q)
kj and the refractive index κ are

assumed to be discontinuous across the interface S = ∂Ω1 = ∂Ω2

between the inhomogeneous interior and homogeneous exterior re-
gions, there are given standard transmission conditions relating the
interior and exterior traces of the sought for wave functions and their
co-normal derivatives on S.

In a particular case of isotropic inhomogeneity, when

a
(2)
kj (x) = δkj, a

(1)
kj = δkj,

i.e., when

A2(x, ∂x) = ∆ + ω2κ(x), A1(∂x) = ∆ + ω2,

the similar transmission problems, is well investigated in the literature
(e.g. [Colton, Kress](2013): “Lippmann–Schwinger Equation” -
Fredholm-Riesz type integral equation).
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Another particular case of isotropic inhomogeneity, when

a
(2)
kj (x) = a(x) δkj, a

(1)
kj = δkj,

i.e., when

A2(x, ∂x)u(x) = ∂xk

[
a(x)∂xku(x)

]
+ ω2κ(x)u(x), (3)

A1(∂x)u(x) = ∆u(x) + ω2u(x), (4)

by the indirect boundary-domain integral equation method is investi-
gated by P.Werner (1960).

P.Werner reduces the problem to the Fredholm-Riesz type inte-
gral equations system and proves its unique solvability.
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Another particular case of isotropic inhomogeneity, when

a
(2)
kj (x) = a(x) δkj, a

(1)
kj = δkj,

i.e., when

A2(x, ∂x)u(x) = ∂xk

[
a(x)∂xku(x)

]
+ ω2κ(x)u(x), (3)

A1(∂x)u(x) = ∆u(x) + ω2u(x), (4)

by the indirect boundary-domain integral equation method is investi-
gated by P.Werner (1960).

P.Werner reduces the problem to the Fredholm-Riesz type inte-
gral equations system and proves its unique solvability.

The same problem for isotropic inhomogeneity by the direct method is
considered by P.Martin (2003) (using essentially the existence results
obtained by P.Werner).
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Our goal is to consider the above described wave
scattering problems for general inhomogeneous
anisotropic case, applying the method of Local-
ized Boundary-Domain Integral Equations.
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FORMULATION OF THE TRANSMISSION PROBLEM

Let Ω+ = Ω2 be a bounded domain in R3 with a simply connected
boundary ∂Ω+ = S, Ω+ = Ω+ ∪S, and Ω1 = Ω− := R3 \Ω+. For
simplicity, we assume that S ∈ C∞ if not otherwise stated.

n = (n1, n2, n3) denotes the unit normal vector to S directed out-
ward with respect to the domain Ω+.

We assume that the propagation region of time harmonic acoustic
waves is all of R3 which consists of an anisotropic inhomogeneous
part Ω2 := Ω+ and a anisotropic homogenous one Ω1 := Ω−.
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Acoustic wave propagation in Ω1 and Ω2 is governed by the uniformly
elliptic second order scalar partial differential equations

A1(∂x)u1(x)≡∂xk

(
a
(1)
kj ∂xju1(x)

)
+ω2u1(x)=0, x ∈ Ω1, (5)

A2(x, ∂x)u2(x)≡∂xk

(
a
(2)
kj (x)∂xju2(x)

)
+ω2κ(x)u2(x) =

= f(x), x ∈ Ω2; (6)

u1, u2 − wave amplitudes, ω ∈ R − wave number,
κ(x) > 0 − refractive index, f ∈ L2(Ω2) − a given function.

a
(2)
kj , κ ∈ C 2(Ω2), a

(q)
kj = a

(q)
jk , j, k = 1, 2, 3, q = 1, 2, (7)

The matrices a(q) = [a
(q)
kj ]3×3 are uniformly positive definite, i.e.,

there are positive constants c1 and c2 such that

c1 |ξ|2 ≤ a
(q)
kj (x)ξk ξj ≤ c2|ξ|2, x ∈ Ωq, ξ ∈ R3, q = 1, 2. (8)
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In the unbounded region Ω1 = Ω− we have a total wave field

u = utot = uins + usc,

where uins is a wave motion initiating known incident field and
u1 = usc is a radiating unknown scattered field.
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In the unbounded region Ω1 = Ω− we have a total wave field

u = utot = uins + usc,

where uins is a wave motion initiating known incident field and
u1 = usc is a radiating unknown scattered field.

