
Mathematical Analysis
of Problems

in Complex Media Electromagnetics

Ioannis G. Stratis∗

Mini-courses in Mathematical Analysis
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Abstract

At the macroscopic level, Maxwell’s equations read

curlH = ∂tD + J , (1)

curlE = − ∂tB , (2)

divE = % , (3)

divB = 0 , (4)

where E and H are the electric and the magnetic field, D, B are the electric and magnetic
flux densities, respectively, J is the electric current density, and % is the density of the
(externally impressed) electric charge.

In this mini-course we will only consider harmonic time dependence (exp(− iω t), with
angular frecuency ω > 0) of all the involved fields.

Constitutive relations (that in general have the form D = D(E,H), B = B(E,H)) must
be introduced into Maxwell’s equations.
We will focus on a very interesting linear case, describing the so-called “reciprocal chiral
(or Pasteur) media”, and use the “Drude-Born-Fedorov” (DBF) constitutive relations

D = ε(E + β curlE) , B = µ(H + β curlH) , (5)

where ε, µ, β are appropriately regular functions – the electric permittivity, the magnetic
permeability and the chirality measure of the complex (chiral) material filling O, which
is an open, connected and bounded subset of R3, with sufficiently smooth boundary ∂O.
By eliminating H we obtain the equation

curl (α curlE) = ω2 (curl(β εE)) + β ε curlE + εE) . (6)
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We consider the (non-homogeneous version of the) perfect conductor boundary condition

ν̂ × E = f , on ∂O , (7)

where ν̂ is the outward normal on ∂O, and f is a prescribed electric field on ∂O.
Similar problems arise in many important applications, e.g., diamagnetic structures,

Hall-effect devices, magnetohydrodynamics (MHD), toroidal coils, plasma physics, hydro-
dynamic fluctuations in fluids, magnetic resonance imaging (MRI), etc.

We will first obtain an appropriate weak formulation of the problem ((6),(7)). By in-
troducing a suitable bilinear form we will express this interior problem as a variational
problem, and then use standard arguments to establish its solvability.
In order to properly define the functional framework, we will introduce and briefly refer
to the required properties of appropriate spaces, e.g., H(curl,O), H0(curl,O), H(div,O),
H− 1/2(curl,O), H− 1/2(curl,O), etc.

Additionally, we intend to discuss briefly the corresponding exterior problem.

If time allows, some remarks on (i) the discretised version, and (ii) the eigenvalue
problem (in the case where β is a small non-negative constant) will also be made.
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