The co-normal derivative operators read as

{T1(x, ∂x)v(x)}− := {a(1)
kj nk(x) ∂xjv(x)}−, x ∈ S, (9)

{T2(x, ∂x)v(x)}+ := {a(2)
kj (x)nk(x) ∂xjv(x)}+, x ∈ S; (10)

u± ≡ {u}±, T±
j u ≡ {Tj u}±− one sided traces on S from Ω±.

0-13



SOMMERFELD RADIATION CONDITIONS

Denote by Sω the characteristic surface (ellipsoid) associated with

the operator A1(∂) = a
(1)
kj ∂k∂j,

Φ1(ξ, ω) := a
(1)
kj ξk ξj − ω2 = 0, ξ ∈ R3.

For an arbitrary vector η ∈ R3 with |η| = 1 there exists only one
point ξ(η) ∈ Sω such that the outward unit normal vector n(ξ(η)) to
Sω at the point ξ(η) has the same direction as η, i.e., n(ξ(η)) = η.
Note that ξ(−η) = −ξ(η) ∈ Sω and n(−ξ(η)) = −η.
It can be easily verified that

ξ(η) = ω (bη · η)− 1
2 bη, (11)

where b := [a(1)]−1 is the matrix inverse to a(1) := [a
(1)
kj ]3×3.
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SOMMERFELD CLASS Z(Ω−) associated with the operator A1(∂) :

A complex valued function w belongs to Z(Ω−) if for sufficiently large
|x| ≫ 1 the following radiation conditions hold

w(x) = O(|x|−1), (12)

∂kw(x) − iξk(η)w(x) = O(|x|−2), k = 1, 2, 3, (13)

where ξ(η) ∈ Sω corresponds to the vector η = x/|x| .

LEMMA 1. [Analogue of the Rellich-Vekua lemma, 1943] Let w be
a solution of the homogeneous equation A1(∂x)w = 0 in Ω− and let

lim
R→+∞

∫
ΣR

|w(x)|2 dΣR = 0, (14)

where ΣR is the sphere centered at the origin and radius R.

Then w = 0 in Ω−.

0-15



TRANSMISSION PROBLEM:

Find complex valued functions

u2 ∈ H1, 0(Ω+, A2), u1 ∈ H1, 0
loc (Ω

−, A1) ∩ Z(Ω−)

satisfying the differential equations

A1(∂x)u1(x) = 0 in Ω1, (15)

A2(x, ∂x)u2(x) = f(x) in Ω2, (16)

and the transmission conditions on the interface S

u+
2 − u−

1 = φ0 on S, (17)

T+
2 u2 − T−

1 u1 = ψ0 on S, (18)

where

φ0 := {uinc}− ∈ H
1
2 (S), ψ0 := {T1u

inc}− ∈ H− 1
2 (S), (19)

f ∈ H0(Ω+). (20)

0-16



Basic integral relations in the bounded domain Ω2 = Ω+

Localized harmonic parametrix

P (x) ≡ Pχ(x) := −
χ(x)

4π |x|
, χ ∈ Xk

+, k ≥ 3. (21)

Green’s third formula for u2 ∈ H1, 0(Ω+, A2)

β(y)u2(y) + N2 u2(y) − V2(T
+
2 u2)(y)+

+W2(u
+
2 )(y) = P2

(
A2u2

)
(y), y ∈ Ω+, (22)

β(x) =
1

3
[ a

(2)
11 (x) + a

(2)
22 (x) + a

(2)
33 (x) ], (23)

N2 v(y) := v.p.

∫
Ω+

[A2(x, ∂x)P (x− y)]v(x) dx, (24)
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V2, W2 and P2 are the localized single layer, double layer and New-
tonian volume potentials

V2(g)(y) := −
∫
S

P (x− y) g(x) dSx, (25)

W2(g)(y) := −
∫
S

[
T2(x, ∂x)P (x− y)

]
g(x) dSx, (26)

P2(h)(y) :=

∫
Ω+

P (x− y)h(x) dx. (27)

The principal homogeneous symbol S0(N2; y, ξ) is rational in ξ

S0(N2; y, ξ) =
a
(2)
kl (y) ξk ξl

|ξ|2
− β(y) =

A2(y, ξ)

|ξ|2
− β(y) , (28)

y ∈ Ω+, ξ ∈ R3,

If a
(2)
kl (y) = a(2)(y)δkl, then S0(N2; y, ξ) = 0 and the operator N2

becomes weakly singular integral operator.
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The interior trace of Green’s third formula on S reads as

N+
2 u2−V2(T

+
2 u2)+(β−µ+W2)u

+
2 = P+

2

(
A2u2

)
on S, (29)

where

µ(y) :=
1

2
a
(2)
kj (y)nk(y)nj(y) > 0, y ∈ S, (30)

V2 g(y) := −
∫
S

P (x− y) g(x) dSx, y ∈ S, (31)

W2 g(y) := −
∫
S

[
T2(x, ∂x)P (x− y)

]
g(x) dSx, y ∈ S, (32)

N+
2 u2 := {N2 u2}+

S , P+
2

(
A2u2

)
:= {P2

(
A2u2

)
}+. (33)
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LEMMA 2. Let

Φ2 ∈ H1, 0(Ω+,∆), ψ2 ∈ H− 1
2 (S), φ2 ∈ H

1
2 (S). (34)

Moreover, let u2 ∈ H1(Ω+) and the following equation hold in Ω+

β(y)u2(y) + N2 u2(y) − V2(ψ2)(y) +W2(φ2)(y) = Φ(y). (35)

Then u ∈ H1, 0(Ω+, A2).
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Basic relations in unbounded domain Ω1 = Ω−

For any radiating solution u1 ∈ H1, 0
loc (Ω

−, A1)∩Z(Ω−) of homoge-
neous equation A1(∂)u1 = 0 there holds the following Green’s third
formula:

u1(y) + V1(T
−
1 u1)(y)−W1(u

−
1 )(y) = 0, y ∈ Ω−, (36)

where

V1(g)(y) := −
∫
S

γ(x− y) g(x) dSx, y ∈ R3 \ S, (37)

W1(g)(y) :=−
∫
S

[T1(x, ∂x)γ(x−y)] g(x) dSx, y ∈ R3 \ S. (38)

γ(x, ω) is a radiating fundamental function of the operator A1(∂x):

γ(x, ω) = −
exp{iω(bx · x)1/2}

4π(det a)1/2(bx · x)1/2
, b = a−1, a = [a

(1)
kj ]3×3.(39)
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Properties of radiating potentials

(i) Mapping properties

V1 : H− 1
2 (S) → H1

loc(Ω
−, A1) ∩ Z(Ω−),

W1 : H
1
2 (S) → H1

loc(Ω
−, A1) ∩ Z(Ω−).

(40)

(ii) Jump relations for h ∈ H− 1
2 (S) and g ∈ H

1
2 (S):

{V1(h)}+ = {V1(h)}− = V1(h) on S, (41)

{T1V1(h)}± = (± 2−1I + W ′
1)h on S, (42)

{W1(g)(y)}± = (∓ 2−1I + W1)g on S, (43)

T+
1 W1(g) = T−

1 W1(g) =: L1(g) on S, (44)
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where I stands for the identity operator, and

V1(h)(y) := −
∫
S

γ(x− y)h(x) dSx, y ∈ S, (45)

W1(g)(y) := −
∫
S

[T1(x, ∂x)γ(x− y)] g(x) dSx, y ∈ S, (46)

W ′
1(h)(y) := −

∫
S

[T1(y, ∂y)γ(x− y)]h(x) dSx, y ∈ S. (47)

(iii) The operators

V1 : H− 1
2 (S) → H

1
2 (S), (48)

W1 : H
1
2 (S) → H

1
2 (S), (49)

W ′
1 : H− 1

2 (S) → H− 1
2 (S), (50)

L1 : H
1
2 (S) → H− 1

2 (S), (51)

are continuous.
The operators (49)-(51) are compact, V1 and L1 are pseudodifferen-
tial operators of order −1 and 1 respectively.
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Let α be a positive constant and define the operators K1 and M1 :

K1 := 2−1 I + W ′
1 − i αV1 ∼ {[T1 − iα]V1(g)}+, (52)

M1 := L1 − i α (−2−1 I + W1) ∼ {[T1 − iα]W1(g)}+. (53)

For a solution u1 ∈ H1, 0
loc (Ω

−, A1) ∩ Z(Ω−) of equation A1u1 = 0
the following relation can be derived from Green’s third formula:

K1(T
−
1 u1) − M1(u

−
1 ) = 0 on S. (54)

LEMMA 3. The operators

K1 : H− 1
2 (S) → H− 1

2 (S), M1 : H
1
2 (S) → H− 1

2 (S), (55)

are invertible.

From (54) and Lemma3 the following Steklov-Poincaré rela-
tion for arbitrary u1 ∈ H1, 0

loc (Ω
−, A1) ∩ Z(Ω−) follows

T−
1 u1 = K−1

1 M1 u
−
1 on S, (56)

where K−1
1 is the inverse to the operator K1.
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Equivalent reduction to the system of integral equations

Let us set

φ1 := u−
1 , φ2 := u+

2 , ψ1 := T−
1 u1, ψ2 := T+

2 u2. (57)

If a pair (u1, u2) solves the transmission problem, then in view of
the notation (57), the relations obtained above and the transmission
conditions can be rewritten as

β u2 + N2 u2 − V2(ψ2) +W2(φ2) = P2

(
f
)

in Ω+, (58)

N+
2 u2 − V2ψ2 + (β − µ+ W2)φ2 = P+

2

(
f
)

on S, (59)

u1 + V1(ψ1) −W1(φ1) = 0 in Ω−, (60)

K1ψ1 − M1φ1 = 0 on S, (61)

φ2 − φ1 = φ0 on S, (62)

ψ2 − ψ1 = ψ0 on S. (63)
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Rewrite this LBDIE system in the following equivalent form

β u2 + N2 u2 − V2(ψ2) +W2(φ2) = P2

(
f
)

in Ω+, (64)

N+
2 u2 − V2ψ2 + (β − µ+ W2)φ2 = P+

2

(
f
)

on S, (65)

K1ψ2 − M1φ2 = K1ψ0 − M1φ0 on S, (66)

φ1 = φ2 − φ0 on S, (67)

ψ1 = ψ2 − ψ0 on S, (68)

u1 + V1(ψ1) −W1(φ1) = 0 in Ω−. (69)

Let us consider these relations as a system of equations with respect
to unknowns

(u2, ψ2, φ2, ψ1, φ1, u1) ∈ H , (70)

where

H := H1,0(Ω+, A2) ×H− 1
2 (S) ×H

1
2 (S)×

×H− 1
2 (S) ×H

1
2 (S) ×

(
H1,0

loc (Ω
−, A1) ∩ Z(Ω−)

)
. (71)
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EQUIVALENCE THEOREM

The transmission problem (15)-(20) and the system of integral equa-
tions (64)-(69) are equivalent in the following sense:

(i) If a pair (u2, u1) ∈ H1, 0(Ω+, A2) ×
(
H1, 0

loc (Ω
−, A1) ∩ Z(Ω−)

)
solves the transmission problem (15)-(20), then the vector

(u2, ψ2, φ2, ψ1, φ1, u1) ∈ H

with ψ2, φ2, ψ1, φ1, defined by the equalities

φ1 := u−
1 , φ2 := u+

2 , ψ1 := T−
1 u1, ψ2 := T+

2 u2, (72)

solves the system (64)-(69), and vice versa,

(ii) If a vector (u2, ψ2, φ2, ψ1, φ1, u1) ∈ H solves the system (64)-
(69), then the pair

(u2, u1) ∈ H1, 0(Ω+, A2) ×
(
H1, 0

loc (Ω
−, A1) ∩ Z(Ω−)

)
solves the transmission problem (15)-(20) and the relations (72) hold
true.
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Proof. (i) The first part of the theorem is trivial.

(ii) Let a vector (u2, ψ2, φ2, ψ1, φ1, u1) ∈ H solve the system (64)-
(69). Taking the trace of (64) on S and comparing with (65) lead
to the equation

u+
2 = φ2 on S. (73)

Further, since u2 ∈ H1, 0(Ω2, A2) we can write Green’s third identity
(22) which in view of (73) can be rewritten as

β(y)u2(y) + N2 u2(y) − V2(T
+
2 u2)(y) +W2(φ2)(y) =

= P2

(
A2u2

)
(y), y ∈ Ω2. (74)

From (64) and (74) it follows that

V2(T
+
2 u2 − ψ2) + P2

(
A2u2 − f2

)
= 0 in Ω2, (75)

implying

A2u2 = f2 in Ω2, T+
2 u2 = ψ2 on S. (76)
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Further, from equation (69) it follows that

A1u1 = 0 in Ω1, K1ψ1 − M1φ1 = 0 on S. (77)

Now, let us consider the function

v := V1(ψ1) −W1(φ1) in Ω2 = Ω+. (78)

It can be shown that

A1v = 0 in Ω1, (79)

T+
1 v − i α v+ = 0 on S, α ∈ R \ {0}, (80)

which implies that v vanishes identically in Ω2 = Ω+, since the Robin
problem (79)-(80) possess only the trivial solution. Therefore

u−
1 = u−

1 + v+ = φ1, T−
1 u1 = T−

1 u1 + T+
1 v = ψ1. (81)

which completes the proof. �
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Uniqueness Theorem. The homogeneous transmission prob-
lem possesses only the trivial solution.

Proof. Let B(R) be a ball centered at the origin and radius R,

such that Ω+ ⊂ B(R). Let a pair (u1, u2) be a solution to the
homogeneous transmission problem. Write Green’s formulas for the
domains Ω+ and Ω−

R = Ω− ∩B(R)∫
Ω+

[a
(2)
kj (x)∂ju2(x)∂ku2(x)−ω2κ(x)|u2(x)|2]dx=⟨T+

2 u2 , u
+
2 ⟩S,∫

Ω
−
R

[a
(1)
kj ∂ju1(x) ∂ku1(x) − ω2|u1(x)|2] dx = −⟨T−

1 u1 , u
−
1 ⟩S+

+ ⟨T1u1 , u1⟩Σ(R).

Since the matrix a = [akj]3×3 is symmetric and positive definite, in
view of the homogeneous transmission conditions we get

Im
{ ∫

ΣR

T1(x, ∂)u1(x)u1(x) dΣR

}
= 0. (82)
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Since u1 ∈ Z(Ω−) we get

u1(x)T1(x, ∂)u1(x)= i ω (bη · η)− 1
2 |u1(x)|2 + O(|x|−3). (83)

Due to positive definiteness of the matrix b := [a(1)]−1, there are
positive constants δ0 and δ1 such that for all η ∈ Σ1

0 < δ0 6 (bη · η)− 1
2 6 δ1 < ∞ . (84)

Therefore

(82) ⇒ lim
R→+∞

∫
ΣR

|u1(x)|2 dΣR = 0 (85)

and by Rellich-Vekua Lemma u1 = 0 in Ω−.
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Consequently, the function u2 solves the homogeneous Cauchy prob-
lem in Ω+ for the elliptic partial differential equation

A2(x, ∂)u2 = 0 in Ω+,

{u2}+ = 0, {T2u2}+ = 0 on S,

with variable coefficients a
(2)
kj and κ2 with a

(2)
kj , κ2 ∈ C2(Ω2).

By the interior and boundary regularity properties of solutions to el-
liptic equations we have that u2 ∈ C2(Ω+) and therefore u2 = 0 in
Ω+ due to the well known uniqueness theorem for the Cauchy problem
(E.M. Landis - 1956, A.P.Calderon - 1958). �
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Consequently, the function u2 solves the homogeneous Cauchy prob-
lem in Ω+ for the elliptic partial differential equation

A2(x, ∂)u2 = 0 in Ω+,

{u2}+ = 0, {T2u2}+ = 0 on S,

with variable coefficients a
(2)
kj and κ2 with a

(2)
kj , κ2 ∈ C2(Ω2).

By the interior and boundary regularity properties of solutions to el-
liptic equations we have that u2 ∈ C2(Ω+) and therefore u2 = 0 in
Ω+ due to the well known uniqueness theorem for the Cauchy problem
(E.M. Landis - 1956, A.P.Calderon - 1958). �
COROLLARY 4. The LBDIE system (64)-(69) possesses at most one
solution in the space H.
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Consequently, the function u2 solves the homogeneous Cauchy prob-
lem in Ω+ for the elliptic partial differential equation

A2(x, ∂)u2 = 0 in Ω+,

{u2}+ = 0, {T2u2}+ = 0 on S,

with variable coefficients a
(2)
kj and κ2 with a

(2)
kj , κ2 ∈ C2(Ω2).

By the interior and boundary regularity properties of solutions to el-
liptic equations we have that u2 ∈ C2(Ω+) and therefore u2 = 0 in
Ω+ due to the well known uniqueness theorem for the Cauchy problem
(E.M. Landis - 1956, A.P.Calderon - 1958). �
COROLLARY 4. The LBDIE system (64)-(69) possesses at most one
solution in the space H.

REMARK 5: Due to the recent results, the uniqueness theorem for
the Cauchy problem for a scalar elliptic operator holds if variable co-
efficients are Lipschitz continuous and Ω+ is a Dini domain
(X.X.Tao and S.Y.Zhang - 2007).
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Investigation of the LBDIE system

(β I + N2)E0 u2 − V2(ψ2) +W2(φ2) = P2

(
f2

)
in Ω+, (86)

N+
2 E0 u2 − V2ψ2 + (β − µ+ W2)φ2 = P+

2

(
f2

)
on S, (87)

K1ψ2 − M1φ2 = K1ψ0 − M1φ0 on S, (88)

φ1 = φ2 − φ0 on S, (89)

ψ1 = ψ2 − ψ0 on S, (90)

u1 + V1(ψ1) −W1(φ1) = 0 in Ω−. (91)

where E0 denotes the extension operator by zero from Ω+ onto Ω−.

We need to investigate the matrix operator generated by the left hand
side expressions in the first three equations. If the unknowns u2, ψ2,
and φ2 are found from the first three equations, then the unknowns
ψ1, φ1,u1 can be defined explicitly from the last three equations.
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Let us rewrite the first three equations of the LBDIE system (86)-(91)
in matrix form

MU (2) = F, (92)

M :=

 r
Ω+

(β I + N2)E0 −r
Ω+
V2 r

Ω+
W2

A+
2 E0 −V2 (β − µ)I + W2

0 K1 −M1

 (93)

U (2) := (u2, ψ2, φ2)
⊤, F :=

(
F1, F2, F3

)⊤
, (94)

Applying the mapping properties of the layer potentials and pseudod-
ifferential operators with rational type symbols we deduce that the
following operator is continuous

M : X 1 → Y 1, (95)

X1 := H1(Ω+) ×H− 1
2 (S) ×H

1
2 (S), (96)

Y1 := H1(Ω+) ×H
1
2 (S) ×H− 1

2 (S). (97)
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THEOREM 4. The operator

M : X 1 → Y 1

is invertible.
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THEOREM 5. The operator

M : X 1 → Y 1

is invertible.

Proof. Invertibility of the operator M can be shown with the help
of the Vishik-Eskin theory. The proof is performed into several steps.

Step 1. The operator

M11 = r
Ω+

(β I + N2)E0 : H1(Ω+) → H1(Ω+)

is Fredholm with zero index.
The proof is based on the fact that the principal homogeneous symbol

S0(D11; y, ξ) =
a
(2)
kl (y)ξkξl

|ξ|2
> 0, y ∈ Ω+, ξ ∈ R3 \ {0},

is positive, rational, homogeneous of order 0 in ξ.
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Step 2. The operator M is Fredholm with zero index.

(i) Fredholm property follows from the fact that for the operator M
the generalized Šapiro-Lopatinskĭi condition holds which is verified by
direct calculations of specific Cauchy type integrals.

(ii) The zero index is established by showing that M is homotopic to
an invertible operator.
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Step 2. The operator M is Fredholm with zero index.

(i) Fredholm property follows from the fact that for the operator M
the generalized Šapiro-Lopatinskĭi condition holds which is verified by
direct calculations of specific Cauchy type integrals.

(ii) The zero index is established by showing that M is homotopic to
an invertible operator.

Step 3. The null space of the operator M is trivial.
This is shown with the help of the Equivalence and Uniqueness The-
orems.

Consequently, the operator M is invertible.
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COROLLARY 6. The operator

M : H1, 0(Ω+, A2) ×H− 1
2 (S) ×H

1
2 (S) →

→ H1, 0(Ω+,∆) ×H
1
2 (S) ×H− 1

2 (S) (98)

is invertible.

COROLLARY 7. Let a cut-off function χ ∈ X∞
+ and r ≥ 0.

Then the operator

M : Hr+1(Ω+) ×Hr− 1
2 (S) ×Hr+ 1

2 (S) →

→ Hr+1(Ω+) ×Hr+ 1
2 (S) ×Hr− 1

2 (S) (99)

is invertible.
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From the above results it follows that the LBDIE system

(β I + N2)E0 u2 − V2(ψ2) +W2(φ2) = h1 in Ω+, (100)

A+
2 E0 u2 − V2ψ2 + (β − µ+ W2)φ2 = h2 on S, (101)

K1ψ2 − M1φ2 = h3 on S, (102)

ψ2 − ψ1 = h4 on S, (103)

φ2 − φ1 = h5 on S, (104)

u1 + V1(ψ1) −W1(φ1) = h6 in Ω−. (105)

is uniquely solvable in the space

X := H1(Ω+) ×H− 1
2 (S) ×H

1
2 (S) ×H− 1

2 (S)×

×H
1
2 (S) ×

(
H1

loc(Ω
−) ∩ Z(Ω−)

)
for arbitrary right hand side data (h1, · · · , h6) ∈ Y with

Y := H1(Ω+) ×H
1
2 (S) ×H− 1

2 (S) ×H− 1
2 (S)×

×H
1
2 (S) ×H1

comp(Ω
−).
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THE PROBLEMS OF ACOUSTIC

SCATTERING BY INHOMOGENEOUS

ANISOTROPIC OBSTACLES
are uniquely solvable.
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THANK YOU!
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